Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Stem Cell Res Ther ; 15(1): 268, 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39183338

RESUMO

BACKGROUND: The KCNJ16 gene has been associated with a novel kidney tubulopathy phenotype, viz. disturbed acid-base homeostasis, hypokalemia and altered renal salt transport. KCNJ16 encodes for Kir5.1, which together with Kir4.1 constitutes a potassium channel located at kidney tubular cell basolateral membranes. Preclinical studies provided mechanistic links between Kir5.1 and tubulopathy, however, the disease pathology remains poorly understood. Here, we aimed at generating and characterizing a novel advanced in vitro human kidney model that recapitulates the disease phenotype to investigate further the pathophysiological mechanisms underlying the tubulopathy and potential therapeutic interventions. METHODS: We used CRISPR/Cas9 to generate KCNJ16 mutant (KCNJ16+/- and KCNJ16-/-) cell lines from healthy human induced pluripotent stem cells (iPSC) KCNJ16 control (KCNJ16WT). The iPSCs were differentiated following an optimized protocol into kidney organoids in an air-liquid interface. RESULTS: KCNJ16-depleted kidney organoids showed transcriptomic and potential functional impairment of key voltage-dependent electrolyte and water-balance transporters. We observed cysts formation, lipid droplet accumulation and fibrosis upon Kir5.1 function loss. Furthermore, a large scale, glutamine tracer flux metabolomics analysis demonstrated that KCNJ16-/- organoids display TCA cycle and lipid metabolism impairments. Drug screening revealed that treatment with statins, particularly the combination of simvastatin and C75, prevented lipid droplet accumulation and collagen-I deposition in KCNJ16-/- kidney organoids. CONCLUSIONS: Mature kidney organoids represent a relevant in vitro model for investigating the function of Kir5.1. We discovered novel molecular targets for this genetic tubulopathy and identified statins as a potential therapeutic strategy for KCNJ16 defects in the kidney.


Assuntos
Inibidores de Hidroximetilglutaril-CoA Redutases , Células-Tronco Pluripotentes Induzidas , Organoides , Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Organoides/metabolismo , Organoides/efeitos dos fármacos , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Rim/metabolismo , Rim/patologia , Rim/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos
2.
Acta Physiol (Oxf) ; 240(8): e14189, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38860527

RESUMO

Calcineurin, protein phosphatase 2B (PP2B) or protein phosphatase 3 (PP3), is a calcium-dependent serine/threonine protein phosphatase. Calcineurin is widely expressed in the kidney and regulates renal Na+ and K+ transport. In the thick ascending limb, calcineurin plays a role in inhibiting NKCC2 function by promoting the dephosphorylation of the cotransporter and an intracellular sorting receptor, called sorting-related-receptor-with-A-type repeats (SORLA), is involved in modulating the effect of calcineurin on NKCC2. Calcineurin also participates in regulating thiazide-sensitive NaCl-cotransporter (NCC) in the distal convoluted tubule. The mechanisms by which calcineurin regulates NCC include directly dephosphorylation of NCC, regulating Kelch-like-3/CUL3 E3 ubiquitin-ligase complex, which is responsible for WNK (with-no-lysin-kinases) ubiquitination, and inhibiting Kir4.1/Kir5.1, which determines NCC expression/activity. Finally, calcineurin is also involved in regulating ROMK (Kir1.1) channels in the cortical collecting duct and Cyp11 2 expression in adrenal zona glomerulosa. In summary, calcineurin is involved in the regulation of NKCC2, NCC, and inwardly rectifying K+ channels in the kidney, and it also plays a role in modulating aldosterone synthesis in adrenal gland, which regulates epithelial-Na+-channel expression/activity. Thus, application of calcineurin inhibitors (CNIs) is expected to abrupt calcineurin-mediated regulation of transepithelial Na+ and K+ transport in the kidney. Consequently, CNIs cause hypertension, compromise renal K+ excretion, and induce hyperkalemia.


Assuntos
Inibidores de Calcineurina , Calcineurina , Hiperpotassemia , Potássio , Hiperpotassemia/metabolismo , Animais , Humanos , Calcineurina/metabolismo , Potássio/metabolismo , Inibidores de Calcineurina/efeitos adversos , Inibidores de Calcineurina/farmacologia , Rim/metabolismo , Rim/efeitos dos fármacos
3.
Front Physiol ; 14: 1242975, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37700760

RESUMO

Background: The basolateral potassium channels play an important role in maintaining the membrane transport in the renal proximal tubules (PT) and adenosine receptors have been shown to regulate the trans-epithelial Na+ absorption in the PT. The aim of the present study is to explore whether adenosine also regulates the basolateral K+ channel of the PT and to determine the adenosine receptor type and the signaling pathway which mediates the effect of adenosine on the K+ channel. Methods: We have used the single channel recording to examine the basolateral K+ channel activity in the proximal tubules of the mouse kidney. All experiments were performed in cell-attached patches. Results: Single channel recording has detected a 50 pS inwardly-rectifying K+ channel with high channel open probability and this 50 pS K+ channel is a predominant type K+ channel in the basolateral membrane of the mouse PT. Adding adenosine increased 50 pS K+ channel activity in cell-attached patches, defined by NPo (a product of channel Numbers and Open Probability). The adenosine-induced stimulation of the 50 pS K+ channel was absent in the PT pretreated with DPCPX, a selective inhibitor of adenosine A1 receptor. In contrast, adenosine was still able to stimulate the 50 pS K+ channel in the PT pretreated with CP-66713, a selective adenosine A2 receptor antagonist. This suggests that the stimulatory effect of adenosine on the 50 pS K+ channel of the PT was mediated by adenosine-A1 receptor. Moreover, the effect of adenosine on the 50 pS K+ channel was blocked in the PT pretreated with U-73122 or Calphostin C, suggesting that adenosine-induced stimulation of the 50 pS K+ channels of the PT was due to the activation of phospholipase C (PLC) and protein kinase C (PKC) pathway. In contrast, the inhibition of phospholipase A2 (PLA2) with AACOCF3 or inhibition of protein kinase A (PKA) with H8 failed to block the adenosine-induced stimulation of the 50 pS K+ channel of the PT. Conclusion: We conclude that adenosine activates the 50 pS K+ channels in the basolateral membrane of PT via adenosine-A1 receptor. Furthermore, the effect of adenosine on the 50 pS K+ channel is mediated by PLC-PKC signaling pathway.

4.
BMC Endocr Disord ; 23(1): 113, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37208644

RESUMO

BACKGROUND: Recurrent and metastatic thyroid cancer is more invasive and can transform to dedifferentiated thyroid cancer, thus leading to a severe decline in the 10-year survival. The thyroid-stimulating hormone receptor (TSHR) plays an important role in differentiation process. We aim to find a therapeutic target in redifferentiation strategies for thyroid cancer. METHODS: Our study integrated the differentially expressed genes acquired from the Gene Expression Omnibus database by comparing TSHR expression levels in the Cancer Genome Atlas database. We conducted functional enrichment analysis and verified the expression of these genes by RT-PCR in 68 pairs of thyroid tumor and paratumor tissues. Artificial intelligence-enabled virtual screening was combined with the VirtualFlow platform for deep docking. RESULTS: We identified five genes (KCNJ16, SLC26A4, TG, TPO, and SYT1) as potential cancer treatment targets. TSHR and KCNJ16 were downregulated in the thyroid tumor tissues, compared with paired normal tissues. In addition, KCNJ16 was lower in the vascular/capsular invasion group. Enrichment analyses revealed that KCNJ16 may play a significant role in cell growth and differentiation. The inward rectifier potassium channel 5.1 (Kir5.1, encoded by KCNJ16) emerged as an interesting target in thyroid cancer. Artificial intelligence-facilitated molecular docking identified Z2087256678_2, Z2211139111_1, Z2211139111_2, and PV-000592319198_1 (-7.3 kcal/mol) as the most potent commercially available molecular targeting Kir5.1. CONCLUSION: This study may provide greater insights into the differentiation features associated with TSHR expression in thyroid cancer, and Kir5.1 may be a potential therapeutic target in the redifferentiation strategies for recurrent and metastatic thyroid cancer.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Neoplasias da Glândula Tireoide , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Simulação de Acoplamento Molecular , Inteligência Artificial , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/genética , Receptores da Tireotropina/metabolismo , Descoberta de Drogas
5.
Front Physiol ; 14: 1127893, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36923292

RESUMO

The inward-rectifying potassium channel subunit Kir5.1, encoded by Kcnj16, can form functional heteromeric channels (Kir4.1/5.1 and Kir4.2/5.1) with Kir4.1 (encoded by Kcnj10) or Kir4.2 (encoded by Kcnj15). It is expressed in the kidneys, pancreas, thyroid, brain, and other organs. Although Kir5.1 cannot form functional homomeric channels in most cases, an increasing number of studies in recent years have found that the functions of this subunit should not be underestimated. Kir5.1 can confer intracellular pH sensitivity to Kir4.1/5.1 channels, which can act as extracellular potassium sensors in the renal distal convoluted tubule segment. This segment plays an important role in maintaining potassium and acid-base balances. This review summarizes the various pathophysiological processes involved in Kir5.1 and the expression changes of Kir5.1 as a differentially expressed gene in various cancers, as well as describing several other disease phenotypes caused by Kir5.1 dysfunction.

6.
Cell Mol Life Sci ; 79(6): 296, 2022 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-35570209

RESUMO

Polymyxin antibiotics are often used as a last-line defense to treat life-threatening Gram-negative pathogens. However, polymyxin-induced kidney toxicity is a dose-limiting factor of paramount importance and can lead to suboptimal treatment. To elucidate the mechanism and develop effective strategies to overcome polymyxin toxicity, we employed a whole-genome CRISPR screen in human kidney tubular HK-2 cells and identified 86 significant genes that upon knock-out rescued polymyxin-induced toxicity. Specifically, we discovered that knockout of the inwardly rectifying potassium channels Kir4.2 and Kir5.1 (encoded by KCNJ15 and KCNJ16, respectively) rescued polymyxin-induced toxicity in HK-2 cells. Furthermore, we found that polymyxins induced cell depolarization via Kir4.2 and Kir5.1 and a significant cellular uptake of polymyxins was evident. All-atom molecular dynamics simulations revealed that polymyxin B1 spontaneously bound to Kir4.2, thereby increasing opening of the channel, resulting in a potassium influx, and changes of the membrane potential. Consistent with these findings, small molecule inhibitors (BaCl2 and VU0134992) of Kir potassium channels reduced polymyxin-induced toxicity in cell culture and mouse explant kidney tissue. Our findings provide critical mechanistic information that will help attenuate polymyxin-induced nephrotoxicity in patients and facilitate the design of novel, safer polymyxins.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Animais , Humanos , Rim/metabolismo , Potenciais da Membrana , Camundongos , Polimixinas/metabolismo , Polimixinas/toxicidade , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo
7.
Int J Mol Sci ; 22(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34205849

RESUMO

The ability of spermatozoa to swim towards an oocyte and fertilize it depends on precise K+ permeability changes. Kir5.1 is an inwardly-rectifying potassium (Kir) channel with high sensitivity to intracellular H+ (pHi) and extracellular K+ concentration [K+]o, and hence provides a link between pHi and [K+]o changes and membrane potential. The intrinsic pHi sensitivity of Kir5.1 suggests a possible role for this channel in the pHi-dependent processes that take place during fertilization. However, despite the localization of Kir5.1 in murine spermatozoa, and its increased expression with age and sexual maturity, the role of the channel in sperm morphology, maturity, motility, and fertility is unknown. Here, we confirmed the presence of Kir5.1 in spermatozoa and showed strong expression of Kir4.1 channels in smooth muscle and epithelial cells lining the epididymal ducts. In contrast, Kir4.2 expression was not detected in testes. To examine the possible role of Kir5.1 in sperm physiology, we bred mice with a deletion of the Kcnj16 (Kir5.1) gene and observed that 20% of Kir5.1 knock-out male mice were infertile. Furthermore, 50% of knock-out mice older than 3 months were unable to breed. By contrast, 100% of wild-type (WT) mice were fertile. The genetic inactivation of Kcnj16 also resulted in smaller testes and a greater percentage of sperm with folded flagellum compared to WT littermates. Nevertheless, the abnormal sperm from mutant animals displayed increased progressive motility. Thus, ablation of the Kcnj16 gene identifies Kir5.1 channel as an important element contributing to testis development, sperm flagellar morphology, motility, and fertility. These findings are potentially relevant to the understanding of the complex pHi- and [K+]o-dependent interplay between different sperm ion channels, and provide insight into their role in fertilization and infertility.


Assuntos
Infertilidade Masculina/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Espermatozoides/metabolismo , Animais , Fertilidade/genética , Regulação da Expressão Gênica no Desenvolvimento/genética , Infertilidade Masculina/patologia , Masculino , Potenciais da Membrana/genética , Camundongos , Camundongos Knockout , Músculo Liso/metabolismo , Oócitos/crescimento & desenvolvimento , Potássio/metabolismo , Motilidade dos Espermatozoides/genética , Espermatozoides/crescimento & desenvolvimento , Testículo/crescimento & desenvolvimento , Testículo/metabolismo , Canal Kir5.1
8.
Genes Dis ; 8(3): 272-278, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33997174

RESUMO

Inwardly rectifying potassium (Kir) channels make it easier for K+ to enter into a cell and subsequently regulate cellular biological functions. Kir5.1 (encoded by KCNJ16) alone can form a homotetramer and can form heterotetramers with Kir4.1 (encoded by KCNJ10) or Kir4.2 (encoded by KCNJ15). In most cases, homomeric Kir5.1 is non-functional, while heteromeric Kir5.1 on the cell membrane contributes to the inward flow of K+ ions, which can be regulated by intracellular pH and a variety of signaling mechanisms. In the form of a heterotetramer, Kir5.1 regulates Kir4.1/4.2 activity and is involved in the maintenance of nephron function. Actually, homomeric Kir5.1 may also play a very important role in diseases, including in the ventilatory response to hypoxia and hypercapnia, hearing impairment, cardiovascular disease and cancer. With an increase in the number of studies into the roles of Kir channels, researchers are paying more attention to the pathophysiological functions of Kir5.1. This minireview provides an overview regarding these Kir5.1 roles.

9.
Am J Physiol Renal Physiol ; 320(5): F883-F896, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33818128

RESUMO

Neural precursor cell expressed developmentally downregulated protein 4-2 (Nedd4-2) regulates the expression of Kir4.1, thiazide-sensitive NaCl cotransporter (NCC), and epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron (ASDN), and Nedd4-2 deletion causes salt-sensitive hypertension. We now examined whether Nedd4-2 deletion compromises the effect of high-salt (HS) diet on Kir4.1, NCC, ENaC, and renal K+ excretion. Immunoblot analysis showed that HS diet decreased the expression of Kir4.1, Ca2+-activated large-conductance K+ channel subunit-α (BKα), ENaCß, ENaCγ, total NCC, and phospho-NCC (at Thr53) in floxed neural precursor cell expressed developmentally downregulated gene 4-like (Nedd4lfl/fl) mice, whereas these effects were absent in kidney-specific Nedd4-2 knockout (Ks-Nedd4-2 KO) mice. Renal clearance experiments also demonstrated that Nedd4-2 deletion abolished the inhibitory effect of HS diet on hydrochlorothiazide-induced natriuresis. Patch-clamp experiments showed that neither HS diet nor low-salt diet had an effect on Kir4.1/Kir5.1 currents of the distal convoluted tubule in Nedd4-2-deficient mice, whereas we confirmed that HS diet inhibited and low-salt diet increased Kir4.1/Kir5.1 activity in Nedd4lflox/flox mice. Nedd4-2 deletion increased ENaC currents in the ASDN, and this increase was more robust in the cortical collecting duct than in the distal convoluted tubule. Also, HS-induced inhibition of ENaC currents in the ASDN was absent in Nedd4-2-deficient mice. Renal clearance experiments showed that HS intake for 2 wk increased the basal level of renal K+ excretion and caused hypokalemia in Ks-Nedd4-2-KO mice but not in Nedd4lflox/flox mice. In contrast, plasma Na+ concentrations were similar in Nedd4lflox/flox and Ks-Nedd4-2 KO mice on HS diet. We conclude that Nedd4-2 plays an important role in mediating the inhibitory effect of HS diet on Kir4.1, ENaC, and NCC and is essential for maintaining normal renal K+ excretion and plasma K+ ranges during long-term HS diet.NEW & NOTEWORTHY The present study suggests that Nedd4-2 is involved in mediating the inhibitory effect of high salt (HS) diet on Kir4.1/kir5.1 in the distal convoluted tubule, NaCl cotransporter function, and epithelial Na+ channel activity and that Nedd4-2 plays an essential role in maintaining K+ homeostasis in response to a long-term HS diet. This suggests the possibility that HS intake could lead to hypokalemia in subjects lacking proper Nedd4-2 E3 ubiquitin ligase activity in aldosterone-sensitive distal nephron.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Hipopotassemia/etiologia , Ubiquitina-Proteína Ligases Nedd4/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Sódio na Dieta/efeitos adversos , Animais , Antibacterianos/farmacologia , Transporte Biológico , Doxiciclina/farmacologia , Canais Epiteliais de Sódio/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/fisiologia , Hipopotassemia/induzido quimicamente , Hipopotassemia/genética , Transporte de Íons/fisiologia , Camundongos , Camundongos Knockout , Ubiquitina-Proteína Ligases Nedd4/genética , Néfrons/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Sódio/metabolismo , Sódio na Dieta/administração & dosagem , Membro 3 da Família 12 de Carreador de Soluto/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo
10.
Am J Physiol Renal Physiol ; 320(6): F1045-F1058, 2021 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-33900854

RESUMO

High sodium (HS) intake inhibited epithelial Na+ channel (ENaC) in the aldosterone-sensitive distal nephron and Na+-Cl- cotransporter (NCC) by suppressing basolateral Kir4.1/Kir5.1 in the distal convoluted tubule (DCT), thereby increasing renal Na+ excretion but not affecting K+ excretion. The aim of the present study was to explore whether deletion of Kir5.1 compromises the inhibitory effect of HS on NCC expression/activity and renal K+ excretion. Patch-clamp experiments demonstrated that HS failed to inhibit DCT basolateral K+ channels and did not depolarize K+ current reversal potential of the DCT in Kir5.1 knockout (KO) mice. Moreover, deletion of Kir5.1 not only increased the expression of Kir4.1, phospho-NCC, and total NCC but also abolished the inhibitory effect of HS on the expression of Kir4.1, phospho-NCC, and total NCC and thiazide-induced natriuresis. Also, low sodium-induced stimulation of NCC expression/activity and basolateral K+ channels in the DCT were absent in Kir5.1 KO mice. Deletion of Kir5.1 decreased ENaC currents in the late DCT, and HS further inhibited ENaC activity in Kir5.1 KO mice. Finally, measurement of the basal renal K+ excretion rate with the modified renal clearance method demonstrated that long-term HS inhibited the renal K+ excretion rate and steadily increased plasma K+ levels in Kir5.1 KO mice but not in wild-type mice. We conclude that Kir5.1 plays an important role in mediating the effect of HS intake on basolateral K+ channels in the DCT and NCC activity/expression. Kir5.1 is involved in maintaining renal ability of K+ excretion during HS intake. NEW & NOTEWORTHY Kir5.1 plays an important role in mediating the effect of high sodium intake on basolateral K+ channels in the distal convoluted tubule and Na+-Cl- cotransporter activity/expression.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Simportadores de Cloreto de Sódio/metabolismo , Sódio na Dieta/administração & dosagem , Sódio na Dieta/farmacologia , Animais , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Túbulos Renais Distais/efeitos dos fármacos , Túbulos Renais Distais/metabolismo , Masculino , Camundongos , Camundongos Knockout , Neurônios , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/genética , Simportadores de Cloreto de Sódio/genética
11.
Front Cell Dev Biol ; 9: 630361, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33693002

RESUMO

Endolymphatic potential (EP) is the main driving force behind the sensory transduction of hearing, and K+ is the main charge carrier. Kir5.1 is a K+ transporter that plays a significant role in maintaining EP homeostasis, but the expression pattern and role of Kir5.1 (which is encoded by the Kcnj16 gene) in the mouse auditory system has remained unclear. In this study, we found that Kir5.1 was expressed in the mouse cochlea. We checked the inner ear morphology and measured auditory function in Kcnj16 -/- mice and found that loss of Kcnj16 did not appear to affect the development of hair cells. There was no significant difference in auditory function between Kcnj16 -/- mice and wild-type littermates, although the expression of Kcnma1, Kcnq4, and Kcne1 were significantly decreased in the Kcnj16 -/- mice. Additionally, no significant differences were found in the number or distribution of ribbon synapses between the Kcnj16 -/- and wild-type mice. In summary, our results suggest that the Kcnj16 gene is not essential for auditory function in mice.

12.
Neurogenetics ; 21(2): 135-143, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32062759

RESUMO

KCNJ10 encodes the inward-rectifying potassium channel (Kir4.1) that is expressed in the brain, inner ear, and kidney. Loss-of-function mutations in KCNJ10 gene cause a complex syndrome consisting of epilepsy, ataxia, intellectual disability, sensorineural deafness, and tubulopathy (EAST/SeSAME syndrome). Patients with EAST/SeSAME syndrome display renal salt wasting and electrolyte imbalance that resemble the clinical features of impaired distal tubular salt transport in Gitelman's syndrome. A key distinguishing feature between these two conditions is the additional neurological (extrarenal) manifestations found in EAST/SeSAME syndrome. Recent reports have further expanded the clinical and mutational spectrum of KCNJ10-related disorders including non-syndromic early-onset cerebellar ataxia. Here, we describe a kindred of three affected siblings with early-onset ataxia, deafness, and progressive spasticity without other prominent clinical features. By using targeted next-generation sequencing, we have identified two novel missense variants, c.488G>A (p.G163D) and c.512G>A (p.R171Q), in the KCNJ10 gene that, in compound heterozygosis, cause this distinctive EAST/SeSAME phenotype in our family. Electrophysiological characterization of these two variants confirmed their pathogenicity. When expressed in CHO cells, the R171Q mutation resulted in 50% reduction of currents compared to wild-type KCNJ10 and G163D showed a complete loss of function. Co-expression of G163D and R171Q had a more pronounced effect on currents and membrane potential than R171Q alone but less severe than single expression of G163D. Moreover, the effect of the mutations seemed less pronounced in the presence of Kir5.1 (encoded by KCNJ16), with whom the renal Kir4.1 channels form heteromers. This partial functional rescue by co-expression with Kir5.1 might explain the lack of renal symptoms in the patients. This report illustrates that a spectrum of disorders with distinct clinical symptoms may result from mutations in different parts of KCNJ10, a gene initially associated only with the EAST/SeSAME syndrome.


Assuntos
Perda Auditiva Neurossensorial/genética , Deficiência Intelectual/genética , Mutação de Sentido Incorreto , Canais de Potássio Corretores do Fluxo de Internalização/genética , Convulsões/genética , Idoso , Animais , Células CHO , Cricetulus , Feminino , Perda Auditiva Neurossensorial/fisiopatologia , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Deficiência Intelectual/fisiopatologia , Pessoa de Meia-Idade , Linhagem , Fenótipo , Convulsões/fisiopatologia
13.
Am J Physiol Renal Physiol ; 318(2): F332-F337, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31841387

RESUMO

Inwardly rectifying K+ (Kir) channels are expressed in multiple organs and cell types and play critical roles in cellular function. Most notably, Kir channels are major determinants of the resting membrane potential and K+ homeostasis. The renal outer medullary K+ channel (Kir1.1) was the first renal Kir channel identified and cloned in the kidney over two decades ago. Since then, several additional members, including classical and ATP-regulated Kir family classes, have been identified to be expressed in the kidney and to contribute to renal ion transport. Although the ATP-regulated Kir channel class remains the most well known due to severe pathological phenotypes associated with their mutations, progress is being made in defining the properties, localization, and physiological functions of other renal Kir channels, including those localized to the basolateral epithelium. This review is primarily focused on the current knowledge of the expression and localization of renal Kir channels but will also briefly describe their proposed functions in the kidney.


Assuntos
Rim/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Potássio/metabolismo , Animais , Regulação da Expressão Gênica , Homeostase , Humanos , Rim/fisiopatologia , Nefropatias/genética , Nefropatias/metabolismo , Nefropatias/fisiopatologia , Potenciais da Membrana , Canais de Potássio Corretores do Fluxo de Internalização/genética
14.
Methods Cell Biol ; 153: 151-168, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31395377

RESUMO

Aldosterone-sensitive distal nephron (ASDN) including the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct (CD) plays an important role in the regulation of hormone-dependent Na+ reabsorption and dietary K+-intake dependent K+ excretion. The major Na+ transporters in the ASDN are thiazide-sensitive Na-Cl cotransporter (NCC), epithelial Na+ channel (ENaC), pendrin/Na+-dependent Cl--bicarbonate exchanger (NDCBE). Whereas major K+ channels in the ASDN are Kir4.1 and Kir5.1 in the basolateral membrane; and Kir1.1 (ROMK) and Ca2+ activated big conductance K+ channel (BK) in the apical membrane. Although a variety of in vitro cell lines of the ASDN is available and these cell models have been employed for studying Na+ and K+ channels, the biophysical properties and the regulation of Na+ and K+ channels in vitro cell models may not be able to recapitulate those in vivo conditions. Thus, the studies performed in the native ASDN are essential for providing highly physiological relevant information and for understanding the Na+ and K+ transport in the ASDN. Here we provide a detailed methodology describing how to perform the electrophysiological measurement in the native DCT, CNT and cortical collecting duct (CCD).


Assuntos
Canais Iônicos/metabolismo , Túbulos Renais Distais/metabolismo , Técnicas de Patch-Clamp/métodos , Potássio/metabolismo , Sódio/metabolismo , Aldosterona/metabolismo , Animais , Cátions Monovalentes/metabolismo , Camundongos , Microdissecção/instrumentação , Microdissecção/métodos , Técnicas de Patch-Clamp/instrumentação , Eliminação Renal/fisiologia , Reabsorção Renal/fisiologia
15.
Kidney Int ; 92(5): 1145-1156, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28577853

RESUMO

Hepatocyte nuclear factor 1 homeobox B (HNF1ß) is an essential transcription factor for the development and functioning of the kidney. Mutations in HNF1ß cause autosomal dominant tubulointerstitial kidney disease characterized by renal cysts and maturity-onset diabetes of the young (MODY). Moreover, these patients suffer from a severe electrolyte phenotype consisting of hypomagnesemia and hypokalemia. Until now, genes that are regulated by HNF1ß are only partially known and do not fully explain the phenotype of the patients. Therefore, we performed chIP-seq in the immortalized mouse kidney cell line mpkDCT to identify HNF1ß binding sites on a genome-wide scale. In total 7,421 HNF1ß-binding sites were identified, including several genes involved in electrolyte transport and diabetes. A highly specific and conserved HNF1ß site was identified in the promoter of Kcnj16 that encodes the potassium channel Kir5.1. Luciferase-promoter assays showed a 2.2-fold increase in Kcnj16 expression when HNF1ß was present. Expression of the Hnf1ß p.Lys156Glu mutant, previously identified in a patient with autosomal dominant tubulointerstitial kidney disease, did not activate Kcnj16 expression. Knockdown of Hnf1ß in mpkDCT cells significantly reduced the appearance of Kcnj16 (Kir5.1) and Kcnj10 (Kir4.1) by 38% and 37%, respectively. These results were confirmed in a HNF1ß renal knockout mouse which exhibited downregulation of Kcnj16, Kcnj10 and Slc12a3 transcripts in the kidney by 78%, 83% and 76%, respectively, compared to HNF1ß wild-type mice. Thus, HNF1ß is a transcriptional activator of Kcnj16. Hence, patients with HNF1ß mutations may have reduced Kir5.1 activity in the kidney, resulting in hypokalemia and hypomagnesemia.


Assuntos
Fator 1-beta Nuclear de Hepatócito/genética , Hipopotassemia/genética , Nefrite Intersticial/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Ativação Transcricional/genética , Animais , Sítios de Ligação/genética , Imunoprecipitação da Cromatina , Regulação para Baixo , Células HEK293 , Fator 1-beta Nuclear de Hepatócito/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Hipopotassemia/sangue , Rim/metabolismo , Magnésio/sangue , Camundongos , Camundongos Knockout , Mutação , Fenótipo , Potássio/sangue , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Regiões Promotoras Genéticas/genética
16.
J Huazhong Univ Sci Technolog Med Sci ; 36(3): 406-409, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27376812

RESUMO

Age-related hearing loss (AHL) is one of the most common sensory disorders among elderly persons. The inwardly rectifying potassium channel 5.1 (Kir5.1) plays a vital role in regulating cochlear K(+) circulation which is necessary for normal hearing. The distribution of Kir5.1 in C57BL/6J mice cochleae, and the relationship between the expression of Kir5.1 and the etiology of AHL were investigated. Forty C57BL/6J mice were randomly divided into four groups at 4, 12, 24 and 52 weeks of age respectively. The location of Kir5.1 was detected by immunofluorescence technique. The mRNA and protein expression of Kir5.1 was evaluated in mice cochleae using real-time polymerase-chain reactions (RT-PCR) and Western blotting respectively. Kir5.1 was detected in the type II and IV fibrocytes of the spiral ligament in the cochlear lateral wall of C57BL/6J mice. The expression levels of Kir5.1 mRNA and protein in the cochleae of aging C57BL/6J mice were down-regulated. It was suggested that the age-related decreased expression of Kir5.1 in the lateral wall of C57BL/6J mice was associated with hearing loss. Our results indicated that Kir5.1 may play an important role in the pathogenesis of AHL.


Assuntos
Envelhecimento/genética , Canais de Potássio Corretores do Fluxo de Internalização/genética , Presbiacusia/genética , RNA Mensageiro/genética , Ligamento Espiral da Cóclea/metabolismo , Envelhecimento/metabolismo , Animais , Cátions Monovalentes , Imunofluorescência , Regulação da Expressão Gênica , Transporte de Íons , Camundongos , Camundongos Endogâmicos C57BL , Microtomia , Potássio/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Presbiacusia/metabolismo , Presbiacusia/fisiopatologia , RNA Mensageiro/metabolismo , Ligamento Espiral da Cóclea/fisiopatologia , Ligamento Espiral da Cóclea/ultraestrutura , Canal Kir5.1
17.
Annu Rev Physiol ; 78: 415-35, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26654186

RESUMO

More than two dozen types of potassium channels, with different biophysical and regulatory properties, are expressed in the kidney, influencing renal function in many important ways. Recently, a confluence of discoveries in areas from human genetics to physiology, cell biology, and biophysics has cast light on the special function of five different potassium channels in the distal nephron, encoded by the genes KCNJ1, KCNJ10, KCNJ16, KCNMA1, and KCNN3. Research aimed at understanding how these channels work in health and go awry in disease has transformed our understanding of potassium balance and provided new insights into mechanisms of renal sodium handling and the maintenance of blood pressure. This review focuses on recent advances in this rapidly evolving field.


Assuntos
Túbulos Renais Distais/fisiologia , Canais de Potássio/metabolismo , Animais , Humanos , Potássio/metabolismo
18.
Am J Physiol Renal Physiol ; 308(11): F1288-96, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-25834074

RESUMO

The aim of the present study is to examine the role of Kcnj10 (Kir.4.1) in contributing to the basolateral K conductance in the cortical thick ascending limb (cTAL) using Kcnj10(+/+) wild-type (WT) and Kcnj10(-/-) knockout (KO) mice. The patch-clamp experiments detected a 40- and an 80-pS K channel in the basolateral membrane of the cTAL. Moreover, the probability of finding the 40-pS K was significantly higher in the late part of the cTAL close to the distal convoluted tubule than those in the initial part. Immunostaining showed that Kcnj10 staining was detected in the basolateral membrane of the cTAL but the expression was not uniformly distributed. The disruption of Kcnj10 completely eliminated the 40-pS K channel but not the 80-pS K channel, suggesting the role of Kcnj10 in forming the 40-pS K channel of the cTAL. Also, the disruption of Kcnj10 increased the probability of finding the 80-pS K channel in the cTAL, especially in the late part of the cTAL. Because the channel open probability of the 80-pS K channel in KO was similar to those of WT mice, the increase in the 80-pS K channel may be achieved by increasing K channel number. The whole cell recording further showed that K reversal potential measured with 5 mM K in the bath and 140 mM K in the pipette was the same in the WT and KO mice. Moreover, Western blot and immunostaining showed that the disruption of Kcnj10 did not affect the expression of Na-K-Cl cotransporter 2 (NKCC2). We conclude that Kir.4.1 is expressed in the basolateral membrane of cTAL and that the disruption of Kir.4.1 has no significant effect on the membrane potential of the cTAL and NKCC2 expression.


Assuntos
Túbulos Renais Distais/metabolismo , Potenciais da Membrana/fisiologia , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Membrana Celular/metabolismo , Extremidades , Transporte de Íons/fisiologia , Camundongos Knockout , Sódio/metabolismo , Membro 1 da Família 12 de Carreador de Soluto/metabolismo
19.
Proc Natl Acad Sci U S A ; 111(32): 11864-9, 2014 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-25071208

RESUMO

The renal phenotype induced by loss-of-function mutations of inwardly rectifying potassium channel (Kir), Kcnj10 (Kir4.1), includes salt wasting, hypomagnesemia, metabolic alkalosis and hypokalemia. However, the mechanism by which Kir.4.1 mutations cause the tubulopathy is not completely understood. Here we demonstrate that Kcnj10 is a main contributor to the basolateral K conductance in the early distal convoluted tubule (DCT1) and determines the expression of the apical Na-Cl cotransporter (NCC) in the DCT. Immunostaining demonstrated Kcnj10 and Kcnj16 were expressed in the basolateral membrane of DCT, and patch-clamp studies detected a 40-pS K channel in the basolateral membrane of the DCT1 of p8/p10 wild-type Kcnj10(+/+) mice (WT). This 40-pS K channel is absent in homozygous Kcnj10(-/-) (knockout) mice. The disruption of Kcnj10 almost completely eliminated the basolateral K conductance and decreased the negativity of the cell membrane potential in DCT1. Moreover, the lack of Kcnj10 decreased the basolateral Cl conductance, inhibited the expression of Ste20-related proline-alanine-rich kinase and diminished the apical NCC expression in DCT. We conclude that Kcnj10 plays a dominant role in determining the basolateral K conductance and membrane potential of DCT1 and that the basolateral K channel activity in the DCT determines the apical NCC expression possibly through a Ste20-related proline-alanine-rich kinase-dependent mechanism.


Assuntos
Túbulos Renais Distais/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Animais , Imuno-Histoquímica , Potenciais da Membrana , Camundongos , Camundongos Knockout , Modelos Biológicos , Técnicas de Patch-Clamp , Canais de Potássio Corretores do Fluxo de Internalização/deficiência , Canais de Potássio Corretores do Fluxo de Internalização/genética , Membro 3 da Família 12 de Carreador de Soluto/metabolismo , Canal Kir5.1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA