Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Chromosoma ; 133(2): 149-168, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38456964

RESUMO

In eukaryotes, meiosis is the genetic basis for sexual reproduction, which is important for chromosome stability and species evolution. The defects in meiosis usually lead to chromosome aneuploidy, reduced gamete number, and genetic diseases, but the pathogenic mechanisms are not well clarified. Kinesin-7 CENP-E is a key regulator in chromosome alignment and spindle assembly checkpoint in cell division. However, the functions and mechanisms of CENP-E in male meiosis remain largely unknown. In this study, we have revealed that the CENP-E gene was highly expressed in the rat testis. CENP-E inhibition influences chromosome alignment and spindle organization in metaphase I spermatocytes. We have found that a portion of misaligned homologous chromosomes is located at the spindle poles after CENP-E inhibition, which further activates the spindle assembly checkpoint during the metaphase-to-anaphase transition in rat spermatocytes. Furthermore, CENP-E depletion leads to abnormal spermatogenesis, reduced sperm count, and abnormal sperm head structure. Our findings have elucidated that CENP-E is essential for homologous chromosome alignment and spindle assembly checkpoint in spermatocytes, which further contribute to chromosome stability and sperm cell quality during spermatogenesis.


Assuntos
Proteínas Cromossômicas não Histona , Pontos de Checagem da Fase M do Ciclo Celular , Meiose , Espermatócitos , Animais , Masculino , Ratos , Proteínas Cromossômicas não Histona/metabolismo , Proteínas Cromossômicas não Histona/genética , Cinesinas/metabolismo , Cinesinas/genética , Pontos de Checagem da Fase M do Ciclo Celular/genética , Espermatócitos/metabolismo , Espermatócitos/citologia , Espermatogênese , Fuso Acromático/metabolismo , Testículo/metabolismo , Testículo/citologia
2.
Biochim Biophys Acta Mol Cell Res ; 1869(9): 119306, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35680098

RESUMO

Genome stability depends on chromosome congression and alignment during cell division. Kinesin-7 CENP-E is critical for kinetochore-microtubule attachment and chromosome alignment, which contribute to genome stability in mitosis. However, the functions and mechanisms of CENP-E in the meiotic division of male spermatocytes remain largely unknown. In this study, by combining the use of chemical inhibitors, siRNA-mediated gene knockdown, immunohistochemistry, and high-resolution microscopy, we have found that CENP-E inhibition results in chromosome misalignment and metaphase arrest in dividing spermatocyte during meiosis. Strikingly, we have revealed that CENP-E regulates spindle organization in metaphase I spermatocytes and cultured GC-2 spd cells. CENP-E depletion leads to spindle elongation, chromosome misalignment, and chromosome instability in spermatocytes. Together, these findings indicate that CENP-E mediates the kinetochore recruitment of BubR1, spindle assembly checkpoint and chromosome alignment in dividing spermatocytes, which finally contribute to faithful chromosome segregation and chromosome stability in the male meiotic division.


Assuntos
Cinesinas , Espermatócitos , Animais , Proteínas Cromossômicas não Histona/genética , Segregação de Cromossomos , Instabilidade Genômica , Cinesinas/genética , Cinetocoros , Masculino , Camundongos , Mitose
3.
Cell Tissue Res ; 383(3): 1167-1182, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33237480

RESUMO

The acrosome is a special organelle that develops from the Golgi apparatus and the endolysosomal compartment in the spermatids. Centromere protein E (CENP-E) is an essential kinesin motor in chromosome congression and alignment. This study is aimed at investigating the roles and mechanisms of kinesin-7 CENP-E in the formation of the acrosome during spermatogenesis. Male ICR mice are injected with GSK923295 for long-term inhibition of CENP-E. Chemical inhibition and siRNA-mediated knockdown of CENP-E are carried out in the GC-2 spd cells. The morphology of the acrosomes is determined by the HE staining, immunofluorescence, and transmission electron microscopy. We have identified CENP-E is a key factor in the formation and structural maintenance of the acrosome during acrosome biogenesis. Long-term inhibition of CENP-E by GSK923295 results in the asymmetric acrosome and the dispersed acrosome. CENP-E depletion leads to the malformation of the Golgi complex and abnormal targeting of the PICK1- and PIST-positive Golgi-associated vesicles. Our findings uncover an essential role of CENP-E in membrane trafficking and structural organization of the acrosome in the spermatids during spermatogenesis. Our results shed light on the molecular mechanisms involved in vesicle trafficking and architecture maintenance of the acrosome.


Assuntos
Acrossomo/metabolismo , Proteínas Cromossômicas não Histona/metabolismo , Complexo de Golgi/metabolismo , Cinesinas/metabolismo , Espermátides , Espermatogênese , Animais , Linhagem Celular , Masculino , Camundongos , Camundongos Endogâmicos ICR , Transporte Proteico , Espermátides/citologia , Espermátides/metabolismo
4.
Eur J Cell Biol ; 99(6): 151107, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32800279

RESUMO

Kinesin-7 CENP-E motor protein is essential for chromosome alignment and kinetochore-microtubule attachment in cell division. Human CENP-E has recently identified to be linked with the microcephalic primordial dwarfism syndromes associated with a smaller head, brain malformations and a prominent nose. However, the roles of CENP-E in embryonic development remain largely unknown. In this study, we find that zebrafish CENP-E inhibition results in defects in early zygote cleavage, including asymmetric cell division, cell cycle arrest and the developmental abnormalities. We also demonstrate that CENP-E ablation in cultured cells leads to chromosome misalignment, spindle abnormalities and interruptions of the cell cycle. These observations suggest that CENP-E plays a key role in early cell division and cell cycle progression. Furthermore, we also find that CENP-E inhibition results in the defects in the epiboly, the developmental arrest, the smaller head and the abnormal embryo during zebrafish embryogenesis. Our data demonstrate new functions of CENP-E in development and provide insights into its essential roles in organogenesis.


Assuntos
Divisão Celular/fisiologia , Proteínas Cromossômicas não Histona/metabolismo , Cinesinas/metabolismo , Organogênese/fisiologia , Animais , Humanos , Peixe-Zebra
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA