Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 196
Filtrar
1.
J Colloid Interface Sci ; 679(Pt A): 234-242, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39362148

RESUMO

Rechargeable non-aqueous lithium-oxygen batteries (LOBs) have garnered increasing attention owing to their high theoretical energy density. However, their slow cathodic kinetics hinder efficient battery reactions. Nanoscale catalysts can effectively enhance electrocatalytic activity and atomic utilization efficiency. However, the agglomeration of nanoscale catalysts (such as cluster and single atoms) during continuous discharge/charge cycles leads to decreased electrochemical performance and poor cyclic stability. Herein, the ruthenium (Ru) atomic sites anchored on an O-doped molybdenum disulfide (O-MoS2) catalyst (designated as Ru/O-MoS2) was fabricated using a facile impregnation and calcination method. Strong Ru-O coupling between Ru atoms and the O-MoS2 substrate optimizes the localized electronic structure, resulting in improved electrochemical performance and enhanced resistance to Ostwald ripening. When employed as a cathode catalyst for LOBs, Ru/O-MoS2 catalyst exhibits a high reversible specific capacity (18700.5 (±59.8) mAh g-1), good rate capability, and enhanced long-term stability (115 cycles, 1200 h). This study encourages facile and efficient strategies for the development of effective and stable electrocatalysts for use in LOBs.

2.
Nanomicro Lett ; 17(1): 13, 2024 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-39325255

RESUMO

The development of low-temperature solid oxide fuel cells (LT-SOFCs) is of significant importance for realizing the widespread application of SOFCs. This has stimulated a substantial materials research effort in developing high oxide-ion conductivity in the electrolyte layer of SOFCs. In this context, for the first time, a dielectric material, CaCu3Ti4O12 (CCTO) is designed for LT-SOFCs electrolyte application in this study. Both individual CCTO and its heterostructure materials with a p-type Ni0.8Co0.15Al0.05LiO2-δ (NCAL) semiconductor are evaluated as alternative electrolytes in LT-SOFC at 450-550 °C. The single cell with the individual CCTO electrolyte exhibits a power output of approximately 263 mW cm-2 and an open-circuit voltage (OCV) of 0.95 V at 550 °C, while the cell with the CCTO-NCAL heterostructure electrolyte capably delivers an improved power output of approximately 605 mW cm-2 along with a higher OCV over 1.0 V, which indicates the introduction of high hole-conducting NCAL into the CCTO could enhance the cell performance rather than inducing any potential short-circuiting risk. It is found that these promising outcomes are due to the interplay of the dielectric material, its structure, and overall properties that led to improve electrochemical mechanism in CCTO-NCAL. Furthermore, density functional theory calculations provide the detailed information about the electronic and structural properties of the CCTO and NCAL and their heterostructure CCTO-NCAL. Our study thus provides a new approach for developing new advanced electrolytes for LT-SOFCs.

3.
Small ; : e2406525, 2024 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-39308256

RESUMO

Design and synthesis of highly active and robust bifunctional cathode catalysts for oxygen reduction reaction (ORR) and oxygen evolution reaction (OER) are of vital significance for practical applications of lithium-oxygen (Li-O2) batteries. Herein, a built-in electric field (BIEF) strategy is reported to fabricate MnTe/MnO heterostructures with a large work function difference (ΔΦ) as a bifunctional cathode catalyst in Li-O2 batteries. The MnTe/MnO heterostructures with nanosheets and microporous structures result in an abundance of exposed active sites and facilitate mass transfer. More importantly, the heterogeneous MnTe/MnO nano-interface region provides a BIEF that can trigger interfacial charge redistribution, fine-tune the adsorption energy of oxygen intermediates, and alter the morphology of discharge products to accelerate ORR/OER kinetics. Impressively, the fabricated Li-O2 batteries with MnTe/MnO cathode showcases exhibit excellent electrochemical performances, including low charging overpotential, a high specific capacity of 11930 mA h g-1, and good cycle stability over 350 cycles even with a fixed specific capacity of 500 mA h g-1 at a current density of 500 mA g-1. This work provides an avenue for the rational design of high performance heterostructure electrocatalysts toward practical applications for rechargeable Li-O2 batteries.

4.
Angew Chem Int Ed Engl ; : e202414893, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39315603

RESUMO

In-depth comprehension and manipulation of band occupation at metal centers are crucial for facilitating effective adsorption and electron transfer in lithium-oxygen battery (LOB) reactions. Rare earth elements play a unique role in band hybridization due to their deep orbitals and strong localization of 4f electrons. Herein, we anchor single Ce atoms onto CoO, constructing a highly active and stable catalyst with d-f a dual-band redox center. It is discovered that the itinerant behavior of 4f electrons introduces an enhanced spin-orbit coupling effect, which facilitates ideal σ/π bonding and flexible adsorption between the Ce/Co active sites and *O. Simultaneously, the injection of localized Ce 4f electrons strengthens the orbital bonding capacity of Co-O, effectively inhibits the dissolution of Co sites and improves the structural stability of the cathode material. Bracingly, the Ce1/CoO-based LOB exhibits an ultra-low charge-discharge polarization (0.46 V) and stable cyclic performance (1088 hours). This work breaks through the traditional limitations in catalyst activity and stability, providing new strategies and theoretical insights for developing high-performance LOBs powered by rare-earth elements.

5.
Small ; : e2406081, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39286893

RESUMO

The defect engineering is essential for the development of efficient cathode catalysts for lithium-oxygen batteries. Herein, CuS1 -x nanoflowers are fabricated by microwave hydrothermal method. Through theoretical and experimental analysis, the S vacancies are observed, which result in augmented charge around Cu, improved adsorption of LiO2, and reduced overpotential. On the one hand, the generated electronic defects cause the Fermi level to shift toward the conduction band, which enhances the electronic conductivity and ion transfer. On the other hand, the increased S vacancies provide a large number of Cu active sites, which increase the charge transfer from Cu to LiO2, which improves the stability of the intermediate adsorption. Interactively, CuS1- x catalyst obtains a capacity of 23,227 mAh g-1 and a cycle life of 225 at 500 mA g-1. This work will be helpful for obtaining an efficient cathode catalyst by providing a deep understanding of vacancy modulation in advanced catalysts.

6.
ChemSusChem ; : e202401644, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39299914

RESUMO

The Li-O2 battery has emerged as a promising energy storage system due to its exceptionally high theoretical energy density of 3500 Wh kg-1. However, the sluggish kinetics associated with the formation and decomposition of discharge product Li2O2 poses several challenges in Li-O2 batteries, including excessive overpotential, limited rate performance, and reduced actual specific energy. Consequently, the development of cost-effective cathode catalysts with enhanced catalytic activity and long-term stability represents a viable approach to address these challenges. In this study, commercial melamine foam is utilized as a precursor material which was subjected to pyrolysis at elevated temperatures with PVDF to synthesize N,F co-doped self-supporting carbon cathode (NF-NSC). Remarkably, thanks to the synergistic effects of N, F heteroatomic in conjunction with the inherent three-dimensional reticular porous structure, NF-NSC exhibited enhanced electrochemical performance when utilized in Li-O2 batteries. Specifically, the NF-NSC cathode demonstrated an impressive discharge specific capacity of up to 35204 mAh g-1 alongside a low over-potential (0.86 V) and excellent cycling stability (146 cycles).

7.
Small ; : e2403683, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109560

RESUMO

Li-O2 batteries (LOBs) have sparked significant interest due to their fascinating high theoretical energy density. However, the large overpotential for the formation and oxidation of Li2O2 during charge and discharge process seriously hinders the further development and application of LOBs. In this work, metal-organic frameworks (MOFs) with different metal clusters (Fe, Ti, Zr) are successfully synthesized, and they are employed as the photoelectrodes for the photo-assisted LOBs. The special dual excitation pathways of Fe-MOF under illumination and the superior separation efficiency of photocarriers, which significantly enhance the activation of O2/Li2O2, improving the catalytic activity of oxygen reduction reaction and oxygen evolution reaction. Moreover, compared to traditional inorganic semiconductor crystals, Fe-MOF exhibits large specific surface area and excellent O2 adsorption ability. Therefore, the LOB with Fe-MOF as the cathode exhibits large specific capacity, ultralow charge/discharge overpotential of 0.22 V at 0.05 mA cm-2 and excellent stability of 195 cycles under illumination. This study provides an environmentally friendly and highly efficient photocatalyst for LOBs, and a new strategy for designing photoelectrodes.

8.
Small ; : e2404483, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39046318

RESUMO

Lithium-oxygen (Li-O2) battery with large theoretical energy density (≈3500 Wh kg-1) is one of the most promising energy storage and conversion systems. However, the slow kinetics of oxygen electrode reactions inhibit the practical application of Li-O2 battery. Thus, designing efficient electrocatalysts is crucial to improve battery performance. Here, Ti3C2 MXene/Mo4/3B2-x MBene superlattice is fabricated its electrocatalytic activity toward oxygen redox reactions in Li-O2 battery is studied. It is found that the built-in electric field formed by a large work function difference between Ti3C2 and Mo4/3B2-x will power the charge transfer at the interface from titanium (Ti) site in Ti3C2 to molybdenum (Mo) site in Mo4/3B2-x. This charge transfer increases the electron density in 4d orbital of Mo site and decreases the d-band center of Mo site, thus optimizing the adsorption of intermediate product LiO2 at Mo site and accelerating the kinetics of oxygen electrode reactions. Meanwhile, the formed film-like discharge products (Li2O2) improve the contact with electrode and facilitate the decomposition of Li2O2. Based on the above advantages, the Ti3C2 MXene/Mo4/3B2-x MBene superlattice-based Li-O2 battery exhibits large discharge specific capacity (17 167 mAh g-1), low overpotential (1.16 V), and superior cycling performance (475 cycles).

9.
J Colloid Interface Sci ; 676: 368-377, 2024 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-39032419

RESUMO

The design and fabrication of bifunctional catalysts with high electrocatalytic activity and stability are critical for developing highly reversible Li-O2 batteries (LOBs). Herein, the N, P co-doped MXene (NP-MXene) is prepared by one-step annealing method and evaluated as bifunctional catalyst for LOBs. The results suggest that the P doping plays a crucial role in increasing interlayer distance of MXene, thereby effectively providing more active sites, fast mass transfer, and ample space for the deposition/decomposition of Li2O2. Moreover, the N doping can significantly elevate the d-band center of Ti, thereby remarkably improving the adsorption of reaction intermediates and accelerating the deposition/decomposition of Li2O2 films. Consequently, the MXene-based LOBs deliver an ultrahigh specific capacity of 13,995 mAh/g at 500 mA g-1, a discharge/charge voltage gap of 0.89 V, and a cycle life up to 523 cycles with a limited capacity of 1000 mAh/g at 500 mA g-1. Impressively, the as-fabricated flexible LOBs with NP-MXene cathode display excellent cycling stability and ability to continuously power LEDs even after bending. Our findings pave the road of heteroatom doped MXenes as next-generation electrodes for high-performance energy storage and conversion systems.

10.
J Colloid Interface Sci ; 673: 909-921, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38909490

RESUMO

Electrocatalysts with appropriate electron coupling toward LiO2 intermediates can exhibit superior oxygen reduction/evolution reaction kinetics in Li-O2 batteries (LOBs). In this work, a charge redistribution strategy has been developed by constructing NiS/MoS2 heterostructure nanosheet self-assembled hollow microspheres with an internal electric field to regulate the interaction with LiO2 and then improve the electrochemical performance of LOBs. Density functional theory calculations and physicochemical characterizations reveal that the difference of work functions between NiS and MoS2 promotes the electron redistribution in heterointerface via built-in electrical field, leading to increased electron density of interfacial Ni atom, thereby enhancing its electron coupling toward LiO2 intermediates and promoting one-electron oxygen reduction/oxidation reaction kinetics. As a result, the NiS/MoS2-based LOBs exhibit evidently higher discharge capacity and much better cycling performance than the batteries using NiS and MoS2. This work provides a reliable charge redistribution strategy induced by build-in electric field to design efficient catalysts for LOBs.

11.
Adv Mater ; 36(32): e2405440, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38801657

RESUMO

Light-assisted Li-O2 batteries exhibit a high round-trip efficiency attributable to the assistance of light-generated electrons and holes in oxygen reduction and evolution reactions. Nonetheless, the excitonic effect arising from Coulomb interaction between electrons and holes impedes carrier separation, thus hindering efficient utilization of photo-energy. Herein, porphyrinic metal-organic frameworks with (Fe2Ni)O(COO)6 clusters are used as photocathodes to accelerate exciton dissociation into charge carriers for light-assisted Li-O2 batteries. The coupling of Ni 3d and Fe 3d orbitals boosts ligand-to-metal cluster charge transfer, and hence drives exciton dissociation and activates O2 for superoxide (•O2 -) radicals, rather than singlet oxygen (1O2) under photoexcitation. These enable the light-assisted Li-O2 batteries with a low total overvoltage of 0.28 V and round-trip efficiency of 92% under light irradiation of 100 mW cm-2. This work highlights the excitonic effect in photoelectrochemical processes and provides insights into photocathode design for light-assisted Li-O2 batteries.

12.
Small Methods ; 8(8): e2301728, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38429243

RESUMO

Non-aqueous lithium-oxygen batteries (LOBs) have emerged as a promising candidate due to their high theoretical energy density and eco-friendly cathode reaction materials. However, LOBs still suffer from high overpotential and poor cycling stability resulting from difficulties in the decomposition of discharge reaction Li2O2 products. Here, a 3D open network catalyst structure is proposed based on highly-thin and porous multi-metal oxide nanofibers (MMONFs) developed by a facile electrospinning approach coupled with a heat treatment process. The developed hierarchically interconnected 3D porous MMONFs catalyst structure with high specific surface area and porosity shows the enhanced electrochemical reaction kinetics associated with Li2O2 formation and decomposition on the cathode surface during the charge and discharge processes. The uniquely assembled cathode materials with MMONFs exhibit excellent electrochemical performance with energy efficiency of 82% at a current density of 50 mA g-1 and a long-term cycling stability over 100 cycles at 200 mA g-1 with a cut-off capacity of 500 mAh g-1. Moreover, the optimized cathode materials exhibit a remarkable energy density of 1013 Wh kg-1 at the 100th discharge and charge cycle, which is nearly four times higher than that of C/NMC721, which has the highest energy density among the cathode materials currently used in electric vehicles.

13.
Small ; 20(32): e2400010, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38470199

RESUMO

Rechargeable Li-O2 batteries (LOBs) are considered as one of the most promising candidates for new-generation energy storage devices. One of major impediments is the poor cycle stability derived from the sluggish reaction kinetics of unreliable cathode catalysts, hindering the commercial application of LOBs. Therefore, the rational design of efficient and durable catalysts is critical for LOBs. Optimizing surface electron structure via the negative shift of the d-band center offers a reasonable descriptor for enhancing the electrocatalytic activity. In this study, the construction of Ni-incorporating RuO2 porous nanospheres is proposed as the cathode catalyst to demonstrate the hypothesis. Density functional theory calculations reveal that the introduction of Ni atoms can effectively modulate the surface electron structure of RuO2 and the adsorption capacities of oxygen-containing intermediates, accelerating charge transfer between them and optimizing the growth pathway of discharge products. Resultantly, the LOBs exhibit a large discharge specific capacity of 19658 mA h g-1 at 200 mA g-1 and extraordinary cycle life of 791 cycles. This study confers the concept of d-band center modulation for efficient and durable cathode catalysts of LOBs.

14.
Nanomaterials (Basel) ; 14(3)2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38334549

RESUMO

The pursuit of efficient cathode catalysts to improve cycle stability at ultra-high rates plays an important role in boosting the practical utilization of Li-O2 batteries. Featured as industrial solid waste, coal gangue with rich electrochemical active components could be a promising candidate for electrocatalysts. Here, a coal gangue/Ti3C2 MXene hybrid with a TiO2/SiCx active layer is synthesized and applied as a cathode catalyst in Li-O2 batteries. The coal gangue/Ti3C2 MXene hybrid has a tailored amorphous/crystalline heterostructure, enhanced active TiO2 termination, and a stable SiCx protective layer; thereby, it achieved an excellent rate stability. The Li-O2 battery, assembled with a coal gangue/Ti3C2 MXene cathode catalyst, was found to obtain a competitive full discharge capacity of 3959 mAh g-1 and a considerable long-term endurance of 180 h (up to 175 cycles), with a stable voltage polarization of 1.72 V at 2500 mA g-1. Comprehensive characterization measurements (SEM, TEM, XPS, etc.) were applied; an in-depth analysis was conducted to reveal the critical role of TiO2/SiCX active units in regulating the micro-chemical constitution and the enhanced synergistic effect between coal gangue and Ti3C2 MXene. This work could provide considerable insights into the rational design of catalysts derived from solid waste gangue for high-rate Li-O2 batteries.

15.
ACS Appl Mater Interfaces ; 16(7): 8783-8790, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38335216

RESUMO

In recent years, lithium oxygen batteries (Li-O2) have received considerable research attention due to their extremely high energy density. However, the poor conductivity and ion conductivity of the discharge product lithium peroxide (Li2O2) result in a high charging overpotential, poor cycling stability, and low charging rate. Therefore, studying and improving catalysts is a top priority. This study focuses on the commonly used heterogeneous catalyst ruthenium (Ru). The local distribution of this catalyst is controlled by using sputtering technology. Moreover, X-ray nanodiffraction is applied to observe the relationship between the decomposition of Li2O2 and the local distribution of Ru. Results show that Li2O2 decomposes homogeneously in liquid systems and heterogeneously in solid-state systems. This study finds that the catalytic effect of Ru is related to electrolyte decomposition and that its soluble byproducts act as electron acceptors or redox mediators, effectively reducing charging overpotential but also shortening the cycle life.

16.
Angew Chem Int Ed Engl ; 63(16): e202401272, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38375744

RESUMO

Widely acknowledged that the capacity of Li-O2 batteries (LOBs) should be strongly determined by growth behaviors of the discharge product of lithium peroxide (Li2O2) that follows both coexisting surface and solution pathways. However until now, it remains still challenging to achieve dynamic modulation on Li2O2 morphologies. Herein, the photo-responsive Au nanoparticles (NPs) supported on reduced oxide graphene (Au/rGO) have been utilized as cathode to manipulate oxygen reduction reaction (ORR) kinetics by aid of surface plasmon resonance (SPR) effects. Thus, we can experimentally reveal the importance of matching ORR kinetics with Li+ migration towards battery performance. Moreover, it is found that Li+ concentration polarization caused "sudden death" of LOBs is supposed to be just a form of suspended animation that could timely recover under irradiation. This work provides us an in-depth explanation on the working mechanism of LOBs from a kinetic perspective, offering valuable insights for the future battery design.

17.
Small ; 20(30): e2310808, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38386193

RESUMO

Developing catalysts with suitable adsorption energy for oxygen-containing intermediates and elucidating their internal structure-performance relationships are essential for the commercialization of Li-O2 batteries (LOBs), especially under high current densities. Herein, NiCo2O4-CeO2 heterostructure with a spontaneous built-in electric field (BIEF) is designed and utilized as a cathode catalyst for LOBs at high current density. The driving mechanism of electron pumping/accumulation at heterointerface is studied via experiments and density functional theory (DFT) calculations, elucidating the growth mechanism of discharge products. The results show that BIEF induced by work function difference optimizes the affinity for LiO2 and promotes the formation of nano-flocculent Li2O2, thus improving LOBs performance at high current density. Specifically, NiCo2O4-CeO2 cathode exhibits a large discharge capacity (9546 mAh g-1 at 4000 mA g-1) and high stability (>430 cycles at 4000 mA g-1), which are better than the majority of previously reported metal-based catalysts. This work provides a new method for tuning the nucleation and decomposition of Li2O2 and inspires the design of ideal catalysts for LOBs to operate at high current density.

18.
Small ; 20(30): e2311739, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38420904

RESUMO

Rechargeable aprotic lithium (Li)-oxygen battery (LOB) is a potential next-generation energy storage technology because of its high theoretical specific energy. However, the role of redox mediator on the oxide electrochemistry remains unclear. This is partly due to the intrinsic complexity of the battery chemistry and the lack of in-depth studies of oxygen electrodes at the atomic level by reliable techniques. Herein, cryo-transmission electron microscopy (cryo-TEM) is used to study how the redox mediator LiI affects the oxygen electrochemistry in LOBs. It is revealed that with or without LiI in the electrolyte, the discharge products are plate-like LiOH or toroidal Li2O2, respectively. The I2 assists the decomposition of LiOH via the formation of LiIO3 in the charge process. In addition, a LiI protective layer is formed on the Li anode surface by the shuttle of I3 -, which inhibits the parasitic Li/electrolyte reaction and improves the cycle performance of the LOBs. The LOBs returned to 2e- oxygen reduction reaction (ORR) to produce Li2O2 after the LiI in the electrolyte is consumed. This work provides new insight on the role of redox mediator on the complex electrochemistry in LOBs which may aid the design LOBs for practical applications.

19.
Adv Mater ; 36(23): e2312661, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38290062

RESUMO

Solid-state lithium-oxygen (Li-O2) batteries have been widely recognized as one of the candidates for the next-generation of energy storage batteries. However, the development of solid-state Li-O2 batteries has been hindered by the lack of solid-state electrolyte (SSE) with high ionic conductivity at room temperature, high Li+ transference number, and the high stability to air. Herein, the organic molecular porous solid cucurbit[7]uril (CB[7]) with one-dimensional (1D) ion migration channels is developed as the SSE for solid-state Li-O2 batteries. Taking advantage of the 1D ion migration channel for Li+ conduction, CB[7] SSE achieves high ionic conductivity (2.45 × 10-4 S cm-1 at 25 °C). Moreover, the noncovalent interactions facilitated the immobilization of anions, realizing a high Li+ transference number (tLi + = 0.81) and Li+ uniform distribution. The CB[7] SSE also shows a wide electrochemical stability window of 0-4.65 V and high thermal stability and chemical stability, as well as realizes stable Li+ plating/stripping (more than 1000 h at 0.3 mA cm-2). As a result, the CB[7] SSE endows solid-state Li-O2 batteries with superior rate capability and long-term discharge/charge stability (up to 500 h). This design strategy of CB[7] SSE paves the way for stable and efficient solid-state Li-O2 batteries toward practical applications.

20.
Small ; 20(10): e2304882, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37890468

RESUMO

Li-O2 batteries could deliver ultra-high theoretical energy density compared to current Li-ion batteries counterpart. The slow cathode reaction kinetics in Li-O2 batteries, however, limits their electrocatalytic performance. To this end, MoSe2 and Ni0.85 Se nanoflakes were decorated in carbon hollow nanoflowers, which were served as the cathode catalysts for Li-O2 batteries. The hexagonal Ni0.85 Se and MoSe2 show good structural compatibility with the same space group, resulting in a stable heterogeneous structure. The synergistic interaction of the unsaturated atoms and the built-in electric fields on the heterogeneous structure exposes abundant catalytically active sites, accelerating ion and charge transport and imparting superior electrochemical activity, including high specific capacities and stable cycling performance. More importantly, the lattice distances of the Ni0.85 Se (101) plane and MoSe2 (100) plane at the heterogeneous interfaces are highly matched to that of Li2 O2 (100) plane, facilitating epitaxial growth of Li2 O2 , as well as the formation and decomposition of discharge products during the cycles. This strategy of employing nonstoichiometric compounds to build heterojunctions and improve Li-O2 battery performance is expected to be applied to other energy storage or conversion systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA