Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 168
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2400953, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38885424

RESUMO

The thermal runaway issue represents a long-standing obstacle that retards large-scale applications of lithium metal batteries. Various approaches to inhibit thermal runaway suffer from some intrinsic drawbacks, either being irreversible or delayed thermal protection. Herein, this work has explored thermo-responsive lower critical solution temperature (LCST) ionic liquid-based electrolytes, which provides reversible overheating protection for batteries with warning and shut-down stages, well corresponding to an initial stage of thermal runaway process. The batteries could function stably below 70 °C as a working mode, while demonstrating a warning mode above 80 °C with a noticeable reduction in specific capacitance to delay temperature increase of batteries. In terms of 110 °C as a critically dangerous temperature, a shut-down mode is designed to minimize the thermal energy releasing as the batteries are barely chargeable and dischargeable. Dynamically growing polymeric particles above LCST contributed to such an intelligent and mild control on specific capacitance. Larger size will occupy larger surfaces of electrodes and close more pores of separators, enabling a gradual suppressing of Li+ transfer and reactions. The present work demonstrated a scientific design of thermoresponsive LCST electrolytes with a superiorly precise and intelligent control of electrochemical performances to achieve self-adapted overheating protections.

2.
Macromol Rapid Commun ; : e2400286, 2024 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-38851296

RESUMO

In this work, new glycine-derived polymers are developed that exhibit thermoresponsive properties in water. Therefore, a series of monomers containing one, two, or three amide functional groups and one terminal cyanomethyl group is synthesized. The resulting homopolymers, obtained by free radical polymerization (FRP) and reversible addition fragmentation chain transfer (RAFT) polymerization, display a sharp and reversible upper critical solution temperature (UCST)-type phase transition in water. Additionally, it is shown that the cloud point (TCP) can be adjusted over more than 60 °C by the number of glycyl groups present in the monomer structure and by the polymer's molar mass. These novel thermoresponsive polymers based on cyanomethylglycinamide enrich the range of nonionic UCST polymers and are promising to find applications in various fields.

3.
Artigo em Inglês | MEDLINE | ID: mdl-38593302

RESUMO

With the fast economic development and accelerating urbanization, more and more skyscrapers made entirely of concrete and glass are being constructed. To keep a comfortable indoor environment, massive energy for air conditioning or heating appliances is consumed. A huge amount of heat (>30%) is gained or released through glass windows. Using smart windows with the capability to modulate light is an effective way to reduce building energy consumption. Thermochromic hydrogel is one of the potential smart window materials due to its excellent thermal response, high radiation-blocking efficiency, cost-effectiveness, biocompatibility, and good uniformity. In this work, polyhydroxypropyl acrylate (PHPA) hydrogels with controllable lower critical solution temperature (LCST) were prepared by photopolymerization. The transition temperature and transition rate under "static transition" conditions were investigated. Unlike "static" conditions in which the transition temperature was not affected by the initial and final temperature and heating/cooling ramp, the transition temperature varied with the rate of temperature change under dynamic conditions. The "dynamic" transition temperature of the PHPA hydrogel gradually increased with the increase of the heating rate. It was the result of the movement of the molecular chains lagging behind the temperature change when the temperature change was too fast. The results of the solar irradiation experiment by filling PHPA hydrogels into double glazing windows showed that the indoor temperature was about 15 °C lower than that of ordinary glass windows, indicating that it can significantly reduce the energy consumption of air conditioning. In addition, a wide range of adjustable transition temperatures and fast optical response make PHPA hydrogels potentially applicable to smart windows.

4.
Polymers (Basel) ; 16(6)2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38543435

RESUMO

Thermo-responsive diblock copolymer, poly(N-isopropylacrylamide)-block-poly(N-vinylisobutyramide) was synthesized via switchable reversible addition-fragmentation chain transfer (RAFT) polymerization and its thermal transition behavior was studied. Poly(N-vinylisobutyramide) (PNVIBA), a structural isomer of poly(N-isopropylacrylamide) (PNIPAM) shows a thermo-response character but with a higher lower critical solution temperature (LCST) than PNIPAM. The chain extension of the PNVIBA block from the PNIPAM block proceeded in a controlled manner with a switchable chain transfer reagent, methyl 2-[methyl(4-pyridinyl)carbamothioylthio]propionate. In an aqueous solution, the diblock copolymer shows a thermo-responsive behavior but with a single LCST close to the LCST of PNVIBA, indicating that the interaction between the PNIPAM segment and the PNVIBA segment leads to cooperative aggregation during the self-assembly induced phase separation of the diblock copolymer in solution. Above the LCST of the PNIPAM block, the polymer chains begin to collapse, forming small aggregates, but further aggregation stumbled due to the PNVIBA segment of the diblock copolymer. However, as the temperature approached the LCST of the PNVIBA block, larger aggregates composed of clusters of small aggregates formed, resulting in an opaque solution.

5.
Chemistry ; 30(36): e202400134, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38361463

RESUMO

The construction of diverse and distinctive self-assembled structures in water, based on the control of the self-assembly processes of artificial small molecules, has received considerable attention in supramolecular chemistry. Cage-like perforated vesicles are distinctive and interesting self-assembled structures. However, the development of self-assembling molecules that can easily form perforated vesicles remains challenging. This paper reports a lower critical solution temperature (LCST) behavior-triggered self-assembly property of a 4-aminoquinoline (4-AQ)-based amphiphile with a tetra(ethylene glycol) chain, in HEPES buffer (pH 7.4). This property allows to form perforated vesicles after heating at 80 °C (> LCST). The self-assembly process of the 4-AQ amphiphile can be controlled by heating at 80 °C (> LCST) or 60 °C (< LCST). After cooling to room temperature, the selective construction of the perforated vesicles and nanofibers was achieved from the same 4-AQ amphiphile. Furthermore, the perforated vesicles exhibited slow morphological transformation into intertwined-like nanofibers but were easily restored by brief heating above the LCST.

6.
Curr Res Food Sci ; 8: 100686, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380133

RESUMO

Hierarchically porous structures combine microporosity, mesoporosity, and microporosity to enhance pore accessibility and transport, which are crucial to develop high performance materials for biofabrication, food, and pharmaceutical applications. This work aimed to develop a 4D-printed smart hierarchical macroporous structure through 3D printing of Pickering-type high internal phase emulsions (Pickering-HIPEs). The key was the utilization of surface-active (hydroxybutylated) starch nanomaterials, including starch nanocrystals (SNCs) (from waxy maize starch through acid hydrolysis) or starch nanoparticles (SNPs) (obtained through an ultrasound treatment). An innovative procedure to fabricate the functionalized starch nanomaterials was accomplished by grafting 1,2-butene oxide using a cold plasma technique to enhance their surface hydrophobicity, improving their aggregation, and thus attaining a colloidally stabilized Pickering-HIPEs with a low concentration of each surface-active starch nanomaterial. A flocculation of droplets in Pickering-HIPEs was developed after the addition of modified SNCs or SNPs, leading to the formation of a gel-like structure. The 3D printing of these Pickering-HIPEs developed a highly interconnected large pore structure, possessing a self-assembly property with thermoresponsive behavior. As a potential drug delivery system, this thermoresponsive macroporous 3D structure offered a lower critical solution temperature (LCST)-type phase transition at body temperature, which can be used in the field of smart releasing of bioactive compounds.

7.
ACS Appl Bio Mater ; 7(1): 124-130, 2024 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-38109902

RESUMO

Copper-chlorophyllin is a water-soluble derivative of chlorophylls and shows low cytotoxicity and antimutagenic properties in cultured cells. It has multiple applications, including its use as a photosensitizer in photothermal therapy because of its green light-activated photothermal performance. In this work, it was copolymerized with a poly(ethylene glycol) methacrylic monomer to yield random copolymers by free radical polymerization, which showed dual temperature- and pH-dependent phase transitions in aqueous solutions. The cloud points of the copolymer solutions were raised by lowering the pH of the aqueous solutions due to the protonation of the carboxylic groups on the chlorophyllin moieties, which decreased the overall hydrophilicity of the polymers. At low pH values, complete protonation of the carboxylic acid groups of the chlorophyllin moieties led to an irreversible aggregation of the copolymers in water. The incorporation of chlorophyllin in the copolymer improved its stability over its single molecular form.


Assuntos
Clorofilídeos , Polímeros , Polímeros/farmacologia , Polímeros/química , Polietilenoglicóis/química , Água
8.
Heliyon ; 9(11): e21794, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38027677

RESUMO

In this investigation, a polymeric fusion of chitosan (CS) and thermosensitive poly (N-isopropyl acrylamide) - PNIPAAm - encapsulated a magnetotocosome, biocompatible nanocarrier. This encapsulation strategy demonstrated improved drug entrapment efficiency, achieving up to 98.8 %. Additionally, it exhibited extended stability, optimal particle dimensions, and the potential for industrial scaling, thus facilitating controlled drug delivery of sorafenib tosylate to cancerous tissue. Reversible Addition-Fragmentation Chain Transfer (RAFT) techniques were employed to synthesize PNIPAAm. The effects of polymer molecular weight and polydispersity index on the lower critical solution temperature (LCST) were evaluated. The resulting polymeric amalgamation, involving the thermosensitive PNIPAAm synthesized using RAFT techniques and CS that coated the magnetotocosome (CS-Raft PNIPAAm-magnetotocosome) with an LCST approximately at 45 °C, holds the potential to enhance drug bioavailability and enable applications in hyperthermia treatment, controlled release, and targeted drug delivery.

9.
Environ Sci Technol ; 57(45): 17610-17619, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37910821

RESUMO

Cleaning a fouled membrane using warm water, instead of commonly used fouling control chemicals, is an approach advocated in resource-limited settings, where small-scale membrane filtration is used to provide clean water. Thermoresponsive polymers coated onto membranes undergo a conformational change across their lower critical solution temperature (LCST), enabling foulant removal during such temperature-swing cleaning. However, their intrinsic hydrophobicity above the LCST poses a fundamental material challenge. In this study, we examine how thermoresponsive polymers can be optimally copolymerized with hydrophilic polymers by precisely manipulating monomer arrangement of thermoresponsive N-isopropylacrylamide and hydrophilic 2-[2-(2-methoxyethoxy)ethoxy]ethyl acrylate. We successfully grafted these copolymers with different monomer arrangements onto poly(ether sulfone) ultrafiltration membranes while maintaining other polymer characteristics, such as the degree of polymerization and grafting density, constant. We found that placing hydrophilic polymer blocks at the outermost surface above the thermoresponsive polymer blocks is critical to achieving high surface hydrophilicity while preserving the thermoresponsive functionality. We demonstrate enhanced fouling resistance and efficient temperature-swing cleaning with optimized copolymer design based on their interaction with bovine serum albumin during static adsorption, filtration, and cleaning processes. These findings emphasize the importance of accurately tailoring the polymer architecture to enable more efficient filtration with reduced fouling and the capability to effectively clean the fouled membrane by simply using warm water.


Assuntos
Incrustação Biológica , Polímeros , Polímeros/química , Incrustação Biológica/prevenção & controle , Interações Hidrofóbicas e Hidrofílicas , Temperatura , Água/química , Membranas Artificiais
10.
ACS Biomater Sci Eng ; 9(11): 6256-6272, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37874897

RESUMO

The fabrication of multifunctional, thermoresponsive platforms for regenerative medicine based on polymers that can be easily functionalized is one of the most important challenges in modern biomaterials science. In this study, we utilized atom transfer radical polymerization (ATRP) to produce two series of novel smart copolymer brush coatings. These coatings were based on copolymerizing 2-hydroxyethyl methacrylate (HEMA) with either oligo(ethylene glycol) methyl ether methacrylate (OEGMA) or N-isopropylacrylamide (NIPAM). The chemical compositions of the resulting brush coatings, namely, poly(oligo(ethylene glycol) methyl ether methacrylate-co-2-hydroxyethyl methacrylate) (P(OEGMA-co-HEMA)) and poly(N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) (P(NIPAM-co-HEMA)), were predicted using reactive ratios of the monomers. These predictions were then verified using time-of-flight-secondary ion mass spectrometry (ToF-SIMS) and X-ray photoelectron spectroscopy (XPS). The thermoresponsiveness of the coatings was examined through water contact angle (CA) measurements at different temperatures, revealing a transition driven by lower critical solution temperature (LCST) or upper critical solution temperature (UCST) or a vanishing transition. The type of transition observed depended on the chemical composition of the coatings. Furthermore, it was demonstrated that the transition temperature of the coatings could be easily adjusted by modifying their composition. The topography of the coatings was characterized using atomic force microscopy (AFM). To assess the biocompatibility of the coatings, dermal fibroblast cultures were employed, and the results indicated that none of the coatings exhibited cytotoxicity. However, the shape and arrangement of the cells were significantly influenced by the chemical structure of the coating. Additionally, the viability of the cells was correlated with the wettability and roughness of the coatings, which determined the initial adhesion of the cells. Lastly, the temperature-induced changes in the properties of the fabricated copolymer coatings effectively controlled cell morphology, adhesion, and spontaneous detachment in a noninvasive, enzyme-free manner that was confirmed using optical microscopy.


Assuntos
Polímeros , Medicina Regenerativa , Polímeros/química , Metacrilatos/química
11.
Polymers (Basel) ; 15(20)2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37896345

RESUMO

Lung supportive devices (LSDs) have been extensively utilized in treating patients diagnosed with various respiratory disorders. However, these devices can cause moisture depletion in the upper airway by interfering with the natural lubrication and air conditioning process. To remedy this, current technologies implement heated humidification processes, which are bulky, costly, and nonfriendly. However, it has been demonstrated that in a breath cycle, the amount of water vapor in the exhaled air is of a similar quantity to the amount needed to humidify the inhaled air. This research proposes to trap the moisture from exhaled air and reuse it during inhalation by developing a state-of-the-art hydrophilic/hydrophobic polymer tuned to deliver this purpose. Using the atom transfer radical polymerization (ATRP) method, a substrate was successfully created by incorporating poly (N-isopropyl acrylamide) (PNIPAM) onto cotton. The fabricated material exhibited a water vapor release rate of 24.2 ± 1.054%/min at 32 °C, indicating its ability to humidify the inhaled air effectively. These findings highlight the potential of the developed material as a promising solution for applications requiring rapid moisture recovery.

12.
J Colloid Interface Sci ; 652(Pt B): 1609-1619, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37666193

RESUMO

HYPOTHESIS: Poly(N-isopropylacrylamide) [PNIPAM]-grafted cellulose nanofibers (CNFs) are new thermo-responsive hydrogels which can be used for a wide range of applications. Currently, there is no clear understanding of the precise mechanism by which CNFs and PNIPAM interact together. Here, we hypothesize that the physical crosslinking of grafted PNIPAM on CNF inhibits the free movement of individual CNF, which increases the gel strength while sustaining its thermo-responsive properties. EXPERIMENTS: The thermo-responsive behaviour of PNIPAM-grafted CNFs (PNIPAM-g-CNFs), synthesized via silver-catalyzed decarboxylative radical polymerization, and PNIPAM-blended CNFs (PNIPAM-b-CNFs) was studied. Small angle neutron scattering (SANS) combined with Ultra-SANS (USANS) revealed the nano to microscale conformation changes of these polymer hybrids as a function of temperature. The effect of temperature on the optical and viscoelastic properties of hydrogels was also investigated. FINDINGS: Grafting PNIPAM from CNFs shifted the lower critical solution temperature (LCST) from 32 °C to 36 °C. Below LCST, the PNIPAM chains in PNIPAM-g-CNF sustain an open conformation and poor interaction with CNF, and exhibit water-like behaviour. At and above LCST, the PNIPAM chains change conformation to entangle and aggregate nearby CNFs. Large voids are formed in solution between the aggregated PNIPAM-CNF walls. In comparison, PNIPAM-b-CNF sustains liquid-like behaviour below LCST. At and above LCST, the blended PNIPAM phase separates from CNF to form large aggregates which do not affect CNF network and thus PNIPAM-b-CNF demonstrates low viscosity. Understanding of temperature-dependent conformation of PNIPAM-g-CNFs engineer thermo-responsive hydrogels for biomedical and functional applications.

13.
Pharmaceutics ; 15(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37376151

RESUMO

Amphiphilic copolymer self-assembly is a straightforward approach to obtain responsive micelles, nanoparticles, and vesicles that are particularly attractive for biomedicine, i.e., for the delivery of functional molecules. Here, amphiphilic copolymers of hydrophobic polysiloxane methacrylate and hydrophilic oligo (ethylene glycol) methyl ether methacrylate with different lengths of oxyethylenic side chains were synthesized via controlled RAFT radical polymerization and characterized both thermally and in solution. In particular, the thermoresponsive and self-assembling behavior of the water-soluble copolymers in water was investigated via complementary techniques such as light transmittance, dynamic light scattering (DLS), and small-angle X-ray scattering (SAXS) measurements. All the copolymers synthesized were thermoresponsive, displaying a cloud point temperature (Tcp) strongly dependent on macromolecular parameters such as the length of the oligo(ethylene glycol) side chains and the content of the SiMA counits, as well as the concentration of the copolymer in water, which is consistent with a lower critical solution temperature (LCST)-type behavior. SAXS analysis revealed that the copolymers formed nanostructures in water below Tcp, whose dimension and shape depended on the content of the hydrophobic components in the copolymer. The hydrodynamic diameter (Dh) determined by DLS increased with the amount of SiMA and the associated morphology at higher SiMA contents was found to be pearl-necklace-micelle-like, composed of connected hydrophobic cores. These novel amphiphilic copolymers were able to modulate thermoresponsiveness in water in a wide range of temperatures, including the physiological temperature, as well as the dimension and shape of their nanostructured assemblies, simply by varying their chemical composition and the length of the hydrophilic side chains.

14.
Carbohydr Polym ; 315: 120984, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37230621

RESUMO

A novel hydroxypropyl cellulose (gHPC) hydrogel with graded porosity has been fabricated, in which pore size, shape, and mechanical properties vary across the material. The graded porosity was achieved by cross-linking different parts of the hydrogel at temperatures below and above 42 °C, which was found to be the temperature of turbidity onset (lower critical solution temperature, LCST) for the HPC and divinylsulfone cross-linker mixture. Scanning electron microscopy imaging revealed a decreasing pore size along the cross-section of the HPC hydrogel from the top to the bottom layer. HPC hydrogels demonstrate graded mechanical properties whereby the top layer, Zone 1, cross-linked below LCST, can be compressed by about 50% before fracture, whereas the middle and bottom layers (Zone 2 and 3, respectively) cross-linked at 42 °C, can withstand 80% compression before failure. This work demonstrates a straightforward, yet novel, concept of exploiting a graded stimulus to incorporate a graded functionality into porous materials that can withstand mechanical stress and minor elastic deformations.

15.
Pharmaceutics ; 15(4)2023 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-37111676

RESUMO

This paper introduces a new class of amphiphilic block copolymers created by combining two polymers: polylactic acid (PLA), a biocompatible and biodegradable hydrophobic polyester used for cargo encapsulation, and a hydrophilic polymer composed of oligo ethylene glycol chains (triethylene glycol methyl ether methacrylate, TEGMA), which provides stability and repellent properties with added thermo-responsiveness. The PLA-b-PTEGMA block copolymers were synthesized using ring-opening polymerization (ROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization (ROP-RAFT), resulting in varying ratios between the hydrophobic and hydrophilic blocks. Standard techniques, such as size exclusion chromatography (SEC) and 1H NMR spectroscopy, were used to characterize the block copolymers, while 1H NMR spectroscopy, 2D nuclear Overhauser effect spectroscopy (NOESY), and dynamic light scattering (DLS) were used to analyze the effect of the hydrophobic PLA block on the LCST of the PTEGMA block in aqueous solutions. The results show that the LCST values for the block copolymers decreased with increasing PLA content in the copolymer. The selected block copolymer presented LCST transitions at physiologically relevant temperatures, making it suitable for manufacturing nanoparticles (NPs) and drug encapsulation-release of the chemotherapeutic paclitaxel (PTX) via temperature-triggered drug release mechanism. The drug release profile was found to be temperature-dependent, with PTX release being sustained at all tested conditions, but substantially accelerated at 37 and 40 °C compared to 25 °C. The NPs were stable under simulated physiological conditions. These findings demonstrate that the addition of hydrophobic monomers, such as PLA, can tune the LCST temperatures of thermo-responsive polymers, and that PLA-b-PTEGMA copolymers have great potential for use in drug and gene delivery systems via temperature-triggered drug release mechanisms in biomedicine applications.

16.
Molecules ; 28(7)2023 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-37049684

RESUMO

Thermal-responsive block copolymers are a special type of macromolecule that exhibit a wide range of applications in various fields. In this contribution, we report a new type of polyacrylamide-based block copolymer bearing pyridine groups of polyethylene glycol-block-poly(N-(2-methylpyridine)-acrylamide; Px) that display distinct salt-induced lower critical solution temperature (LCST) behavior. Unexpectedly, the phase-transition mechanism of the salt-induced LCST behavior of Px block copolymers is different from that of the reported LCST-featured analogues. Moreover, their thermo-responsive behavior can be significantly regulated by several parameters such as salt species and concentration, urea, polymerization degree, polymer concentration and pH values. This unique thermal behavior of pyridine-containing block copolymers provides a new avenue for the fabrication of smart polymer materials with potential applications in biomedicine.

17.
J Colloid Interface Sci ; 641: 521-538, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36948106

RESUMO

HYPOTHESIS: The micellization of block copolymers of poly(ethylene oxide) (PEO) and poly(propylene oxide) (PPO) is driven by the dehydration of PPO at elevated temperatures. At low concentrations, a viscous solution of isolated micelles is obtained, whereas at higher concentrations, crowding of micelles results in an elastic gel. Alternating PEO-PPO multiblock copolymers are expected to exhibit different phase behavior, with altered phase boundaries and thermodynamics, as compared to PEO-PPO-PEO triblock copolymers (Pluronics®) with equal hydrophobicity, thereby proving the pivotal role of copolymer architecture and molecular weight. EXPERIMENTS: Multiple characterization techniques were used to map the phase behavior as a function of temperature and concentration of PEO-PPO multiblock copolymers (ExpertGel®) in aqueous solution. These techniques include shear rheology, differential and adiabatic scanning calorimetry, isothermal titration calorimetry and light transmittance. The micellar size and topology were studied by dynamic light scattering. FINDINGS: Multiblocks have lower transition temperatures and higher thermodynamic driving forces for micellization as compared to triblocks due to the presence of more than one PPO block per chain. With increasing concentration, the multiblock copolymers in solution gradually evolve into a viscoelastic network formed by soluble bridges in between micellar nodes, whereas hairy triblock micelles jam into liquid crystalline phases resembling an elastic colloidal crystal.

18.
Polymers (Basel) ; 15(6)2023 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-36987295

RESUMO

Chitosan is a polysaccharide extracted from animal sources such as crab and shrimp shells. In this work, chitosan films were modified by grafting them with a thermoresponsive polymer, poly(di(ethylene glycol) methyl ether methacrylate) (PMEO2MA). The films were modified to introduce functional groups useful as reversible addition-fragmentation chain transfer (RAFT) agents. PMEO2MA chains were then grown from the films via RAFT polymerization, making the chitosan films thermoresponsive. The degree of substitution of the chitosan-based RAFT agent and the amount of monomer added in the grafting reaction were varied to control the length of the grafted PMEO2MA chain segments. The chains were cleaved from the film substrates for characterization using 1H NMR and a gel permeation chromatography analysis. Temperature-dependent contact angle measurements were used to demonstrate that the hydrophilic-hydrophobic nature of the film surface varied with temperature. Due to the enhanced hydrophobic character of PMEO2MA above its lower critical solution temperature (LCST), the ability of PMEO2MA-grafted chitosan films to serve as a substrate for cell growth at 37 °C (incubation temperature) was tested. Interactions with cells (fibroblasts, macrophages, and corneal epithelial cells) were assessed. The modified chitosan films supported cell viability and proliferation. As the temperature is lowered to 4 °C (refrigeration temperature, below the LCST), the grafted chitosan films become less hydrophobic, and cell adhesion should decrease, facilitating their removal from the surface. Our results indicated that the cells were detached from the films following a short incubation period at 4 °C, were viable, and retained their ability to proliferate.

19.
Gels ; 9(3)2023 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-36975684

RESUMO

Polysaccharide-based graft copolymers bearing thermo-responsive grafting chains, exhibiting LCST, have been designed to afford thermo-responsive injectable hydrogels. The good performance of the hydrogel requires control of the critical gelation temperature, Tgel. In the present article, we wish to show an alternative method to tune Tgel using an alginate-based thermo-responsive gelator bearing two kinds of grafting chains (heterograft copolymer topology) of P(NIPAM86-co-NtBAM14) random copolymers and pure PNIPAM, differing in their lower critical solution temperature (LCST) about 10 °C. Interestingly, the Tgel of the heterograft copolymer is controlled from the overall hydrophobic content, NtBAM, of both grafts, implying the formation of blended side chains in the crosslinked nanodomains of the formed network. Rheological investigation of the hydrogel showed excellent responsiveness to temperature and shear. Thus, a combination of shear-thinning and thermo-thickening effects provides the hydrogel with injectability and self-healing properties, making it a good candidate for biomedical applications.

20.
ACS Appl Mater Interfaces ; 15(6): 8676-8690, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36734329

RESUMO

Novel brush coatings were fabricated with glass surface-grafted chains copolymerized using surface-initiated atom transfer radical polymerization (SI-ATRP) from 2-(2-methoxyethoxy)ethyl methacrylate (OEGMA188) and acrylamide (AAm), taken in different proportions. P(OEGMA188-co-AAm) brushes with AAm mole fraction >44% (determined with XPS and TOF-SIMS spectroscopy) and nearly constant with the depth copolymer composition (TOF-SIMS profiling) exhibit unusual temperature-induced transformations: The contact angle of water droplets on P(OEGMA188-co-AAm) coatings increases by ∼45° with temperature, compared to 17-18° for POEGMA188 and PAAm. The thickness of coatings immersed in water and the morphology of coatings imaged in air show a temperature response for POEGMA188 (using reflectance spectroscopy and AFM, respectively), but this response is weak for P(OEGMA188-co-AAm) and absent for PAAm. This suggests mechanisms more complex than a simple transition between hydrated loose coils and hydrophobic collapsed chains. For POEGMA188, the hydrogen bonds between the ether oxygens of poly(ethylene glycol) and water hydrogens are formed below the transition temperature Tc and disrupted above Tc when polymer-polymer interactions are favored. Different hydrogen bond structures of PAAm include free amide groups, cis-trans-multimers, and trans-multimers of amide groups. Here, hydrogen bonds between free amide groups and water dominate at T < Tc but structures favored at T > Tc, such as cis-trans-multimers and trans-multimers of amide groups, can still be hydrated. The enhanced temperature-dependent response of wettability for P(OEGMA188-co-AAm) with a high mole fraction of AAm suggests the formation at Tc of more hydrophobic structures, realized by hydrogen bonding between the ether oxygens of OEGMA188 and the amide fragments of AAm, where water molecules are caged. Furthermore, P(OEGMA188-co-AAm) coatings immersed in pH buffer solutions exhibit a 'schizophrenic' behavior in wettability, with transitions that mimic LCST and UCST for pH = 3, LCST for pH = 5 and 7, and any transition blocked for pH = 9.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA