RESUMO
Production of 2,6-dihydroxybenzoic acid (2,6-DHBA) via enzymatic carboxylation of resorcinol by decarboxylases is of great promising but shows depressed equilibrium conversion. In this study, 2,3-dihydroxybenzoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao) pushing the conversion towards carboxylation for efficient 2,6-DHBA biosynthesis was achieved. Meanwhile, a novel amino-modified and lignin-doped cellulose nanocrystal aerogel (A-LCNCA) with high specific surface area and prominent CO2 capture was prepared for 2,3-DHBD_Ao immobilization. 2,3-DHBD_Ao@A-LCNC contributed a further enhanced conversion of carboxylation with the maximal conversion of 76.2 %, which was correlated to both the activity of 2,3-DHBD_Ao and the high CO2 loading capacity of A-LCNCA. Moreover, 2,3-DHBD_Ao@A-LCNC exhibited superior performances in a wider range of temperature and higher concentrations of substrate, with a prolonged storage period longer than 30 days. After seven cycles reuse, 2,3-DHBD_Ao@A-LCNCA could retain 85.3 % of its original activity. These results suggest a considerable potential of 2,3-DHBD_Ao@A-LCNCA in the selective biosynthesis of 2,6-DHBA.
Assuntos
Carboxiliases , Hidroxibenzoatos , Nanopartículas , Lignina , Dióxido de Carbono , CeluloseRESUMO
BACKGROUND: High-performance poly(p-phenylenebenzobisoxazole) (PBO) fiber, with excellent mechanical properties (stiffness, strength, and toughness), high thermal stability combined and light weight, are widely employed in automotive and aerospace composites, body armor and sports goods. Hydroxyl modified PBO (HPBO) fiber shows better photostability and interfacial shear strength. 2-Hydroxyterephthalic acid (2-HTA), the monomer for the HPBO fiber, is usually synthesized by chemical method, which has poor space selectivity and high energy consumption. The enzymatic Kolbe-Schmitt reaction, which carboxylates phenolic substrates to generate hydroxybenzoic acids with bicarbonate/CO2, was applied in de novo biosynthesis of 2-HTA with CO2 fixation. RESULTS: The biosynthesis of 2-HTA was achieved by the innovative application of hydroxybenzoic acid (de)carboxylases to carboxylation of 3-hydroxybenzoic acid (3-HBA) at the para-position of the benzene carboxyl group, known as enzymatic Kolbe-Schmitt reaction. 2,3-Dihydroxybenzoic acid decarboxylase from Aspergillus oryzae (2,3-DHBD_Ao) were expressed in recombinant E. coli and showed highest activity. The yield of 2-HTA was 108.97 ± 2.21 µg/L/mg protein in the whole-cell catalysis. In addition, two amino acid substitutions, F27G and T62A, proved to be of great help in improving 2,3-DHBD activity. The double site mutation F27G/T62A increased the production of 2-HTA in the whole-cell catalysis by 24.7-fold, reaching 2.69 ± 0.029 mg/L/mg protein. Moreover, de novo biosynthetic pathway of 2-HTA was constructed by co-expression of 2,3-DHBD_Ao and 3-hydroxybenzoate synthase Hyg5 in S. cerevisiae S288C with Ura3, Aro7 and Trp3 knockout. The engineered strain synthesized 45.40 ± 0.28 µg/L 2-HTA at 36 h in the CO2 environment. CONCLUSIONS: De novo synthesis of 2-HTA has been achieved, using glucose as a raw material to generate shikimic acid, chorismic acid, and 3-HBA, and finally 2-HTA. We demonstrate the strong potential of hydroxybenzoate (de)carboxylase to produce terephthalic acid and its derivatives with CO2 fixation.
RESUMO
Toward a sustainable synthesis of value-added chemicals, the method of CO2 utilization attracts great interest in chemical process engineering. Biotechnological CO2 fixation is a promising technology; however, efficient methods that can fix carbon dioxide are still limited. Instead, some parts of microbial decarboxylases allow the introduction of carboxy group into phenolic compounds using bicarbonate ion as a C1 building block. Here, we identified a unique decarboxylase from Arthrobacter sp. K8 that acts on resorcinol derivatives. A high-throughput colorimetric decarboxylase assay facilitated gene cloning of orsellinic acid decarboxylase from genomic DNA library of strain K8. Sequence analysis revealed that the orsellinic acid decarboxylase belonged to amidohydrolase 2 family, but shared low amino acid sequence identity with those of related decarboxylases. Enzymatic characterization unveiled that the decarboxylase introduces a carboxy group in a highly regio-selective manner. We applied the decarboxylase to enzymatic carboxylation of resorcinol derivatives. Using Escherichia coli expressing the decarboxylase gene as a whole cell biocatalyst, orsellinic acid, 2,4-dihydroxybenzoic acid, and 4-methoxysalicylic acid were produced in the presence of saturated bicarbonate. These findings could provide new insights into the production of useful phenolic acids from resorcinol derivatives.
Assuntos
Arthrobacter/enzimologia , Arthrobacter/genética , Carboxiliases/química , Carboxiliases/genética , Clonagem Molecular , Resorcinóis/química , Resorcinóis/metabolismo , Sequência de Aminoácidos , Arthrobacter/isolamento & purificação , Escherichia coli/genética , Hidroxibenzoatos , Cinética , Fenóis/metabolismo , Análise de Sequência , Solo , Microbiologia do Solo , Especificidade por SubstratoRESUMO
The enzymatic carboxylation of phenolic compounds has been attracting increasing interest in recent years, owing to its regioselectivity and technical potential as a biocatalytic equivalent for the Kolbe-Schmitt reaction. Mechanistically the reaction was demonstrated to occur through electrophilic aromatic substitution/water elimination with bicarbonate as a cosubstrate. The effects of the substituents on the phenolic ring have not yet been elucidated in detail, but this would give detailed insight into the substrate-activity relationship and would provide predictability for the acceptance of future substrates. In this report we show how the kinetic and (apparent) thermodynamic behavior can be explained through the evaluation of linear free energy relationships based on electronic, steric, and geometric parameters and through the consideration of enzyme-ligand interactions. Moreover, the similarity between the benzoic acid decarboxylases and the amidohydrolases superfamily is investigated, and promiscuous hydrolytic activity of the decarboxylase in the context of the hydrolysis of an activated ester bond has been established.
Assuntos
Ácido Benzoico/metabolismo , Carboxiliases/metabolismo , Ácido Benzoico/química , Carboxiliases/química , Ésteres/química , Ésteres/metabolismo , Hidrólise , Cinética , Estrutura Molecular , Fenóis/química , Fenóis/metabolismo , Especificidade por Substrato , TermodinâmicaRESUMO
A convenient and efficient method for the ortho-carboxylation of phenols under atmospheric CO2 pressure has been developed. This method provides an alternative to the previously reported Kolbe-Schmitt method, which requires very high pressures of CO2 . The addition of a trisubstituted phenol has proved essential for the successful carboxylation of phenols with CO2 at standard atmospheric pressure, allowing the efficient preparation of a broad variety of salicylic acids.
Assuntos
Dióxido de Carbono/química , Ácidos Carboxílicos/síntese química , Fenóis/química , Salicilatos/síntese química , Pressão Atmosférica , Cresóis/química , Fenômenos de Química Orgânica , Compostos de Sódio/química , TemperaturaRESUMO
Microbial decarboxylases, which catalyse the reversible regioselective ortho-carboxylation of phenolic derivatives in anaerobic detoxification pathways, have been studied for their reverse carboxylation activities on electron-rich aromatic substrates. Ortho-hydroxybenzoic acids are important building blocks in the chemical and pharmaceutical industries and are currently produced via the Kolbe-Schmitt process, which requires elevated pressures and temperatures (≥ 5 bar, ≥ 100 °C) and often shows incomplete regioselectivities. In order to resolve bottlenecks in view of preparative-scale applications, we studied the kinetic parameters for 2,6-dihydroxybenzoic acid decarboxylase from Rhizobium sp. in the carboxylation- and decarboxylation-direction using 1,2-dihydroxybenzene (catechol) as starting material. The catalytic properties (K(m), V(max)) are correlated with the overall thermodynamic equilibrium via the Haldane equation, according to a reversible random bi-uni mechanism. The model was subsequently verified by comparing experimental results with simulations. This study provides insights into the catalytic behaviour of a nonoxidative aromatic decarboxylase and reveals key limitations (e.g. substrate oxidation, CO2 pressure, enzyme deactivation, low turnover frequency) in view of the employment of this system as a 'green' alternative to the Kolbe-Schmitt processes.
Assuntos
Proteínas de Bactérias/química , Carboxiliases/química , Fenóis/química , Bicarbonatos/química , Biocatálise , Catecóis/química , Descarboxilação , Cinética , Oxirredução , Rhizobium/enzimologia , TermodinâmicaRESUMO
The enzymatic carboxylation of electron-rich aromatics, which represents a promising 'green' equivalent to the chemical Kolbe-Schmitt reaction, is thermodynamically disfavored and is therefore impeded by incomplete conversions. Optimization of the reaction conditions, such as pH, temperature, substrate concentration and the use of organic co-solvents and/or ionic liquids allowed to push the conversion in favor of carboxylation by a factor of up to 50%. Careful selection of the type of bicarbonate salt used as CO2 source was crucial to ensure optimal activities. Among two types of carboxylases tested with their natural substrates, benzoic acid decarboxylase from Rhizobium sp. proved to be significantly more stable than phenolic acid decarboxylase from Mycobacterium colombiense; it tolerated reaction temperatures of up to 50 °C and substrate concentrations of up to 100mM and allowed efficient biocatalyst recycling.