Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 112
Filtrar
1.
IUBMB Life ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39038059

RESUMO

Estramustine (EM), a clinically successful hormone-refractory anti-prostate cancer drug, exhibited potent anti-proliferative activity, depolymerized microtubules, blocked cells at mitosis, and induced cell death in different cancer cells. Altered iron metabolism is a feature of cancer cells. Using EM, we examined the plausible relationship between microtubule depolymerization and induction of ferroptosis in human neuroblastoma (SH-SY5Y and IMR-32) cells. EM reduced glutathione (GSH) levels and induced reactive oxygen species (ROS) generation. The pre-treatment of neuroblastoma cells with ROS scavengers (N-acetyl cysteine and dithiothreitol) reduced the anti-proliferative effects of EM. EM treatment increased labile iron pool (LIP), depleted glutathione peroxidase 4 (GPX4) levels, and lipid peroxidation, hallmark features of ferroptosis, highlighting ferroptosis induction. Ferroptosis inhibitors (deferoxamine mesylate and liproxstatin-1) abrogated the cytotoxic effects of EM, further confirming ferroptosis induction. Vinblastine and nocodazole also increased LIP and induced lipid peroxidation in neuroblastoma cells. This study provides evidence for the coupling of microtubule integrity to ferroptosis. The results also suggest that microtubule-depolymerizing agents may be considered for developing pro-ferroptosis chemotherapeutics.

2.
Biomolecules ; 14(7)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39062585

RESUMO

Although the labile iron pool (LIP) biochemical identity remains a topic of debate, it serves as a universal homeostatically regulated and essential cellular iron source. The LIP plays crucial cellular roles, being the source of iron that is loaded into nascent apo-iron proteins, a process akin to protein post-translational modification, and implicated in the programmed cell death mechanism known as ferroptosis. The LIP is also recognized for its reactivity with chelators, nitric oxide, and peroxides. Our recent investigations in a macrophage cell line revealed a reaction of the LIP with the oxidant peroxynitrite. In contrast to the LIP's pro-oxidant interaction with hydrogen peroxide, this reaction is rapid and attenuates the peroxynitrite oxidative impact. In this study, we demonstrate the existence and antioxidant characteristic of the LIP and peroxynitrite reaction in various cell types. Beyond its potential role as a ubiquitous complementary or substitute protection system against peroxynitrite for cells, the LIP and peroxynitrite reaction may influence cellular iron homeostasis and ferroptosis by changing the LIP redox state and LIP binding properties and reactivity.


Assuntos
Ferro , Oxirredução , Ácido Peroxinitroso , Ácido Peroxinitroso/metabolismo , Ferro/metabolismo , Humanos , Ferroptose/efeitos dos fármacos , Animais , Peróxido de Hidrogênio/metabolismo , Camundongos , Macrófagos/metabolismo , Macrófagos/efeitos dos fármacos
3.
Free Radic Res ; 58(6-7): 396-416, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39068663

RESUMO

Ischemia-reperfusion injury (IRI) can seriously affect graft survival and prognosis and is an unavoidable event during liver transplantation. Ferroptosis is a novel iron-dependent form of cell death characterized by iron accumulation and overwhelming lipid peroxidation; it differs morphologically, genetically, and biochemically from other well-known cell death types (autophagy, necrosis, and apoptosis). Accumulating evidence has shown that ferroptosis is involved in the pathogenesis of hepatic IRI, and targeting ferroptosis may be a promising therapeutic approach. Here, we review the pathways and phenomena involved in ferroptosis, explore the associations and implications of ferroptosis and hepatic IRI, and discuss possible strategies for modulating ferroptosis to alleviate the hepatic IRI.


Assuntos
Ferroptose , Traumatismo por Reperfusão , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Humanos , Animais , Fígado/metabolismo , Fígado/patologia
4.
Talanta ; 278: 126454, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-38924992

RESUMO

Nitrogen rich carbon nanoparticles are known to provide higher fluorescence stokes shift, and thereby are potential candidates for fluorescent sensors. Herein, a facile one-step hydrothermal synthesis is reported for N-rich carbon nanospheres (G-CNS) from caffeine and o-phenylenediamine as precursors. The as-synthesized G-CNS showed high fluorescence with λem at 509 nm, with a highly selective fluorescence turn-off response towards Fe2+/Fe3+, rendering these carbon nanospheres as potential candidates to detect intracellular labile iron pool in live cells. The intracellular labile iron pool in iron-overloaded cells was sensed using the synthesized G-CNS. Mechanistically, the fluorescence quenching via dynamic pathway involves the formation of an excited state charge transfer process, which undergoes non-radiative decay.


Assuntos
Carbono , Corantes Fluorescentes , Ferro , Nanosferas , Carbono/química , Corantes Fluorescentes/química , Corantes Fluorescentes/síntese química , Ferro/química , Ferro/análise , Nanosferas/química , Humanos , Nitrogênio/química , Fenilenodiaminas/química , Células HeLa , Espectrometria de Fluorescência
5.
Eur Heart J ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38917062

RESUMO

BACKGROUND AND AIMS: Intravenous iron therapies contain iron-carbohydrate complexes, designed to ensure iron becomes bioavailable via the intermediary of spleen and liver reticuloendothelial macrophages. How other tissues obtain and handle this iron remains unknown. This study addresses this question in the context of the heart. METHODS: A prospective observational study was conducted in 12 patients receiving ferric carboxymaltose (FCM) for iron deficiency. Myocardial, spleen, and liver magnetic resonance relaxation times and plasma iron markers were collected longitudinally. To examine the handling of iron taken up by the myocardium, intracellular labile iron pool (LIP) was imaged in FCM-treated mice and cells. RESULTS: In patients, myocardial relaxation time T1 dropped maximally 3 h post-FCM, remaining low 42 days later, while splenic T1 dropped maximally at 14 days, recovering by 42 days. In plasma, non-transferrin-bound iron (NTBI) peaked at 3 h, while ferritin peaked at 14 days. Changes in liver T1 diverged among patients. In mice, myocardial LIP rose 1 h and remained elevated 42 days after FCM. In cardiomyocytes, FCM exposure raised LIP rapidly. This was prevented by inhibitors of NTBI transporters T-type and L-type calcium channels and divalent metal transporter 1. CONCLUSIONS: Intravenous iron therapy with FCM delivers iron to the myocardium rapidly through NTBI transporters, independently of reticuloendothelial macrophages. This iron remains labile for weeks, reflecting the myocardium's limited iron storage capacity. These findings challenge current notions of how the heart obtains iron from these therapies and highlight the potential for long-term dosing to cause cumulative iron build-up in the heart.

6.
Arch Biochem Biophys ; 756: 110020, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38692471

RESUMO

Iron deposits in the brain are a natural consequence of aging. Iron accumulation, especially in the form of labile iron, can trigger a cascade of adverse effects, eventually leading to neurodegeneration and cognitive decline. Aging also increases the dysfunction of cellular proteostasis. The question of whether iron alters proteostasis is now being pondered. Herein, we investigated the effect of ferric citrate, considered as labile iron, on various aspects of proteostasis of neuronal cell lines, and also established an animal model having a labile iron diet in order to evaluate proteostasis alteration in the brain along with behavioral effects. According to an in vitro study, labile iron was found to activate lysosome formation but inhibits lysosomal clearance function. Furthermore, the presence of labile iron can alter autophagic flux and can also induce the accumulation of protein aggregates. RNA-sequencing analysis further reveals the upregulation of various terms related to proteostasis along with neurodegenerative disease-related terms. According to an in vivo study, a labile iron-rich diet does not induce iron overload conditions and was not detrimental to the behavior of male Wistar rats. However, an iron-rich diet can promote iron accumulation in a region-dependent manner. By staining for autophagic markers and misfolding proteins in the cerebral cortex and hippocampus, an iron-rich diet was actually found to alter autophagy and induce an accumulation of misfolding proteins. These findings emphasize the importance of labile iron on brain cell proteostasis, which could be implicated in developing of neurological diseases.


Assuntos
Encéfalo , Ferro , Doenças Neurodegenerativas , Proteostase , Ratos Wistar , Animais , Proteostase/efeitos dos fármacos , Doenças Neurodegenerativas/metabolismo , Masculino , Ferro/metabolismo , Ratos , Encéfalo/metabolismo , Encéfalo/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Humanos , Lisossomos/metabolismo
7.
Biometals ; 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38691278

RESUMO

Under normal physiological conditions, the endogenous Labile Iron Pool (LIP) constitutes a ubiquitous, dynamic, tightly regulated reservoir of cellular ferrous iron. Furthermore, LIP is loaded into new apo-iron proteins, a process akin to the activity of metallochaperones. Despite such importance on iron metabolism, the LIP identity and binding properties have remained elusive. We hypothesized that LIP binds to cell constituents (generically denoted C) and forms an iron complex termed CLIP. Combining this binding model with the established Calcein (CA) methodology for assessing cytosolic LIP, we have formulated an equation featuring two experimentally quantifiable parameters (the concentrations of the cytosolic free CA and CA and LIP complex termed CALIP) and three unknown parameters (the total concentrations of LIP and C and their thermodynamic affinity constant Kd). The fittings of cytosolic CALIP × CA concentrations data encompassing a few cellular models to this equation with floating unknown parameters were successful. The computed adjusted total LIP (LIPT) and C (CT) concentrations fall within the sub-to-low micromolar range while the computed Kd was in the 10-2 µM range for all cell types. Thus, LIP binds and has high affinity to cellular constituents found in low concentrations and has remarkably similar properties across different cell types, shedding fresh light on the properties of endogenous LIP within cells.

8.
EBioMedicine ; 102: 105088, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38537604

RESUMO

Metabolic dysfunction-associated steatohepatitis (MASH) is characterised by cell death of parenchymal liver cells which interact with their microenvironment to drive disease activity and liver fibrosis. The identification of the major death type could pave the way towards pharmacotherapy for MASH. To date, increasing evidence suggest a type of regulated cell death, named ferroptosis, which occurs through iron-catalysed peroxidation of polyunsaturated fatty acids (PUFA) in membrane phospholipids. Lipid peroxidation enjoys renewed interest in the light of ferroptosis, as druggable target in MASH. This review recapitulates the molecular mechanisms of ferroptosis in liver physiology, evidence for ferroptosis in human MASH and critically appraises the results of ferroptosis targeting in preclinical MASH models. Rewiring of redox, iron and PUFA metabolism in MASH creates a proferroptotic environment involved in MASH-related hepatocellular carcinoma (HCC) development. Ferroptosis induction might be a promising novel approach to eradicate HCC, while its inhibition might ameliorate MASH disease progression.


Assuntos
Carcinoma Hepatocelular , Fígado Gorduroso , Ferroptose , Neoplasias Hepáticas , Humanos , Peroxidação de Lipídeos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Ferro/metabolismo , Fígado Gorduroso/etiologia , Microambiente Tumoral
9.
Sci Total Environ ; 925: 171818, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38508245

RESUMO

Hexavalent chromium [Cr(VI)] is an environmental pollutant known for its strong oxidizing and carcinogenic effects. However, its potential to induce ferroptosis in poultry remains poorly understood. This study aims to investigate the induction of ferroptosis by Cr(VI) in DF-1 cells and elucidate the underlying mechanisms. DF-1 cells exposed to Cr(VI) showed increased lipid reactive oxygen species and changes in ferroptosis marker genes (decreased expression of GPX4 and increased expression of COX2). Notably, the addition of the ferroptosis-specific inhibitor ferrostatin-1 (Fer-1) can reverse this effect. During the cell death process, Cr(VI) induced ferritinophagy, disrupting iron homeostasis and releasing labile iron ions. We predicted by docking that these iron ions would bind to mitochondrial membrane proteins through virtual docking. This binding was validated through colocalization analysis. In addition, Cr(VI) caused mitophagy, which releases additional ferrous ions. Therefore, Cr(VI) can induce the simultaneous release of ferrous ions through these pathways, thereby exacerbating lipid peroxidation and ultimately triggering ferroptosis in DF-1 cells. This study demonstrates that Cr(VI) can induce ferroptosis in DF-1 cells by disrupting intracellular iron homeostasis and providing valuable insights into the toxic effects of Cr(VI) in poultry and potentially other organisms.


Assuntos
Cromo , Ferroptose , Mitofagia , Ferro/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Homeostase , Íons
10.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38256200

RESUMO

The tangerine pathotype of Alternaria alternata produces the Alternaria citri toxin (ACT), which elicits a host immune response characterized by the increase in harmful reactive oxygen species (ROS) production. ROS detoxification in A. alternata relies on the degradation of peroxisomes through autophagy and iron acquisition using siderophores. In this study, we investigated the role of autophagy in regulating siderophore and iron homeostasis in A. alternata. Our results showed that autophagy positively influences siderophore production and iron uptake. The A. alternata strains deficient in autophagy-related genes 1 and 8 (ΔAaatg1 and ΔAaatg8) could not thrive without iron, and their adaptability to high-iron environments was also reduced. Furthermore, the ability of autophagy-deficient strains to withstand ROS was compromised. Notably, autophagy deficiency significantly reduced the production of dimerumic acid (DMA), a siderophore in A. alternata, which may contribute to ROS detoxification. Compared to the wild-type strain, ΔAaatg8 was defective in cellular iron balances. We also observed iron-induced autophagy and lipid peroxidation in A. alternata. To summarize, our study indicates that autophagy and maintaining iron homeostasis are interconnected and contribute to the stress resistance and the virulence of A. alternata. These results provide new insights into the complex interplay connecting autophagy, iron metabolism, and fungal pathogenesis in A. alternata.


Assuntos
Alternaria , Autofagia , Ferro , Espécies Reativas de Oxigênio , Autofagia/genética , Sideróforos , Homeostase
11.
Adv Sci (Weinh) ; 11(9): e2302093, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38095513

RESUMO

Targeting ferroptosis has attracted exponential attention to eradicate cancer cells with high iron-dependent growth. Increasing the level of intracellular labile iron pool via small molecules and iron-containing nanomaterials is an effective approach to induce ferroptosis but often faces insufficient efficacy due to the fast drug metabolism and toxicity issues on normal tissues. Therefore, developing a long-acting and selective approach to regulate ferroptosis is highly demanded in cancer treatment. Herein, a lysosome-targeted magnetic nanotorquer (T7-MNT) is proposed as the mechanical tool to dynamically induce the endogenous Fe2+ pool outbreak for ferroptosis of breast cancer. T7-MNTs target lysosomes via the transferrin receptor-mediated endocytosis in breast cancer cells. Under the programmed rotating magnetic field, T7-MNTs generate torques to trigger endogenous Fe2+ release by disrupting the lysosomal membrane. This magneto-mechanical manipulation can induce oxidative damage and antioxidant defense imbalance to boost frequency- and time-dependent lipid peroxidization. Importantly, in vivo studies show that T7-MNTs can efficiently trigger ferroptosis under the magnetic field and play as a long-acting physical inducer to boost ferrotherapy efficacy in combination with RSL3. It is anticipated that this dynamic targeted strategy can be coupled with current ferroptosis inducers to achieve enhanced efficacy and inspire the design of mechanical-based ferroptosis inducers for cancer treatment.


Assuntos
Neoplasias da Mama , Ferroptose , Humanos , Feminino , Ferro , Lisossomos , Campos Magnéticos , Neoplasias da Mama/terapia
12.
Metallomics ; 16(1)2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38148121

RESUMO

Iron dyshomeostasis is involved in many neurological disorders, particularly neurodegenerative diseases where iron accumulates in various brain regions. Identifying mechanisms of iron transport in the brain is crucial for understanding the role of iron in healthy and pathological states. In neurons, it has been suggested that iron can be transported by the axon to different brain regions in the form of labile iron; a pool of reactive and exchangeable intracellular iron. Here we report a novel approach to imaging labile ferrous iron, Fe(II), in live primary hippocampal neurons using confocal and TauSTED (stimulated emission depletion) microscopy. TauSTED is based on super-resolution STED nanoscopy, which combines high spatial resolution imaging (<40 nm) with fluorescence lifetime information, thus reducing background noise and improving image quality. We applied TauSTED imaging utilizing biotracker FerroFarRed Fe(II) and found that labile iron was present as submicrometric puncta in dendrites and axons. Some of these iron-rich structures are mobile and move along neuritic pathways, arguing for a labile iron transport mechanism in neurons. This super-resolution imaging approach offers a new perspective for studying the dynamic mechanisms of axonal and dendritic transport of iron at high spatial resolution in living neurons. In addition, this methodology could be transposed to the imaging of other fluorescent metal sensors.


Assuntos
Ferro , Neurônios , Microscopia de Fluorescência/métodos , Corantes Fluorescentes/química , Hipocampo , Compostos Ferrosos
13.
Small ; : e2308397, 2023 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-38072786

RESUMO

Due to the inherent low immunogenicity and immunosuppressive tumor microenvironment (TME) of malignant cancers, the clinical efficacy and application of tumor immunotherapy have been limited. Herein, a bimetallic drug-gene co-loading network (Cu/ZIF-8@U-104@siNFS1-HA) is developed that increased the intracellular labile iron pool (LIP) and enhanced the weakly acidic TME by co-suppressing the dual enzymatic activities of carbonic anhydrase IX (CA IX) and cysteine desulfurylase (NFS1), inducing a safe and efficient initial tumor immunogenic ferroptosis. During this process, Cu2+ is responsively released to deplete glutathione (GSH) and reduce the enzyme activity of glutathione peroxidase 4 (GPX4), achieving the co-inhibition of the three enzymes and further inducing lipid peroxidation (LPO). Additionally, the reactive oxygen species (ROS) storm in target cells promoted the generation of large numbers of double-stranded DNA breaks. The presence of Zn2+ substantially increased the expression of cGAS/STING, which cooperated with ferroptosis to strengthen the immunogenic cell death (ICD) response and remodel the immunosuppressive TME. In brief, Cu/ZIF-8@U-104@siNFS1-HA linked ferroptosis with immunotherapy through multiple pathways, including the increase in LIP, regulation of pH, depletion of GSH/GPX4, and activation of STING, effectively inhibiting cancer growth and metastasis.

14.
J Fluoresc ; 2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38157085

RESUMO

The transition between its various oxidation states of Iron plays a crucial part in various chemical transformation of cells. Misregulation of iron can give rise to the iron-catalyzed reactive oxygen species disorder which have been linked to a variety of diseases, so it is crucial to monitor the labile iron pool in vivo for clinical diagnosis. According to iron autoxidation and hydrogen abstraction reaction, we reported a novel "off-on" fluorescent probe to response to ferrous (Fe2+) both in solutions and biological systems. The probe responds to Fe2+ with good selectivity toward competing metal ions. What's more, the probe presents significant fluorescent enhancement to Fe2+ in less than 1 min, making real-time sensing in biological system possible. The applications of the probe in bioimaging revealed the changes in labile iron pool by iron autoxidation or diverse stimuli.

15.
Antioxidants (Basel) ; 12(11)2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-38001858

RESUMO

The intracellular redox-active labile iron pool (LIP) is weakly chelated and available for integration into the iron metalloproteins that are involved in diverse cellular processes, including cancer cell-specific metabolic oxidative stress. Abnormal iron metabolism and elevated LIP levels are linked to the poor survival of lung cancer patients, yet the underlying mechanisms remain unclear. Depletion of the LIP in non-small-cell lung cancer cell lines using the doxycycline-inducible overexpression of the ferritin heavy chain (Ft-H) (H1299 and H292), or treatment with deferoxamine (DFO) (H1299 and A549), inhibited cell growth and decreased clonogenic survival. The Ft-H overexpression-induced inhibition of H1299 and H292 cell growth was also accompanied by a significant delay in transit through the S-phase. In addition, both Ft-H overexpression and DFO in H1299 resulted in increased single- and double-strand DNA breaks, supporting the involvement of replication stress in the response to LIP depletion. The Ft-H and DFO treatment also sensitized H1299 to VE-821, an inhibitor of ataxia telangiectasis and Rad2-related (ATR) kinase, highlighting the potential of LIP depletion, combined with DNA damage response modifiers, to alter lung cancer cell responses. In contrast, only DFO treatment effectively reduced the LIP, clonogenic survival, cell growth, and sensitivity to VE-821 in A549 non-small-cell lung cancer cells. Importantly, the Ft-H and DFO sensitized both H1299 and A549 to chemoradiation in vitro, and Ft-H overexpression increased the efficacy of chemoradiation in vivo in H1299. These results support the hypothesis that the depletion of the LIP can induce genomic instability, cell death, and potentiate therapeutic responses to chemoradiation in NSCLC.

16.
Biochem Pharmacol ; 218: 115874, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37866802

RESUMO

Melanoma cells were more resistant to ferroptosis with still poor therapy outcomes. Sensitizing melanoma cell to the ferroptosis inducer was a crucial strategy for treatment of melanoma. In the present study, 2,2'-di-pyridylketone hydrazone dithiocarbamate s-butyric acid (DpdtbA) displayed superior inhibitory activity than ferroptosis inducer Erastin in melanoma cells, which prompt us to explore the underlying mechanism. The analyses from flow cytometry and Western blot showed that the growth inhibition of DpdtbA against SK-MEL-28 and A375 cells involved apoptosis induction and G1 phase arrest. Surprisingly, the cytoplasmic vacuoles were found upon the treatment; transmission electron microscopy and endoplasmic reticulum (ER) staining revealed that the cytoplasmic vacuoles were in ER; while down-regulation of alix and requirement of protein synthesis suggested there was an occurrence of paraptosis. However, both NAC and 3-MA could significantly attenuate the cytoplasmic vacuolization and growth inhibition, hinting that both ROS and autophagy involved the paraptosis induction. The additional evidence revealed that there was an occurrence of continuous ferritinophagy, which was responsible for the ROS production. Downregulation of NCOA4 clearly attenuated the apoptosis and paraptosis induction. In addition, activation of MAPK involved regulation of paraptosis, but only ERK and JNK had role in the formation of cytoplasmic vacuoles and growth inhibition. Furthermore, a ROS dependent regulation of PI3K/AKT pathway was also involved. Taken together, our result firstly demonstrated that a continuous ferritinophagy contributed to the apoptosis and paraptosis induction, highlighting that the lysosomal labile iron pool had a crucial role in control of melanoma cell fate.


Assuntos
Melanoma , Proteínas Proto-Oncogênicas c-akt , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Quelantes de Ferro/farmacologia , Autofagia , Linhagem Celular Tumoral
17.
Int J Mol Sci ; 24(19)2023 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-37834119

RESUMO

Sigma receptors are non-opiate/non-phencyclidine receptors that bind progesterone and/or heme and also several unrelated xenobiotics/chemicals. They reside in the plasma membrane and in the membranes of the endoplasmic reticulum, mitochondria, and nucleus. Until recently, the biology/pharmacology of these proteins focused primarily on their role in neuronal functions in the brain/retina. However, there have been recent developments in the field with the discovery of unexpected roles for these proteins in iron/heme homeostasis. Sigma receptor 1 (S1R) regulates the oxidative stress-related transcription factor NRF2 and protects against ferroptosis, an iron-induced cell death process. Sigma receptor 2 (S2R), which is structurally unrelated to S1R, complexes with progesterone receptor membrane components PGRMC1 and PGRMC2. S2R, PGRMC1, and PGRMC2, either independently or as protein-protein complexes, elicit a multitude of effects with a profound influence on iron/heme homeostasis. This includes the regulation of the secretion of the iron-regulatory hormone hepcidin, the modulation of the activity of mitochondrial ferrochelatase, which catalyzes iron incorporation into protoporphyrin IX to form heme, chaperoning heme to specific hemoproteins thereby influencing their biological activity and stability, and protection against ferroptosis. Consequently, S1R, S2R, PGRMC1, and PGRMC2 potentiate disease progression in hemochromatosis and cancer. These new discoveries usher this intriguing group of non-traditional progesterone receptors into an unchartered territory in biology and medicine.


Assuntos
Ferroptose , Receptores sigma , Receptores sigma/metabolismo , Heme/metabolismo , Receptores de Progesterona/metabolismo , Ferro , Homeostase
18.
Molecules ; 28(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37764245

RESUMO

The chemical nature of intracellular labile iron pools (LIPs) is described. By virtue of the kinetic lability of these pools, it is suggested that the isolation of such species by chromatography methods will not be possible, but rather mass spectrometric techniques should be adopted. Iron-sensitive fluorescent probes, which have been developed for the detection and quantification of LIP, are described, including those specifically designed to monitor cytosolic, mitochondrial, and lysosomal LIPs. The potential of near-infrared (NIR) probes for in vivo monitoring of LIP is discussed.


Assuntos
Corantes Fluorescentes , Ferro , Citosol , Cinética , Imagem Óptica
19.
Antioxidants (Basel) ; 12(6)2023 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-37371980

RESUMO

Cellular senescence, a cell state characterized by a generally irreversible cell cycle arrest, is implicated in various physiological processes and a wide range of age-related pathologies. Oxidative stress, a condition caused by an imbalance between the production and the elimination of reactive oxygen species (ROS) in cells and tissues, is a common driver of cellular senescence. ROS encompass free radicals and other molecules formed as byproducts of oxygen metabolism, which exhibit varying chemical reactivity. A prerequisite for the generation of strong oxidizing ROS that can damage macromolecules and impair cellular function is the availability of labile (redox-active) iron, which catalyzes the formation of highly reactive free radicals. Targeting labile iron has been proven an effective strategy to counteract the adverse effects of ROS, but evidence concerning cellular senescence is sparse. In the present review article, we discuss aspects of oxidative stress-induced cellular senescence, with special attention to the potential implication of labile iron.

20.
J Biol Chem ; 299(7): 104897, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37290533

RESUMO

Mammalian stearoyl-CoA desaturase-1 (SCD1) introduces a double-bond to a saturated long-chain fatty acid in a reaction catalyzed by a diiron center. The diiron center is well-coordinated by conserved histidine residues and is thought to remain with the enzyme. However, we find here that SCD1 progressively loses its activity during catalysis and becomes fully inactive after about nine turnovers. Further studies show that the inactivation of SCD1 is due to the loss of an iron (Fe) ion in the diiron center and that the addition of free ferrous ions (Fe2+) sustains the enzymatic activity. Using SCD1 labeled with Fe isotope, we further show that free Fe2+ is incorporated into the diiron center only during catalysis. We also discover that the diiron center in SCD1 has prominent electron paramagnetic resonance signals in its diferric state, indicative of distinct coupling between the two ferric ions. These results reveal that the diiron center in SCD1 is structurally dynamic during catalysis and that labile Fe2+ in cells could regulate SCD1 activity and hence lipid metabolism.


Assuntos
Biocatálise , Cátions Bivalentes , Ferro , Estearoil-CoA Dessaturase , Animais , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Ferro/química , Ferro/metabolismo , Mamíferos , Estearoil-CoA Dessaturase/metabolismo , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Metabolismo dos Lipídeos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA