Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Curr Biol ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39084221

RESUMO

Mitochondria originated from an ancient endosymbiosis involving an alphaproteobacterium.1,2,3 Over time, these organelles reduced their gene content massively, with most genes being transferred to the host nucleus before the last eukaryotic common ancestor (LECA).4 This process has yielded varying gene compositions in modern mitogenomes, including the complete loss of this organellar genome in some extreme cases.5,6,7,8,9,10,11,12,13,14 At the other end of the spectrum, jakobids harbor the most gene-rich mitogenomes, encoding 60-66 proteins.8 Here, we introduce the mitogenome of Mantamonas sphyraenae, a protist from the deep-branching CRuMs supergroup.15,16 Remarkably, it boasts the most gene-rich mitogenome outside of jakobids, by housing 91 genes, including 62 protein-coding ones. These include rare homologs of the four subunits of the bacterial-type cytochrome c maturation system I (CcmA, CcmB, CcmC, and CcmF) alongside a unique ribosomal protein S6. During the early evolution of mitochondria, gene transfer from the proto-mitochondrial endosymbiont to the nucleus became possible thanks to systems facilitating the transport of proteins synthesized in the host cytoplasm back to the mitochondrion. In addition to the universally found eukaryotic protein import systems, jakobid mitogenomes were reported to uniquely encode the SecY transmembrane protein of the Sec general secretory pathway, whose evolutionary origin was however unclear. The Mantamonas mitogenome not only encodes SecY but also SecA, SecE, and SecG, making it the sole eukaryote known to house a complete mitochondrial Sec translocation system. Furthermore, our phylogenetic and comparative genomic analyses provide compelling evidence for the alphaproteobacterial origin of this system, establishing its presence in LECA.

2.
Open Biol ; 14(5): 240021, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38772414

RESUMO

Core mitochondrial processes such as the electron transport chain, protein translation and the formation of Fe-S clusters (ISC) are of prokaryotic origin and were present in the bacterial ancestor of mitochondria. In animal and fungal models, a family of small Leu-Tyr-Arg motif-containing proteins (LYRMs) uniformly regulates the function of mitochondrial complexes involved in these processes. The action of LYRMs is contingent upon their binding to the acylated form of acyl carrier protein (ACP). This study demonstrates that LYRMs are structurally and evolutionarily related proteins characterized by a core triplet of α-helices. Their widespread distribution across eukaryotes suggests that 12 specialized LYRMs were likely present in the last eukaryotic common ancestor to regulate the assembly and folding of the subunits that are conserved in bacteria but that lack LYRM homologues. The secondary reduction of mitochondria to anoxic environments has rendered the function of LYRMs and their interaction with acylated ACP dispensable. Consequently, these findings strongly suggest that early eukaryotes installed LYRMs in aerobic mitochondria as orchestrated switches, essential for regulating core metabolism and ATP production.


Assuntos
Mitocôndrias , Proteínas Mitocondriais , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Animais , Evolução Molecular , Eucariotos/metabolismo , Proteína de Transporte de Acila/metabolismo , Proteína de Transporte de Acila/genética , Filogenia , Modelos Moleculares , Humanos , Sequência de Aminoácidos
3.
J Neurosurg ; 140(4): 1177-1182, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564807

RESUMO

Dr. Sanford Larson, MD, PhD (1929-2012), was an influential figure in spinal neurosurgery. Dr. Larson played a pivotal role in establishing neurosurgery's foothold in spinal surgery by serving as the inaugural chair of the Joint Section on Disorders of the Spine and Peripheral Nerves and as a president of the Cervical Spine Research Society. He made many advances in spine care, most notably the modification and popularization of the lateral extracavitary approach to the thoracolumbar spine. Dr. Larson established the neurosurgery residency program at the Medical College of Wisconsin; he also instituted the program's spine fellowship, the first in the United States for neurological surgeons. His mentorship produced numerous leaders in organized neurosurgery and neurosurgical education, including Edward Benzel, MD, Dennis Maiman, MD, PhD, Joseph Cheng, MD, Shekar Kurpad, MD, PhD, and Christopher Wolfla, MD. Dr. Larson was a prominent leader in spinal neurosurgery and his legacy carries on today through his contributions to research, education, and surgical technique.


Assuntos
Neurocirurgia , Médicos , Estados Unidos , Humanos , Neurocirurgiões , Neurocirurgia/educação , Procedimentos Neurocirúrgicos , Vértebras Cervicais
4.
Curr Biol ; 33(22): 5023-5033.e4, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37913770

RESUMO

Many proteins exist in the so-called "twilight zone" of sequence alignment, where low pairwise sequence identity makes it difficult to determine homology and phylogeny.1,2 As protein tertiary structure is often more conserved,3 recent advances in ab initio protein folding have made structure-based identification of putative homologs feasible.4,5,6 We present a pipeline for the identification and characterization of distant homologs and apply it to 7-transmembrane-domain ion channels (7TMICs), a protein group founded by insect odorant and gustatory receptors. Previous sequence and limited structure-based searches identified putatively related proteins, mainly in other animals and plants.7,8,9,10 However, very few 7TMICs have been identified in non-animal, non-plant taxa. Moreover, these proteins' remarkable sequence dissimilarity made it uncertain whether disparate 7TMIC types (Gr/Or, Grl, GRL, DUF3537, PHTF, and GrlHz) are homologous or convergent, leaving their evolutionary history unresolved. Our pipeline identified thousands of new 7TMICs in archaea, bacteria, and unicellular eukaryotes. Using graph-based analyses and protein language models to extract family-wide signatures, we demonstrate that 7TMICs have structure and sequence similarity, supporting homology. Through sequence- and structure-based phylogenetics, we classify eukaryotic 7TMICs into two families (Class-A and Class-B), which are the result of a gene duplication predating the split(s) leading to Amorphea (animals, fungi, and allies) and Diaphoretickes (plants and allies). Our work reveals 7TMICs as a cryptic superfamily, with origins close to the evolution of cellular life. More generally, this study serves as a methodological proof of principle for the identification of extremely distant protein homologs.


Assuntos
Archaea , Proteínas , Humanos , Animais , Sequência de Aminoácidos , Alinhamento de Sequência , Proteínas/genética , Archaea/genética , Plantas/genética , Filogenia , Evolução Molecular
5.
Dev Cell ; 58(15): 1333-1349, 2023 08 07.
Artigo em Inglês | MEDLINE | ID: mdl-37490910

RESUMO

The borders between cell and developmental biology, which have always been permeable, have largely dissolved. One manifestation is the blossoming of cilia biology, with cell and developmental approaches (increasingly complemented by human genetics, structural insights, and computational analysis) fruitfully advancing understanding of this fascinating, multifunctional organelle. The last eukaryotic common ancestor probably possessed a motile cilium, providing evolution with ample opportunity to adapt cilia to many jobs. Over the last decades, we have learned how non-motile, primary cilia play important roles in intercellular communication. Reflecting their diverse motility and signaling functions, compromised cilia cause a diverse range of diseases collectively called "ciliopathies." In this review, we highlight how cilia signal, focusing on how second messengers generated in cilia convey distinct information; how cilia are a potential source of signals to other cells; how evolution may have shaped ciliary function; and how cilia research may address thorny outstanding questions.


Assuntos
Cílios , Ciliopatias , Humanos , Comunicação Celular , Transdução de Sinais , Organelas
6.
Viruses ; 15(2)2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36851553

RESUMO

Mitoviruses are small vertically transmitted RNA viruses found in fungi, plants and animals. Taxonomically, a total of 105 species and 4 genera have been formally recognized by ICTV, and recently, 18 new putative species have been included in a new proposed genus. Transcriptomic and metatranscriptomic studies are a major source of countless new virus-like sequences that are continually being added to open databases and these may be good sources for identifying new putative mitoviruses. The search for mitovirus-like sequences in the NCBI databases resulted in the discovery of more than one hundred new putative mitoviruses, with important implications for taxonomy and also for the evolutionary scenario. Here, we propose the inclusion of four new putative members to the genus Kvaramitovirus, and the existence of a new large basally divergent lineage composed of 144 members that lack internal UGA codons (subfamily "Arkeomitovirinae"), a feature not shared by the vast majority of mitoviruses. Finally, a taxonomic categorization proposal and a detailed description of the evolutionary history of mitoviruses were carried out. This in silico study supports the hypothesis of the existence of a basally divergent lineage that could have had an impact on the early evolutionary history of mitoviruses.


Assuntos
Evolução Biológica , Magnoliopsida , Animais , Fases de Leitura , Códon de Terminação , Bases de Dados Factuais , Perfilação da Expressão Gênica
7.
Environ Pollut ; 317: 120815, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36481469

RESUMO

Animal manure contains valuable plant nutrients which need to be stored until field application. A significant proportion of slurry nitrogen is volatilized in the form of ammonia (NH3) during storage. This impacts human health, biodiversity, air and water quality and thus urgent action is needed to reduce NH3 emissions. In this experiment, we evaluated the NH3 emission mitigation potential of biochars derived from miscanthus (MB) and solid separated anaerobic digestate (DB), and orthophosphoric acid activated MB (AMB) and DB (ADB) as well as lightweight expanded clay aggregate (LECA) during four months of liquid manure storage. A slurry without amendment was included as a control (Ctrl). Acid activated and non-activated biochars were applied on top of the slurry maintaining a 7 mm thick surface layer, while LECA was applied in a 2 cm thick layer. NH3 emissions were measured by photoacoustic analyzer. In comparison to Ctrl, acid activated biochar decreased (p < 0.05) NH3 emissions during the slurry storage. Activated biochar reduced the emissions by 37-51% within the first month of slurry storage and achieved a 25-28% emissions reduction efficiency throughout the four month period due to the reduction in emission mitigation efficiency as the storage period progressed. LECA reduced NH3 emissions by 21% during storage. Losses of NH3 as a percentage of total ammoniacal N were 29-31% for activated biochars, 35-39% for non-activated biochars and 33% for LECA. In conclusion, acid activated biochars and LECA could be good floating-covers to mitigate NH3 emissions during manure storage, but activated biochars may have better mitigation potential than LECA.


Assuntos
Amônia , Esterco , Animais , Humanos , Amônia/análise , Carvão Vegetal , Nitrogênio , Argila
8.
Elife ; 112022 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-36355038

RESUMO

The dichotomy that separates prokaryotic from eukaryotic cells runs deep. The transition from pro- to eukaryote evolution is poorly understood due to a lack of reliable intermediate forms and definitions regarding the nature of the first host that could no longer be considered a prokaryote, the first eukaryotic common ancestor, FECA. The last eukaryotic common ancestor, LECA, was a complex cell that united all traits characterising eukaryotic biology including a mitochondrion. The role of the endosymbiotic organelle in this radical transition towards complex life forms is, however, sometimes questioned. In particular the discovery of the asgard archaea has stimulated discussions regarding the pre-endosymbiotic complexity of FECA. Here we review differences and similarities among models that view eukaryotic traits as isolated coincidental events in asgard archaeal evolution or, on the contrary, as a result of and in response to endosymbiosis. Inspecting eukaryotic traits from the perspective of the endosymbiont uncovers that eukaryotic cell biology can be explained as having evolved as a solution to housing a semi-autonomous organelle and why the addition of another endosymbiont, the plastid, added no extra compartments. Mitochondria provided the selective pressures for the origin (and continued maintenance) of eukaryotic cell complexity. Moreover, they also provided the energetic benefit throughout eukaryogenesis for evolving thousands of gene families unique to eukaryotes. Hence, a synthesis of the current data lets us conclude that traits such as the Golgi apparatus, the nucleus, autophagosomes, and meiosis and sex evolved as a response to the selective pressures an endosymbiont imposes.


Assuntos
Células Eucarióticas , Simbiose , Células Eucarióticas/fisiologia , Simbiose/genética , Evolução Biológica , Eucariotos/genética , Archaea/genética , Núcleo Celular , Meiose , Biologia , Filogenia
9.
ACS Infect Dis ; 8(8): 1582-1593, 2022 08 12.
Artigo em Inglês | MEDLINE | ID: mdl-35658414

RESUMO

Bacteria readily form resilient phenotypes to counter environmental and antibiotic stresses. Here, we demonstrate a class of small molecules that inhibit a wide range of Pseudomonas aeruginosa phenotypes and enable antibiotics to kill previously tolerant bacteria, preventing the transition of tolerant bacteria into a persistent population. We identified two proteins, type IV pili and lectin LecA, as receptors for our molecules by methods including a new label-free assay based on bacterial motility sensing the chemicals in the environment, the chemical inhibition of bacteriophage adsorption on pili appendages of bacteria, and fluorescence polarization. Structure-activity relationship studies reveal a molecule that inhibits only pili appendage and a class of chimeric ligands that inhibit both LecA and pili. Important structural elements of the ligand are identified for each protein. This selective ligand binding identifies the phenotypes each protein receptor controls. Inhibiting LecA results in reducing biofilm formation, eliminating small colony variants, and is correlated with killing previously tolerant bacteria. Inhibiting pili appendages impedes swarming and twitching motilities and pyocyanin and elastase production. Because these phenotypes are controlled by a broad range of signaling pathways, this approach simultaneously controls the multiple signaling mechanisms preventing bacteria to elude antibiotic treatments.


Assuntos
Pseudomonas aeruginosa , Fatores de Virulência , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Lectinas/metabolismo , Ligantes , Fenótipo , Pseudomonas aeruginosa/metabolismo , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
10.
Environ Sci Pollut Res Int ; 29(18): 26631-26647, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34859346

RESUMO

The influence of lightweight expanded clay aggregate (LECA) on the physico-mechanical properties and microstructure of geopolymer mortar containing slag binder alkali-activated with sodium silicate solution before and after exposure to thermal loads was investigated. In the current procedure, siliceous sand was partially substituted with LECA fine aggregate at levels of 0%, 25%, 50%, 75%, and 100%, by volume. The effect of LECA on the performance before exposure was evaluated by measuring flowability, water absorption, bulk density, thermal conductivity, and compressive strength. To monitor the behavior after exposure, a batch of specimens having the same composition was subjected to high temperatures in the range of 400-1000 °C for 2 h with a heating rate of 5 °C/min. In a similar fashion, mass loss and residual compressive strength were determined. New phase-based geopolymers were examined using Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM). The findings indicated that the incorporation of LECA up to 100% as an alternative to siliceous sand aggregate in geopolymer mortar has an adverse effect on compressive strength and water absorption, but has a positive effect on workability, thermal conductivity, and relative strength after exposure to elevated temperatures.


Assuntos
Temperatura Alta , Areia , Argila , Temperatura , Água/química
11.
Chembiochem ; 23(3): e202100563, 2022 02 04.
Artigo em Inglês | MEDLINE | ID: mdl-34788491

RESUMO

Pseudomonas aeruginosa is an opportunistic ESKAPE pathogen that produces two lectins, LecA and LecB, as part of its large arsenal of virulence factors. Both carbohydrate-binding proteins are central to the initial and later persistent infection processes, i. e. bacterial adhesion and biofilm formation. The biofilm matrix is a major resistance determinant and protects the bacteria against external threats such as the host immune system or antibiotic treatment. Therefore, the development of drugs against the P. aeruginosa biofilm is of particular interest to restore efficacy of antimicrobials. Carbohydrate-based inhibitors for LecA and LecB were previously shown to efficiently reduce biofilm formations. Here, we report a new approach for inhibiting LecA with synthetic molecules bridging the established carbohydrate-binding site and a central cavity located between two LecA protomers of the lectin tetramer. Inspired by in silico design, we synthesized various galactosidic LecA inhibitors with aromatic moieties targeting this central pocket. These compounds reached low micromolar affinities, validated in different biophysical assays. Finally, X-ray diffraction analysis revealed the interactions of this compound class with LecA. This new mode of action paves the way to a novel route towards inhibition of P. aeruginosa biofilms.


Assuntos
Adesinas Bacterianas/metabolismo , Antibacterianos/farmacologia , Carboidratos/farmacologia , Pseudomonas aeruginosa/efeitos dos fármacos , Antibacterianos/química , Biofilmes/efeitos dos fármacos , Carboidratos/química , Relação Dose-Resposta a Droga , Testes de Sensibilidade Microbiana , Modelos Moleculares , Estrutura Molecular , Pseudomonas aeruginosa/metabolismo , Relação Estrutura-Atividade
12.
Polymers (Basel) ; 15(1)2022 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-36616522

RESUMO

Limited information and data are available on the material and structural performance of GC incorporating lightweight fine aggregate. In this research, three types of lightweight fine materials were utilized to partially replace sand volume of GC. These lightweight materials were rubber, vermiculite, or lightweight expanded clay aggregate (LECA) and they were used in contents of 20%, 40%, 60%, and 100%. The variables were applied to better investigate the efficiency of each lightweight material in GC and to recommend GC mixes for structural applications. The concrete workability, compressive strength, indirect tensile strength, freezing and thawing performance, and impact resistance were measured in this study. In addition, three reinforced concrete slabs were made from selected mixes with similar compressive strength of 32 MPa and then tested under a 4-point bending loading regime. The results showed that using LECA as sand replacement in GC increased its compressive strength at all ages and all replacement ratios. Compared with the control GC mix, using 60% LECA increased the compressive strength by up to 44%, 39%, and 27%, respectively at 3, 7, and 28 days. The slabs test showed that partial or full replacement of GC sand adversely affected the shear resistance of concrete and caused premature failure of slabs. The slab strength and deflection capacities decreased by 9% and 30%, respectively when using rubber, and by 23% and 59%, respectively when using LECA, compared with control GC slab. The results indicated the applicability of GC mix with 60% LECA in structures subjected to axial loads. However, rubber would be the best lightweight material to recommend for resisting impact and flexural loads.

13.
Annu Rev Microbiol ; 75: 631-647, 2021 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-34343017

RESUMO

The origin of eukaryotes has been defined as the major evolutionary transition since the origin of life itself. Most hallmark traits of eukaryotes, such as their intricate intracellular organization, can be traced back to a putative common ancestor that predated the broad diversity of extant eukaryotes. However, little is known about the nature and relative order of events that occurred in the path from preexisting prokaryotes to this already sophisticated ancestor. The origin of mitochondria from the endosymbiosis of an alphaproteobacterium is one of the few robustly established events to which most hypotheses on the origin of eukaryotes are anchored, but the debate is still open regarding the time of this acquisition, the nature of the host, and the ecological and metabolic interactions between the symbiotic partners. After the acquisition of mitochondria, eukaryotes underwent a fast radiation into several major clades whose phylogenetic relationships have been largely elusive. Recent progress in the comparative analyses of a growing number of genomes is shedding light on the early events of eukaryotic evolution as well as on the root and branching patterns of the tree of eukaryotes. Here I discuss current knowledge and debates on the origin and early evolution of eukaryotes. I focus particularly on how phylogenomic analyses have challenged some of the early assumptions about eukaryotic evolution, including the widespread idea that mitochondrial symbiosis in an archaeal host was the earliest event in eukaryogenesis.


Assuntos
Evolução Biológica , Células Eucarióticas , Eucariotos/genética , Células Eucarióticas/metabolismo , Filogenia , Células Procarióticas/metabolismo , Simbiose
14.
Glycobiology ; 31(11): 1490-1499, 2021 12 18.
Artigo em Inglês | MEDLINE | ID: mdl-34255029

RESUMO

Pseudomonas aeruginosa is a widespread opportunistic pathogen that is capable of colonizing various human tissues and is resistant to many antibiotics. LecA is a galactose binding tetrameric lectin involved in adhesion, infection and biofilm formation. This study reports on the binding characteristics of mono- and divalent (chelating) ligands to LecA using different techniques. These techniques include affinity capillary electrophoresis, bio-layer interferometry, native mass spectrometry and a thermal shift assay. Aspects of focus include: affinity, selectivity, binding kinetics and residence time. The affinity of a divalent ligand was determined to be in the low-nanomolar range for all of the used techniques and with a ligand residence time of approximately 7 h, while no strong binding was seen to related lectin tetramers. Each of the used techniques provides a unique and complementary insight into the chelation based binding mode of the divalent ligand to the LecA tetramer.


Assuntos
Galactosídeos/química , Lectinas/química , Pseudomonas aeruginosa/química , Temperatura , Sítios de Ligação , Eletroforese Capilar , Interferometria , Ligantes , Espectrometria de Massas
15.
Radiol Case Rep ; 16(6): 1574-1579, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33995747

RESUMO

Anomalous origin of vertebral arteries is a rare vascular anomaly and mostly discovered as incidental findings during computed tomography angiogram , magnetic resonance angiography or digital subtracted angiogram of the aortic arch and cerebral vessels. Herein, we present an extremely rare case of a 31-year-old female who presented with headache after emotional trauma. A conventional cerebral angiogram showed anomalous origin of the right vertebral artery. This finding was incidentally discovered, and it is of utmost importance for future head and neck endovascular interventions to avoid inadvertent arterial injury.

16.
Mol Biol Evol ; 38(8): 3170-3187, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33837778

RESUMO

The main bacterial pathway for inserting proteins into the plasma membrane relies on the signal recognition particle (SRP), composed of the Ffh protein and an associated RNA component, and the SRP-docking protein FtsY. Eukaryotes use an equivalent system of archaeal origin to deliver proteins into the endoplasmic reticulum, whereas a bacteria-derived SRP and FtsY function in the plastid. Here we report on the presence of homologs of the bacterial Ffh and FtsY proteins in various unrelated plastid-lacking unicellular eukaryotes, namely Heterolobosea, Alveida, Goniomonas, and Hemimastigophora. The monophyly of novel eukaryotic Ffh and FtsY groups, predicted mitochondrial localization experimentally confirmed for Naegleria gruberi, and a strong alphaproteobacterial affinity of the Ffh group, collectively suggest that they constitute parts of an ancestral mitochondrial signal peptide-based protein-targeting system inherited from the last eukaryotic common ancestor, but lost from the majority of extant eukaryotes. The ability of putative signal peptides, predicted in a subset of mitochondrial-encoded N. gruberi proteins, to target a reporter fluorescent protein into the endoplasmic reticulum of Trypanosoma brucei, likely through their interaction with the cytosolic SRP, provided further support for this notion. We also illustrate that known mitochondrial ribosome-interacting proteins implicated in membrane protein targeting in opisthokonts (Mba1, Mdm38, and Mrx15) are broadly conserved in eukaryotes and nonredundant with the mitochondrial SRP system. Finally, we identified a novel mitochondrial protein (MAP67) present in diverse eukaryotes and related to the signal peptide-binding domain of Ffh, which may well be a hitherto unrecognized component of the mitochondrial membrane protein-targeting machinery.


Assuntos
Proteínas de Bactérias/genética , Evolução Biológica , Proteínas de Escherichia coli/genética , Genoma Mitocondrial , Naegleria/genética , Receptores Citoplasmáticos e Nucleares/genética , Partícula de Reconhecimento de Sinal/genética , Homologia de Sequência do Ácido Nucleico
17.
Biosystems ; 205: 104415, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33812918

RESUMO

It is puzzling why life on Earth consisted of prokaryotes for up to 2.5 ± 0.5 billion years (Gy) before the appearance of the first eukaryotes. This period, from LUCA (Last Universal Common Ancestor) to LECA (Last Eucaryotic Common Ancestor), we have named the Lucacene, to suggest all prokaryotic descendants of LUCA before the appearance of LECA. Here we present a simple model based on horizontal gene transfer (HGT). It is the process of HGT from Bacteria to Archaea and its reverse that we wish to simulate and estimate its duration until eukaryogenesis. Rough quantitation of its parameters shows that the model may explain the long duration of the Lucacene.


Assuntos
Archaea/genética , Bactérias/genética , Evolução Biológica , Eucariotos/genética , Transferência Genética Horizontal , Modelos Biológicos , Biologia de Sistemas , Simulação por Computador , Mutação , Fatores de Tempo
18.
J Hered ; 112(1): 140-144, 2021 03 12.
Artigo em Inglês | MEDLINE | ID: mdl-33538295

RESUMO

Through analyses of diverse microeukaryotes, we have previously argued that eukaryotic genomes are dynamic systems that rely on epigenetic mechanisms to distinguish germline (i.e., DNA to be inherited) from soma (i.e., DNA that undergoes polyploidization, genome rearrangement, etc.), even in the context of a single nucleus. Here, we extend these arguments by including two well-documented observations: (1) eukaryotic genomes interact frequently with mobile genetic elements (MGEs) like viruses and transposable elements (TEs), creating genetic conflict, and (2) epigenetic mechanisms regulate MGEs. Synthesis of these ideas leads to the hypothesis that genetic conflict with MGEs contributed to the evolution of a dynamic eukaryotic genome in the last eukaryotic common ancestor (LECA), and may have contributed to eukaryogenesis (i.e., may have been a driver in the evolution of FECA, the first eukaryotic common ancestor). Sex (i.e., meiosis) may have evolved within the context of the development of germline-soma distinctions in LECA, as this process resets the germline genome by regulating/eliminating somatic (i.e., polyploid, rearranged) genetic material. Our synthesis of these ideas expands on hypotheses of the origin of eukaryotes by integrating the roles of MGEs and epigenetics.


Assuntos
Elementos de DNA Transponíveis , Eucariotos/genética , Evolução Molecular , Modelos Genéticos , Epigênese Genética
19.
Mol Biol Evol ; 38(3): 788-804, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32886790

RESUMO

The mitoribosome, as known from studies in model organisms, deviates considerably from its ancestor, the bacterial ribosome. Deviations include substantial reduction of the mitochondrial ribosomal RNA (mt-rRNA) structure and acquisition of numerous mitochondrion-specific (M) mitoribosomal proteins (mtRPs). A broadly accepted view assumes that M-mtRPs compensate for structural destabilization of mt-rRNA resulting from its evolutionary remodeling. Since most experimental information on mitoribosome makeup comes from eukaryotes having derived mitochondrial genomes and mt-rRNAs, we tested this assumption by investigating the mitochondrial translation machinery of jakobids, a lineage of unicellular protists with the most bacteria-like mitochondrial genomes. We report here proteomics analyses of the Andalucia godoyi small mitoribosomal subunit and in silico transcriptomic and comparative genome analyses of four additional jakobids. Jakobids have mt-rRNA structures that minimally differ from their bacterial counterparts. Yet, with at least 31 small subunit and 44 large subunit mtRPs, the mitoriboproteome of Andalucia is essentially as complex as that in animals or fungi. Furthermore, the relatively high conservation of jakobid sequences has helped to clarify the identity of several mtRPs, previously considered to be lineage-specific, as divergent homologs of conserved M-mtRPs, notably mS22 and mL61. The coexistence of bacteria-like mt-rRNAs and a complex mitoriboproteome refutes the view that M-mtRPs were ancestrally recruited to stabilize deviations of mt-rRNA structural elements. We postulate instead that the numerous M-mtRPs acquired in the last eukaryotic common ancestor allowed mt-rRNAs to pursue a broad range of evolutionary trajectories across lineages: from dramatic reduction to acquisition of novel elements to structural conservatism.


Assuntos
Genoma Mitocondrial , Genoma de Protozoário , Ribossomos Mitocondriais , RNA Ribossômico , Proteínas Ribossômicas , Eucariotos
20.
J Proteome Res ; 20(1): 518-530, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33289389

RESUMO

Compared to prokaryotic cells, a typical eukaryotic cell is much more complex along with its endomembrane system and membrane-bound organelles. Although the endosymbiosis theories convincingly explain the evolution of membrane-bound organelles such as mitochondria and chloroplasts, very little is understood about the evolutionary origins of the nucleus, the defining feature of eukaryotes. Most studies on nuclear evolution have not been able to take into consideration the underlying structural framework of the nucleus, attributed to the nuclear matrix (NuMat), a ribonucleoproteinaceous structure. This can largely be attributed to the lack of annotation of its core components. Since NuMat has been shown to provide a structural platform for facilitating a variety of nuclear functions such as replication, transcription, and splicing, it is important to identify its protein components to better understand these processes. In this study, we address this issue using the developing embryos of Drosophila melanogaster and Danio rerio and identify 362 core NuMat proteins that are conserved between the two organisms. We further compare our results with publicly available Mus musculus NuMat dataset and Homo sapiens cellular localization dataset to define the core homologous NuMat proteins consisting of 252 proteins. We find that of them, 86 protein groups have originated from pre-existing proteins in prokaryotes. While 36 were conserved across all eukaryotic supergroups, 14 new proteins evolved before the evolution of the last eukaryotic common ancestor and together, these 50 proteins out of the 252 core conserved NuMat proteins are conserved across all eukaryotes, indicating their indispensable nature for nuclear function for over 1.5 billion years of eukaryotic history. Our analysis paves the way to understand the evolution of the complex internal nuclear architecture and its functions.


Assuntos
Drosophila melanogaster , Evolução Molecular , Proteínas Associadas à Matriz Nuclear , Células Procarióticas , Animais , Drosophila melanogaster/genética , Células Eucarióticas , Matriz Nuclear , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA