RESUMO
Caveolin is a monotopic integral membrane protein, widely expressed in metazoa and responsible for constructing enigmatic membrane invaginations known as caveolae. Recently, the high-resolution structure of a purified human caveolin assembly, the CAV1-8S complex, revealed a unique organization of 11 protomers arranged in a tightly packed, radially symmetric spiral disc. One face and the outer rim of this disc are highly hydrophobic, suggesting that the complex incorporates into membranes by displacing hundreds of lipids from one leaflet. The feasibility of this unique molecular architecture and its biophysical and functional consequences are currently unknown. Using Langmuir film balance measurements, we find that CAV1-8S is highly surface active and intercalates into lipid monolayers. Molecular simulations of biomimetic bilayers support this 'leaflet replacement' model and reveal that while CAV1-8S effectively displaces phospholipids from one bilayer leaflet, it accumulates 40-70 cholesterol molecules into a disordered monolayer between the complex and its distal lipid leaflet. We find that CAV1-8S preferentially associates with positively curved membrane surfaces due to its influence on the conformations of distal leaflet lipids, and that these effects laterally sort lipids of the distal leaflet. Large-scale simulations of multiple caveolin assemblies confirmed their association with large, positively curved membrane morphologies, consistent with the shape of caveolae. Further, association with curved membranes regulates the exposure of caveolin residues implicated in protein-protein interactions. Altogether, the unique structure of CAV1-8S imparts unusual modes of membrane interaction with implications for membrane organization, morphology, and physiology.
RESUMO
Doxorubicin (DOX) is a commonly used chemotherapeutic drug, from the anthracycline class, which is genotoxic to neoplastic cells via a DNA intercalation mechanism. It is effective and universal; however, it also causes numerous side effects. The most serious of them are cardiotoxicity and a decrease in the number of myeloid cells. For this reason, targeted DOX delivery systems are desirable, since they would allow lowering the drug dose and therefore limiting systemic side effects. Recently, synthetic dyes, in particular Congo red (CR), have been proposed as possible DOX carriers. CR is a planar molecule, built of a central biphenyl moiety and two substituted naphthalene rings, connected with diazo bonds. In water, it forms elongated ribbon-shaped supramolecular structures, which are able to selectively interact with immune complexes. In our previous studies, we have shown that CR aggregates can intercalate DOX molecules. In this way, they preclude DOX precipitation in water solutions and increase its uptake by MCF7 breast cancer cells. In the present work, we further explore the interactions between DOX, CR, and their aggregates (CR/DOX) with phospholipid membranes. In addition to neutral molecules, the protonated doxorubicin form, DXP, is also studied. Molecular dynamics simulations are employed to study the transfer of CR, DOX, DXP, and their aggregates through POPC bilayers. Interactions of CR, DOX, and CR/DOX with model monolayers are studied with Langmuir trough measurements. This study shows that CR may support the transfer of doxorubicin molecules into the bilayer. Both electrostatic and van der Waals interactions with lipids are important in this respect. The former promote the initial stages of the insertion process, the latter keep guest molecules inside the bilayer.
Assuntos
Vermelho Congo , Doxorrubicina , Simulação de Dinâmica Molecular , Fosfolipídeos , Doxorrubicina/química , Doxorrubicina/farmacologia , Fosfolipídeos/química , Vermelho Congo/química , Humanos , Bicamadas Lipídicas/química , Portadores de Fármacos/química , Células MCF-7RESUMO
The aim of the work was to determine important parameters of the course of π-A isotherms, which can determine the HLB (hydrophilic-lipophilic balance) value of surfactant mixtures with selected structural features, such as a straight or branched hydrocarbon chain and a double bond, using RSM (response surface methodology) computational methods. Mixtures of surfactants derived from fatty acids and sorbitan with specific HLB values were evaluated by Langmuir trough. The resulting elasticity modules (ELM) and molecules surfaces (SAM) were evaluated via response surface methodology and respective equations were calculated. The π-A isotherm determined in a Langmuir trough and the ELM and SAM parameters determined on the basis of this isotherm may be useful for determining the HLB of a fixed surfactant mixture. The RSM method used, in which ELM and SAM were assumed as two independent variables, can be a useful technique for tracking the influence of individual molecular characteristics on the hydrophilic-lipophilic properties of mixtures of surfactant compounds. Changes in HLB as a dependent variable can be described as a function of ELM and SAM.
RESUMO
Polyhexamethylene guanidine (PHMG) is a guanidine-based chemical that has long been used as an antimicrobial agent. However, recently raised concerns regarding the pulmonary toxicity of PHMG in humans and aquatic organisms have led to research in this area. Along with PHMG, there are concerns about the safety of non-guanidine 5-chloro-2-methylisothiazol-3(2H)-one/2-methylisothiazol-3(2H)-one (CMIT/MIT) in human lungs; however, the safety of such chemicals can be affected by many factors, and it is difficult to rationalize their toxicity. In this study, we investigated the adsorption characteristics of CMIT/ MIT on a model pulmonary surfactant (lung surfactant, LS) using a Langmuir trough attached to a fluorescence microscope. Analysis of the π-A isotherms and lipid raft morphology revealed that CMIT/MIT exhibited minimal adsorption onto the LS monolayer deposited at the air/water interface. Meanwhile, PHMG showed clear signs of adsorption to LS, as manifested by the acceleration of the L o phase growth with increasing surface pressure. Consequently, in the presence of CMIT/MIT, the interfacial properties of the model LS monolayer exhibited significantly fewer changes than PHMG.
Assuntos
Anti-Infecciosos , Desinfetantes , Surfactantes Pulmonares , Humanos , Adsorção , Pulmão , Guanidinas/química , GuanidinaRESUMO
HYPOTHESIS: Colloidal particles can be trapped at a liquid interface, which reduces the energetically costly interfacial area. Once at an interface, colloids undergo various self-assemblies and structural transitions due to shape-dependent interparticle interactions. Particles with rough surfaces receive increasing attention and have been applied in material design, such as Pickering emulsions and shear-thickening materials. However, the roughness effects on the interactions at a liquid interface remain less understood. EXPERIMENTS: Experimentally, particles with four surface roughnesses were designed and compared via isotherm measurements upon a uniaxial compression. At each stage of the compression, micrographic observations were conducted via the Blodgett method. Numerically, the compression of monolayer was simulated by using Langevin dynamics. Rough colloids were modelled as particles with capillary attraction and tangential constraints. FINDINGS: Sufficiently rough systems exhibit a non-trivial intermediate state between a gas-like state and a close-packed jamming state. This state is understood as a gel state due to roughness-induced capillary attraction. Roughness-induced friction lowers the jamming point. Furthermore, the tangential contact force owing to surface asperities can cause a gradual off-plane collapse of the compressed monolayer.
RESUMO
The use of functionalised gold nanoparticles in biomedical applications is expanding. Here we explore the interaction of gold nanoparticles with lipid membranes using readily available equipment and basic techniques to explore how the charge on the nanoparticles, and the nature of the lipid, influences the interaction. Gold nanoparticles were synthesised with two different surface functionalisations, negatively charged citrate groups and positively charged cetyltrimethylammonium groups from CTAB, to determine how surface charge affects the interaction of the nanoparticles with the Zwitterionic lipid POPC and the anionic lipid POPG. It was observed that the surface pressure/area isotherms of POPG monolayers on exposure to citrate capped nanoparticles were not shifted to higher molecular areas as much as those of POPC, suggesting that the anionic headgroups of the POPG lipid repel the anionic surface charge of the citrate capped nanoparticles to some extent limiting inclusion. In contrast, the surface pressure/area isotherms of the POPG monolayers exposed to CTAB capped nanoparticles are shifted to higher molecular areas more than for the POPC monolayers. The interaction of anionic nanoparticles with lipid bilayers was measured by the mass change of the bilayer deposited on the surface of a quartz crystal microbalance (QCM) exposed to nanoparticles in an aqueous phase flow. The QCM frequency changes show that bilayers of unsaturated phosophocholine lipids readily took up particles, whereas for the saturated lipid DPPC significant uptake was only observed when the bilayer was warmed to above its gel-to-fluid transition temperature, Tm. This is possibly due to an increase in the molecular mobility and bilayer bending modulus, κ, of the bilayer.
Assuntos
Bicamadas Lipídicas , Nanopartículas Metálicas , Cetrimônio , Citratos , Ouro , Bicamadas Lipídicas/química , Nanopartículas Metálicas/químicaRESUMO
This article presents the effects of an imidazolium-based ionic liquid (IL) on the thermodynamics and in-plane viscoelastic properties of model membranes of anionic phospholipids. The negative Zeta potential of multilamellar vesicles of 14 carbon lipid 1,2-dimyristoyl-sn-glycero-3-phospho-(1'-rac-glycerol) (DMPG) is observed to reduce due to the presence of few mole % of an IL 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM][BF4]). The effect was found to be stronger on enhancing the chain length of the lipid. The surface pressure-area isotherms of lipid monolayer formed at air-water interface are modified by the IL reducing the effective area per molecule. Further, the equilibrium elasticity of the film is altered depending upon the thermodynamic phase of the lipids. While the presence of the IL in the DMPG lipid makes it ordered in the gel phase by reducing the entropy, the effect is opposite in the fluid phase. The in-plane viscoelastic parameters of the lipid film is quantified by dilation rheology using the oscillatory barriers of a Langmuir trough. Even though the low chain lipid DMPG does not show any effect of IL on its storage and loss moduli, the longer chain lipids exhibit a prominent effect in the liquid extended (LE) phase. Further, the dynamic response of the lipid film is found to be distinctly different in the liquid condensed (LC) phase from that of the LE phase.
Assuntos
Líquidos Iônicos , Fosfolipídeos , Ânions , Carbono , Glicerol , Líquidos Iônicos/farmacologia , Termodinâmica , ÁguaRESUMO
Lipid nanoparticles (LNPs) are important delivery systems for RNA-based therapeutics, yet the mechanism of their interaction with endosomal membranes remains unclear. Here, the interactions of nucleic acid-loaded LNPs that contain an ionizable lipid with models of the early and late endosomal membranes are studied, for the first time, using different reflectometry techniques. Novel insight is provided with respect to the subphase pH, the stage of the endosome, and the nature of the nucleic acid cargo. It is found that the insertion of lipids from the LNPs into the model membrane is greatest at pH 6.5 and 5.5, whereas at higher pH, lipid insertion is suppressed with evidence instead for the binding of intact LNPs, demonstrating the importance of the pH in the fusion of LNPs undergoing the endosomal pathway. Furthermore, and independently of the pH, the effect of the early- versus late-stage endosomal models is minimal, suggesting that the increased fluidity and anionic nature of the late endosome has little effect on the extent of LNP interaction. Last, there is greater nucleic acid delivery from LNPs containing mRNA than Poly(A), indicating that the extent of interaction can be tuned according to the nature of the nucleic acid cargo. Such new information on the relative impact of factors influencing nucleic acid delivery by LNP interactions with endosomal membranes is important in the design and tuning of vehicles with improved nucleic acid delivery capacities.
Assuntos
Lipídeos , Nanopartículas , Endossomos/metabolismo , Lipossomos , RNA Mensageiro/metabolismo , RNA Interferente PequenoRESUMO
The use of surfactants to attract dissolved ions to water surfaces and interfaces is an essential step in both solvent-based and solvent-free separation processes. We have studied the interactions of lanthanide ions in the aqueous subphase with monolayers of dihexadecyl phosphate at air-water interfaces. With heavier lanthanides (atomic number Z ≥ 65) in the subphase, the floating layer can be compressed to an area/molecule of about half the molecular cross section, indicating bilayer formation. X-ray fluorescence and reflectivity data support this conclusion. In the presence of lighter lanthanides (Z < 65), only monolayers are observed. Subphase-concentration-dependent studies using Er3+ (heavier) and Nd3+ (lighter) lanthanides show a stepwise progression, with ions attaching to the monolayer only when the solution concentration is >3 × 10-7 M. Above â¼10-5 M, bilayers form but only in the presence of the heavier lanthanide. Grazing incidence X-ray diffraction shows evidence of lateral ion-ion correlations in the bilayer structure but not in monolayers. Explicit solvent all-atom molecular dynamics simulations confirm the elevated ion-ion correlation in the bilayer system. This bilayer structure isolates heavier lanthanides but not lighter lanthanides from an aqueous solution and is therefore a potential mechanism for the selective separation of heavier lanthanides.
RESUMO
The cell membrane is structured so that the surface layer is composed of lipid molecules with selective permeability for micronutrients and organic ligands. Binding of Co (II) to natural lipid phosphatidylcholine (PC) has been studied to identify a possible mechanism of Co (II) entry through the cell membrane of the biota in detail, by voltammetry followed by checking the system at the air-water boundary, by Langmuir method. Binding of cobalt (II) ions to the PC molecules was enabled by the Co(II)-1,10-Phenanthroline (Phen) complex formation as an intermediate. Co(II)-Phen-PC complex reduction was recorded in the pH range from 5 to 9.5. The reduction was identified as a two-electron irreversible reaction at about -1.5 V, with the reactant adsorption followed dissociation (EC mechanism). The Co(II)-Phen-PC complex electrode surface concentration (Γ) was calculated to be (1.45 ± 0.12) × 10-10 mol.cm-2. Conditional stability constants log KCo(II)Phen2PC = 23.02 ± 0.26 and log KCo(II)Phen2PC2 = 29.31 ± 0.17 (Ic = 0.55) were calculated by CLE/ACSV method. Pressure-area (π-A) isotherms obtained at water-air interface by Langmuir monolayer technique indicated penetration of Co(II)-Phen into the PC monolayer, supporting electrochemical results. The equilibrium constants of the Co (II)-PC system (1:1) at the air-water interface was calculated to be K1 = 2.4 × 10-2 m3 mol-1, while for Co(II)-Phen-PC K2 = 4.86 × 1010 m2 mol-1.
Assuntos
FenantrolinasRESUMO
We quantify directly here for the first time the extents of interactions of two different anthracycline drugs with pure and mixed lipid monolayers with respect to the surface pressure and elucidate differences in the resulting interaction mechanisms. The work concerns interactions of doxorubicin (DOx) and idarubicin (IDA) with monolayers of the zwitterionic DMPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine) and negatively charged DMPS (1,2-dimyristoyl-sn-glycero-3-phospho-L-serine (sodium salt)) as well as a 7:3 mixture of the two lipids. These drugs are used in current cancer treatments, while the lipid systems were chosen as phosphocholines are the major lipid component of healthy cell membranes, and phosphoserines are the major lipid component that is externalized into the outer leaflet of cancerous cell membranes. It is shown that DOx interacts with DMPS monolayers to a greater extent than with DMPC monolayers by lower limits of a factor of 5 at a surface pressure of 10 mN/m and a factor of 12 at 30 mN/m. With increasing surface pressure, the small amount of drug (~0.3 µmol/m2) bound to DMPC monolayers is excluded from the interface, yet its interaction with DMPS monolayers is enhanced until there is even more drug (~3.2 µmol/m2) than lipid (~2.6 µmol/m2) at the interface. Direct evidence is presented for all systems studied that upon surface area compression lipid is reproducibly expelled from the monolayer, which we infer to be in the form of drug-lipid aggregates, yet the nature of adsorption of material back to the monolayer upon expansion is system-dependent. At 30 mN/m, most relevant to human physiology, the interactions of DOx and IDA are starkly different. For DOx, there is a conformational change in the interfacial layer driven by aggregation, resulting in the formation of lateral domains that have extended layers of drug. For the more lipophilic IDA, there is penetration of the drug into the hydrophobic acyl chain region of the monolayer and no indication of lateral segregation. In addition to the Langmuir technique, these advances were made as a result of direct measurements of the interfacial composition, structure and morphology using two different implementations of neutron reflectometry and Brewster angle microscopy. The results provide new insight into key processes that determine the uptake of drugs such as limited drug penetration through cell membranes by passive diffusion as well as activation of drug removal mechanisms related to multidrug resistance.
Assuntos
Antineoplásicos , Idarubicina , Antibióticos Antineoplásicos , Dimiristoilfosfatidilcolina , Doxorrubicina , HumanosRESUMO
INNOVATION: Interfacial rheological properties of complex fluid-fluid interfaces are strongly influenced by the film microstructure. Experimental investigations for correlating interfacial morphology and rheology are notoriously challenging. A miniaturized radial Langmuir trough was developed to study complex fluid-fluid interfaces under purely dilatational deformations that operates in tandem with a conventional inverted microscope for simultaneous interfacial visualization. EXPERIMENTS: Two materials were investigated at an air-water interface: poly(tert-butyl methacrylate) (PtBMA) and dipalmitoylphosphatidylcholine (DPPC). Surface pressure measurements made in the radial Langmuir trough were compared with a commercial rectangular Langmuir trough. Interfacial in situ visualization for each material was performed during the compression cycle in the radial trough. Challenges associated with the small size of the radial Langmuir trough, such as the influence of capillary deformation on the measured surface pressure, are also quantified. FINDINGS: Measured surface pressures between the newly developed radial trough and the rectangular Langmuir trough compare well. Micrographs obtained in the radial Langmuir trough were used to obtain film properties such as Young's modulus. The new advance in colloid and interface science is the ability to capture structure-property relationships of planar interfaces using microscopy and purely dilatational deformation. This will advance the development of constitutive modeling of complex fluid-fluid interfaces.
RESUMO
The tear film at the ocular surface is covered by a thin layer of lipids. This oily phase stabilizes the film by decreasing its surface tension and improving its viscoelastic properties. Clinically, destabilization and rupture of the tear film are related to dry eye disease and are accompanied by changes in the quality and quantity of tear film lipids. In dry eye, eye drops containing oil-in-water emulsions are used for the supplementation of lipids and surface-active components to the tear film. We explore in detail the biophysical aspects of interactions of specific surface-active compounds, cetalkonium chloride and poloxamer 188, which are present in oil-in-water emulsions, with tear lipids. The aim is to better understand the macroscopically observed eye drops-tear film interactions by rationalizing them at the molecular level. To this end, we employ a multi-scale approach combining experiments on human meibomian lipid extracts, measurements using synthetic lipid films, and in silico molecular dynamics simulations. By combining these methods, we demonstrate that the studied compounds specifically interact with the tear lipid film enhancing its structure, surfactant properties, and elasticity. The observed effects are cooperative and can be further modulated by material packing at the tear-air interface.
Assuntos
Lipídeos/química , Microscopia de Fluorescência/métodos , Simulação de Dinâmica Molecular , Filmes Cinematográficos , Álcoois Graxos/química , Humanos , Glândulas Tarsais/metabolismo , Modelos Teóricos , Poloxâmero/química , Compostos de Amônio Quaternário/químicaRESUMO
X-ray absorption near edge structure (XANES) spectra for protein layers adsorbed at liquid interfaces in a Langmuir trough have been recorded for the first time. We studied the parkin protein (so-called E3 ubiquitin ligase), which plays an important role in pathogenesis of Parkinson disease. Parkin contains eight Zn binding sites, consisting of cysteine and histidine residues in a tetracoordinated geometry. Zn K-edge XANES spectra were collected in the following two series: under mild radiation condition of measurements (short exposition time) and with high X-ray radiation load. XANES fingerprint analysis was applied to obtain information on ligand environments around zinc ions. Two types of zinc coordination geometry were identified depending on X-ray radiation load. We found that, under mild conditions, local zinc environment in our parkin preparations was very similar to that identified in hemoglobin, treated with a solution of ZnCl2 salt. Under high X-ray radiation load, considerable changes in the zinc site structure were observed; local zinc environment appeared to be almost identical to that defined in Zn-containing enzyme alkaline phosphatase. The formation of a similar metal site in unrelated protein molecules, observed in our experiments, highlights the significance of metal binding templates as essential structural modules in protein macromolecules.
RESUMO
In this examination, we investigated the effect of lipoic acid (LA) on the properties of biological membrane models (monolayers, bilayers, and liposomes) formed from phosphatidylcholine (PC) or phosphatidylserine (PS) using the Langmuir, microelectrophoresis, and interfacial tension methods. The Langmuir technique allowed us to calculate the π-A isotherms and determine the molecular surface areas of pure and mixed monolayers. Using mathematical equations, we established that LA and the lipids formed complexes at a 1:1 ratio. The interfacial tension method was based on Young and Laplace's equation. We assumed the formation of a 1:1 complex in the PC-LA system. Using the mathematical relationships, we derived the parameters characterizing the resulting complex, i.e., the surface occupied by the complex and the interfacial tension and stability constant of the formed complex. The microelectrophoretic method was used to determine the dependence of the zeta potential of the lipid membranes as a function of the pH (pH 2 to 10) of the electrolyte solution. The results indicate that modification of PC or PS membranes with LA affects changes in the zeta potential and the isoelectric point values.
Assuntos
Bicamadas Lipídicas/química , Modelos Químicos , Fosfatidilcolinas/química , Ácido Tióctico/química , Tensão SuperficialRESUMO
Understanding the interaction of ions with fatty acids is important to identify their roles in various bioprocesses and to build novel biomimetic systems. In this study, the molecular organization of palmitic acid (PA) films on alkaline buffer solutions (pH 7.4) with and without divalent Ca2+ was measured at a constant surface area using Langmuir troughs coupled with microscopy and X-ray interfacial techniques. Without Ca2+, PA molecules remained a monolayer organization; however, with Ca2+, formation of the inverted bilayers of PA-Ca2+ superstructures caused a spontaneous 2D to 3D transformation under no compression due to the strong interaction between PA and the divalent cation. Self-assembly of this highly-organized inverted bilayer superstructure involved a two-step process of nucleation and nuclei growth. During nucleation, densely packed PA and Ca2+ monolayer firstly corrugated and some of PA and Ca2+ molecules ejected out from the monolayer; the ejected molecules then reorganized and formed the inverted bilayer nuclei. Nucleation was followed by nuclei growth, during which PA and Ca2+ in the monolayer kept integrating into the inverted bilayer structure through molecule migration and PA rotation around Ca2+.
Assuntos
Cálcio/química , Ácido Palmítico/química , Concentração de Íons de Hidrogênio , Íons/química , Cinética , Simulação de Dinâmica Molecular , Tamanho da Partícula , Propriedades de SuperfícieRESUMO
The Tear Film Lipid Layer (TFLL) covering the surface of the aqueous film at human cornea forms a first barrier between the eye and environment. Its alterations are related to dry eye disease. TFLL is formed by a complex mixture of lipids, with an excess of nonpolar components and a minor fraction of polar molecules. Its thickness is up to 160â¯nm, hence a multilayer-like structure of TFLL is assumed. However, details of TFLL organization are mostly unavailable in vivo due to the dynamic nature of the human tear film. To overcome this issue, we employ a minimalistic in vitro lipid model of TFLL. We study its biophysical characteristics by using a combination of the Langmuir trough with fluorescence microscopy. The model consists of two-component polar-nonpolar lipid films with a varying component ratio spread on the aqueous subphase at physiologically relevant temperature. We demonstrate that the model lipid mixture undergoes substantial structural reorganization as a function of lateral pressure and polar to nonpolar lipid ratio. In particular, the film is one-molecule-thick and homogenous under low lateral pressure. Upon compression, it transforms into a multilayer structure with inhomogeneities in the form of polar-nonpolar lipid assemblies. Based on this model, we hypothesize that TFLL in vivo has a duplex polar-nonpolar structure and it contains numerous mixed lipid aggregates formed because of film restructuring. These findings, despite the simplified character of the model, seem relevant for TFLL physiology as well as for understanding pathological conditions related to the lipids of the tear film.
Assuntos
Córnea/química , Lipídeos/química , Lágrimas/química , Água/química , Córnea/metabolismo , Humanos , Microscopia de Fluorescência , Propriedades de SuperfícieRESUMO
Reversible double water in oil in water (W/O/W) emulsions were developed to contain subsurface hydrocarbon spills during their remediation using surfactant flushing. Double emulsions were prepared by emulsifying CaCl2 solutions in canola oil, and subsequently by emulsifying the W/O emulsions in aqueous sodium alginate solutions. The formation of double emulsions was confirmed with confocal and optical microscopy. The double emulsions reversed and gelled when mixed with the surfactants sodium dodecyl sulfate (SDS) and cocamidopropyl betaine (CPB). Gels can act as 'emulsion locks' to prevent spreading of the hydrocarbon plume from the areas treated with surfactant flushing, as shown in sand column tests. Shear rheology was used to quantify the viscoelastic moduli increase (gelation) upon mixing the double emulsion with SDS and CPB. SDS was more effective than CPB in gelling the double emulsions. CPB and SDS could adsorb at the interface between water and model hydrocarbons (toluene and motor oil), lowering the interfacial tension and rigidifying the interface (as shown with a Langmuir trough). Bottle tests and optical microscopy showed that SDS and CPB produced W/O and O/W emulsions, with either toluene or motor oil and water. The emulsification of motor oil and toluene in water with SDS and CPB facilitated their flow through sand columns and their recovery. Toluene recovery from sand columns was quantitated using Gas-Chromatography Mass-Spectroscopy (GC-MS). The data show that SDS and CPB can be used both for surfactant flushing and to trigger the gelation of 'emulsion locks'. Ethanol also gelled the emulsions at 100 mL/L.
Assuntos
Hidrocarbonetos , Tensoativos , Água , Emulsões , Dodecilsulfato de SódioRESUMO
Babies have the most stable tears and people with dry eye have the least stable tears. Meibum may contribute to tear film stability, so in this study, the hydrocarbon chain conformation and rheology of meibum from babies was studied for the first time. Infrared spectroscopy was used to measure lipid phase transitions. Rheology was measured using Langmuir film technology. Meibum from 25 donors 1 to 13 years old was compared with meibum from 18 donors 13 to 25 years old. The phase transition temperature and lipid order (stiffness) increased with increasing age from 1 to 25 years. The increase in meibum lipid order from 1 to 25 years of age may contribute to the instability of the tear film with age and contribute to films with a higher reciprocal compressibility modulus that are not as compressible and not as viscoelastic. Changes in the lipid phase transition parameters of meibum lipid with dry eye are an exacerbation of the changes observed with age. The lower reciprocal compressibility moduli of meibum films from children and babies compared with meibum from adults reiterates higher stability in their films which spread better, resist deformation, and facilitates their ability to be quickly restored after blinking.
Assuntos
Lipídeos/química , Conformação Molecular , Reologia , Lágrimas/química , Adolescente , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Lactente , Masculino , Transição de Fase , Pressão , Temperatura , Doadores de Tecidos , Adulto JovemRESUMO
Vibrational sum frequency spectroscopy (VSFS) complemented by surface pressure isotherm and neutron reflectometry (NR) experiments were employed to investigate the interactions between propofol, a small amphiphilic molecule that currently is the most common general anaesthetic drug, and phospholipid monolayers. A series of biologically relevant saturated phospholipids of varying chain length from C18 to C14 were spread on either pure water or propofol (2,6-bis(1-methylethyl)phenol) solution in a Langmuir trough, and the change in the molecular structure of the film, induced by the interaction with propofol, was studied with respect to the surface pressure. The results from the surface pressure isotherm experiments revealed that propofol, as long as it remains at the interface, enhances the fluidity of the phospholipid monolayer. The VSF spectra demonstrate that for each phospholipid the amount of propofol in the monolayer region decreases with increasing surface pressure. Such squeeze out is in contrast to the enhanced interactions that can be exhibited by more complex amphiphilic molecules such as peptides. At surface pressures of 22-25â¯mNâ¯m-1, which are relevant for biological cell membranes, most of the propofol has been expelled from the monolayer, especially in the case of the C16 and C18 phospholipids that adopt a liquid condensed phase packing of its alkyl tails. At lower surface pressures of 5â¯mNâ¯m-1, the effect of propofol on the structure of the alkyl tails is enhanced when the phospholipids are present in a liquid expanded phase. Specifically, for the C16 phospholipid, NR data reveal that propofol is located exclusively in the head group region, which is rationalized in the context of previous studies. The results imply a non-homogeneous distribution of propofol in the plane of real cell membranes, which is an inference that requires urgent testing and may help to explain why such low concentration of the drug are required to induce general anaesthesia.