Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Fish Dis ; 45(11): 1645-1658, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35862221

RESUMO

Nephrocalcinosis is a common disorder in farmed Atlantic salmon, but the consequences for the fish physiology are not well understood. We performed a transcriptome study in kidneys of Atlantic salmon (Salmo salar) smolts without and with severe chronic nephrocalcinosis (NC). The study revealed that numerous genes are differentially expressed in fish with NC compared with healthy salmon. The most evident changes in gene expression patterns in the NC group were a massive downregulation of metabolism and energy production, upregulation of signalling pathways important for tissue repair and function maintenance and upregulation of inflammatory responses. Overall, the extensive tissue damage and the gene regulation responses that affect salmon with severe nephrocalcinosis are highly likely to have dramatic consequences on fish survival.


Assuntos
Doenças dos Peixes , Nefrocalcinose , Salmo salar , Animais , Doenças dos Peixes/genética , Regulação da Expressão Gênica , Nefrocalcinose/genética , Nefrocalcinose/veterinária , Salmo salar/genética , Transcriptoma
2.
Electrolyte Blood Press ; 13(1): 7-16, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26240595

RESUMO

Hypertension is a complex trait determined by both genetic and environmental factors and is a major public health problem due to its high prevalence and concomitant increase in the risk for cardiovascular disease. With the recent large increase of dietary salt intake in most developed countries, the prevalence of hypertension increases tremendously which is about 30% of the world population. There is substantial evidence that suggests some people can effectively excrete high dietary salt intake without an increase in arterial BP, and another people cannot excrete effectively without an increase in arterial BP. Salt sensitivity of BP refers to the BP responses for changes in dietary salt intake to produce meaningful BP increases or decreases. The underlying mechanisms that promote salt sensitivity are complex and range from genetic to environmental influences. The phenotype of salt sensitivity is therefore heterogeneous with multiple mechanisms that potentially link high salt intake to increases in blood pressure. Moreover, excess salt intake has functional and pathological effects on the vasculature that are independent of blood pressure. Epidemiologic data demonstrate the role of high dietary salt intake in mediating cardiovascular and renal morbidity and mortality. Almost five decades ago, Guyton and Coleman proposed that whenever arterial pressure is elevated, pressure natriuresis enhances the excretion of sodium and water until blood volume is reduced sufficiently to return arterial pressure to control values. According to this hypothesis, hypertension can develop only when something impairs the excretory ability of sodium in the kidney. However, recent studies suggest that nonosmotic salt accumulation in the skin interstitium and the endothelial dysfunction which might be caused by the deterioration of vascular endothelial glycocalyx layer (EGL) and the epithelial sodium channel on the endothelial luminal surface (EnNaC) also play an important role in nonosmotic storage of salt. These new concepts emphasize that sodium homeostasis and salt sensitivity seem to be related not only to the kidney malfunction but also to the endothelial dysfunction. Further investigations will be needed to assess the extent to which changes in the sodium buffering capacity of the skin interstitium and develop the treatment strategy for modulating the endothelial dysfunction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA