Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Biol Macromol ; 270(Pt 1): 132356, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754659

RESUMO

The potent angiogenesis inhibitor known as human plasminogen Kringle 5 has shown promise in the treatment of vascular disorders and malignancies. The study aimed to investigate the recognition and interaction between Kringle 5 and the A2M domain of human complement component C5 using bio-specific methodologies and molecular dynamics (MD) simulation. Initially, the specific interaction between Kringle 5 and A2M was confirmed and characterized through Ligand Blot and ELISA, yielding the dissociation constant (Kd) of 1.70 × 10-7 mol/L. Then, Kringle 5 showcased a dose-dependent inhibition of the production of C5a in lung cancer A549 cells, consequently impeding their proliferation and migration. Following the utilization of frontal affinity chromatography (FAC), it was revealed that there exists a singular binding site with the binding constant (Ka) of 3.79 × 105 L/mol. Following the implementation of homology modeling and MD optimization, the detailed results indicate that only a specific segment of the N-terminal structure of the A2M molecule engages in interaction with Kringle 5 throughout the binding process and the principal driving forces encompass electrostatic force, hydrogen bonding, and van der Waals force. In conclusion, the A2M domain of human complement C5 emerges as a plausible binding target for Kringle 5 in vivo.


Assuntos
Simulação de Dinâmica Molecular , Plasminogênio , Ligação Proteica , Humanos , Plasminogênio/química , Plasminogênio/metabolismo , Sítios de Ligação , Complemento C5a/química , Complemento C5a/metabolismo , Células A549 , Domínios Proteicos , Proliferação de Células/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Fragmentos de Peptídeos
2.
J Chromatogr A ; 1718: 464673, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38340457

RESUMO

The binding and molecular recognition between α-chain of human complement C3b (α-chain of C3b) and human plasminogen Kringle 5 (Kringle 5) were studied and explored by frontal chromatography and dynamics simulation in the combination of bio-specific technologies. The specific interaction between the α-chain of C3b and Kringle 5 was initially confirmed by ligand blot and ELISA (Kd = 4.243×10-6 L/mol). Furthermore, the binding determination conducted via frontal chromatography showed that the presence of a single binding site between them, with the binding constant of 2.98 × 105 L/mol. Then the molecular recognition by dynamics simulation and molecular docking showed that there were 9 and 13 amino acid residues respective in the Kringle 5 and α-chain of C3b directly implicated in the binding and the main stabilizing forces were electrostatic force (-55.99 ± 11.82 kcal/mol) and Van der Waals forces (-42.70 ± 3.45 kcal/mol). Additionally, a loop structure (65-71) in Kringle 5 underwent a conformational change from a random structure to an α-helix and a loop structure (417-425) in α-chain of C3b was closer to the molecular center, both of them were more conducive to the binding between them. Meanwhile, the involvement of the lysine binding site of Kringle 5 played an important role in the binding process. In addition, the erythrocyte-antibody complement rosette assay substantiated that the presence of Kringle 5 hindered the transportation of α-chain of C3b to antigen-antibody complex in a dose-dependent manner. These findings collectively indicated that the α-chain of C3b is very likely a receptor protein for Kringle 5, which provides a methodology for other similar investigations and valuable insights into expansion of the pharmacological effects and potential application of Kringle 5 in immune-related diseases.


Assuntos
Cromatografia , Fragmentos de Peptídeos , Plasminogênio , Humanos , Ligação Proteica , Sequência de Aminoácidos , Simulação de Acoplamento Molecular , Sítios de Ligação , Fragmentos de Peptídeos/metabolismo , Conformação Proteica
3.
BMC Mol Cell Biol ; 24(1): 25, 2023 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-37553635

RESUMO

BACKGROUND: Cells can die through a process called apoptosis in both pathological and healthy conditions. Cancer development and progression may result from abnormal apoptosis. The 78-kDa glucose-regulated protein (GRP78) is increased on the surface of cancer cells. Kringle 5, a cell apoptosis agent, is bound to GRP78 to induce cancer cell apoptosis. Kringle 5 was docked to GRP78 using ClusPro 2.0. The interaction between Kringle 5 and GRP78 was investigated. RESULTS: The interacting amino acids were found to be localized in three areas of Kringle 5. The proposed peptide is made up of secondary structure amino acids that contain Kringle 5 interaction residues. The 3D structure of the peptide model amino acids was created using the PEP-FOLD3 web tool. CONCLUSIONS: The proposed peptide completely binds to the GRP78 binding site on the Kringle 5, signaling that it might be effective in the apoptosis of cancer cells.


Assuntos
Chaperona BiP do Retículo Endoplasmático , Neoplasias , Proteínas de Choque Térmico/metabolismo , Kringles , Peptídeos/farmacologia , Apoptose , Aminoácidos
4.
Bioorg Chem ; 137: 106579, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37149949

RESUMO

Plasminogen Kringle 5 is one of the most potent cytokines identified to inhibit the proliferation and migration of vascular endothelial cells. Herein, six aptamer candidates that specifically bind to Kringle 5 were generated by the systematic evolution of ligands by exponential enrichment (SELEX). After 10 rounds of screening against Kringle 5, a highly enriched ssDNA pool was sequenced and the representative aptamers were subjected to binding assays to evaluate their affinity and specificity. The preferred aptamer KG-4, which demonstrated a low dissociation constant (Kd) of âˆ¼ 432 nM and excellent selectivity for Kringle 5. A conserved "motif" of eight bases located at the stem-loop intersection, common to the aptamer, was further confirmed as the recognition element for binding with Kringle 5. The bulge formed by the motif and depression on the lysine binding site of Kringle 5 were both located at the binding interface, and the "induced fit" between their structures played a central role in the recognition process. Kringle 5 interacts KG-4 primarily through enthalpy-driven van der Waals forces and hydrogen bond. The key nucleotides A34 and C35 at motif on KG-4 and the positively charged amino acids in the loop 1 and loop 4 regions on Kringle 5 play a major role in the interaction. Furthermore, KG-4 dose-dependently reduced the proliferation inhibition of vascular endothelial cells by Kringle 5 and had a blocking effect on the function of Kringle 5 in inhibiting migration and promoting apoptosis of vascular endothelial cells in vitro. This study put a new light on protein-aptamer binding mechanism and may provide insight into the treatment of ischemic diseases by target depletion of Kringle 5.


Assuntos
Aptâmeros de Nucleotídeos , Células Endoteliais , Humanos , Células Endoteliais/metabolismo , Plasminogênio/química , Plasminogênio/metabolismo , Sítios de Ligação , Aptâmeros de Nucleotídeos/química
5.
Bioorg Chem ; 127: 105989, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35777236

RESUMO

Given the significant clinical potential of human plasminogen Kringle 5 on tumours, it is crucial to seek its receptors for a thorough comprehension of its physiological functions and mechanism. Eleven candidates have been screened out in our previous works. In the present work, we further inquired whether the candidate, von Willebrand factor type A domain 1 in coagulation factor C homology protein (abbr. vWA1), was a potential receptor of Kringle 5, and investigated their binding mechanism by bio-specific experiments, frontal affinity analysis (FA), and molecular dynamic simulation (MDS). After the potential was validated by bio-specific experiments, the FA results stated that vWA1 exhibited a strong interaction towards Kringle 5 in the proportion of 1:1 with the binding constant of 4.18 × 104 L/mol. The MDS results showed that the binding was mainly driven by electrostatic and Van der Waals forces and occurred spontaneously, during which vWA1 and Kringle 5 mutually fit each other by conformational changing into more flexible and suitable structures including fluctuations for five loops and partial transformation into a random coil for α6-helix in vWA1. Moreover, lysine binding site Leu71-Tyr74 was speculated responsible for Kringle 5 in binding and Tyr72 to be the key amino acid residue. In short, this work not only confirmed vWA1 as a potential Kringle 5 receptor but also provided valuable information on the detailed binding, facilitating the application development of Kringle 5 in regulating immune or inhibiting tumour migration through vWA1.


Assuntos
Proteínas da Matriz Extracelular , Simulação de Dinâmica Molecular , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Ligantes , Espectroscopia de Ressonância Magnética , Fragmentos de Peptídeos , Plasminogênio , Ligação Proteica , Conformação Proteica
6.
Biophys Chem ; 280: 106710, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34741992

RESUMO

Voltage-dependent anion channel-l (VDAC-1) can bind with plasminogen Kringle 5 as the cell surface receptor and induce cell apoptosis, but the detailed information of binding is not clear yet. Thus, the mutual recognition and binding were investigated here utilizing frontal affinity chromatography, surface plasma resonance, mutation analysis combining molecular dynamics simulation. The results showed that Kringle 5 binds with VDAC-1 in equimolar driven mainly by electrostatic force, with 15 amino acid residues participating in Kringle 5 and 21 in VDAC-1. The observed conformational changes indicated the automatic structure regulation providing these two proteins suitable conformations and spatial surroundings for the tighter and stabler binding. Moreover, Glu29 in Kringle 5 was speculated as the key residue maintaining the largest energy contribution. Therefore, this work provided precise information for the recognition and binding of Kringle 5 with VDAC-1 that is valuable for the corresponding treatment of tumours or other angiogenic diseases.


Assuntos
Simulação de Dinâmica Molecular , Canal de Ânion 1 Dependente de Voltagem , Canais de Ânion Dependentes de Voltagem , Sítios de Ligação , Humanos , Fragmentos de Peptídeos , Plasminogênio , Ligação Proteica , Canal de Ânion 1 Dependente de Voltagem/metabolismo , Canais de Ânion Dependentes de Voltagem/metabolismo
7.
J Chromatogr A ; 1620: 460986, 2020 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-32173023

RESUMO

Human plasminogen Kringle 5 is known to pose a more potent anti-angiogenesis effect by inducing endothelial cell apoptosis. Our previous studies have identified the peptide IGNSNTL as a binding sequence of Kringle 5 using Ph.D.-7 phage display peptide library and enzyme-linked immunosorbent assay. Here, eleven proteins were screened and summarized by BLAST, laminin α3 chain G1 domain (LG1) was considered as the most potential receptor based on E value and domain function. The specific interaction of them was directly revealed through ligand blot and a strong concentration-dependent manner occurred between them (Ka 4.30 × 105 L mol-1) in frontal chromatography observation. Moreover, R10A/P83R substitution Kringle 5 decreased the affinity capacity to LG1. Furthermore, a remarkable conformational change from random coil3 to α helix and α1 helix to random coil were observed to the structural compactness and stability for LG1. Surface loops and coils also showed fluctuations up to some extent, giving the binding surface greater flexibility and correspondingly allowing for induced-fit binding, which was -23.87 kcal mol-1 of the free energy with electrostatic force as a main driver. Taken together, not only effective theoretical prediction and experiment validated that LG1 is receptor of Kringle 5, but also give an new perspective of the binding mechanism of Kringle 5 and its specific receptor and could facilitate the development of novel agent targeted toward pathologic angiogenesis.


Assuntos
Células Endoteliais/metabolismo , Laminina/química , Simulação de Dinâmica Molecular , Fragmentos de Peptídeos/metabolismo , Plasminogênio/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Humanos , Cinética , Ligantes , Proteínas Mutantes/química , Biblioteca de Peptídeos , Ligação Proteica , Domínios Proteicos , Termodinâmica
8.
J Pharm Anal ; 6(5): 313-317, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29403998

RESUMO

The previous pharmacokinetic methods can be only limited to drug analysis in vitro, which provide less information on the distribution and metabolismof drugs, and limit the interpretation and assessment of pharmacokinetics, the determination of metabolic principles, and evaluation of treatment effect. The objective of the study was to investigate the pharmacokinetic characteristics of gene recombination angiogenesis inhibitor Kringle 5 in vivo. The SPECT/CT and specific 131I-Kringle 5 marked by Iodogen method were both applied to explore the pharmacokinetic characteristics of 131I-Kringle 5 in vivo, and to investigate the dynamic distributions of 131I-Kringle 5 in target organs. Labeling recombinant angiogenesis inhibitor Kringle 5 using 131I with longer half-life and imaging in vivo using SPECT instead of PET, could overcome the limitations of previous methods. When the doses of 131I-Kringle 5 were 10.0, 7.5 and 5.0 g/kg, respectively, the two-compartment open models can be determined within all the metabolic process in vivo. There were no significant differences in t1/2α, t1/2ß, apparent volume of distribution and CL between those three levels. The ratio of AUC(0~∞) among three different groups of 10.0, 7.5 and 5.0 g/kg was 2.56:1.44:1.0, which was close to the ratio (2:1.5:1.0). It could be clear that in the range of 5.0-10.0 g/kg, Kringle 5 was characterized by the first-order pharmacokinetics. Approximately 30 min after 131I-Kringle 5 was injected, 131I-Kringle 5 could be observed to concentrate in the heart, kidneys, liver and other organs by means of planar imaging and tomography. After 1 h of being injected, more radionuclide retained in the bladder, but not in intestinal. It could be concluded that 131I-Kringle 5 is mainly excreted through the kidneys. About 2 h after the injection of 131I-Kringle 5, the radionuclide in the heart, kidneys, liver and other organs was gradually reduced, while more radionuclide was concentrated in the bladder. The radionuclide was completely metabolized within 24 h, and the distribution of radioactivity in rats was similar to normal levels. In our study, the specific marker 131I-Kringle 5 and SPECT/CT were successfully used to explore pharmacokinetic characteristics of Kringle 5 in rats. The study could provide a new evaluation platform of the specific, in vivo and real-time functional imaging and pharmacokinetics for the clinical application of 131I-Kringle 5.

9.
J Chromatogr A ; 1401: 42-51, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-25981289

RESUMO

The interactions between angiogenesis inhibitor Kringle 5 and its five specific ligands were investigated by frontal affinity chromatography in combination with fluorescence spectra and site-directed molecular docking. The binding constants of trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCHA), epsilon-aminocaproic acid (EACA), benzylamine, 7-aminoheptanoic acid (7-AHA) and L-lysine to Kringle 5 were 19.0×10(3), 7.97×10(3), 6.45×10(3), 6.07×10(3) and 4.04×10(3) L/mol, respectively. The five ligands bound to Kringle 5 on the lysine binding site in equimolar amounts, which was pushed mainly by hydrogen bond and Van der Waals force. This binding affinity was believed to be dependent on the functional group and flexible feature in ligands. This study will provide an important insight into the binding mechanism of angiogenesis inhibitor Kringle 5 to its specific ligands.


Assuntos
Cromatografia de Afinidade , Kringles/fisiologia , Inibidores da Angiogênese/metabolismo , Sítios de Ligação , Ligação de Hidrogênio , Ligantes , Lisina/química , Ligação Proteica
10.
Biomed Chromatogr ; 28(7): 957-65, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24311387

RESUMO

In this work, a novel method was established to isolate and purify Human plasminogen Kringle 5 (HPK5) as a histidine-tagged fusion protein expressed in Escherichia coli BL21 (DE3). This method consisted of sample extraction using a Ni-chelated Sepharose Fast-Flow affinity column, ammonium sulfate salting-out and Sephadex G-75 size-exclusion column in turn. The purity analysis by SDS-PAGE, high-performance size-exclusion and reversed-phase chromatographies showed that the obtained recombinant fusion HPK5 was homogeneous and its purity was higher than 96%; the activity analysis by chorioallantoic membrane model of chicken embryos revealed that the purified recombinant HPK5 exhibited an obvious anti-angiogenic activity under the effective range of 5.0-25.0 µg/mL. Through this procedure, about 19 mg purified recombinant fusion HPK5 can be obtained from 1 L of original fermentation solution. Approximate 32% of the total recombinant fusion HPK5 can be captured and the total yield was approximately 11%.


Assuntos
Sulfato de Amônio/química , Cromatografia em Gel/métodos , Fragmentos de Peptídeos/isolamento & purificação , Plasminogênio/isolamento & purificação , Proteínas Recombinantes/isolamento & purificação , Inibidores da Angiogênese/química , Inibidores da Angiogênese/isolamento & purificação , Inibidores da Angiogênese/farmacologia , Animais , Precipitação Química , Embrião de Galinha , Eletroforese em Gel de Poliacrilamida , Escherichia coli/isolamento & purificação , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Plasminogênio/química , Plasminogênio/farmacologia , Proteínas Recombinantes/química , Proteínas Recombinantes/farmacologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA