Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Life (Basel) ; 12(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36295073

RESUMO

Increased insulin-like growth factor (IGF) axis activity is associated with the development and progression of different types of malignancies, including colorectal cancer (CRC). MicroRNAs (miRNAs) belonging to the let-7 family have been reported to target genes involved in this axis and are known as tumor suppressors. In this study, in silico bioinformatic analysis was performed to assess miRNA-mRNA interactions between eight miRNAs belonging to the let-7 family and genes involved in the IGF signaling pathway, coding for receptors and substrates. miRNAs' expression analysis revealed that hsa-let-7a-5p, hsa-let-7b-5p, hsa-let-7c-5p, hsa-let- 97 7d-5p, hsa-let-7e-5p, hsa-let-7f-5p, and hsa-let-7g-5p were significantly down-regulated in 25 CRC tumoral tissues (T) compared to the corresponding adjacent peritumoral tissues (PT). Moreover, our results showed an upregulation of miR-let-7e-5p in CRC tissues with mutations in KRAS codon 12 or 13, and, for the first time, found a specific dysregulation of let-7a-5p, let-7b-5p, let-7c-5p, let-7d-5p, and let-7i-5p in CRC with perineural invasion. Our results sustain the relationship between the IGF axis, let-7 miRNAs, and CRC and suggest an association between the expression of these miRNAs and perineural invasion.

2.
Oncol Lett ; 23(1): 1, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34820000

RESUMO

The lethal-7 (Let-7) family of microRNAs (miRNAs) controls the process of development and differentiation, but is also related to the occurrence of tumors and a poor prognosis of patients with tumors. Thus, a more comprehensive exploration of its functions will provide further insights into these processes, and may promote the diagnosis and treatment of tumors. Leukemia is a type of progressive malignant disease, and its pathogenesis involves a variety of epigenetic factors. Amongst the several related epigenetic factors, the Let-7 miRNAs are an important family of molecules that play a crucial role in maintaining a variety of critical biological processes, including development, differentiation and proliferation. In the present study, the role of Let-7 as a tumor suppressor gene and oncogene is reviewed, and the complex regulatory functions of several Let-7 family members in different subtypes of leukemia are described. The current body of knowledge thus far indicates that Let-7 is not only a potential diagnostic and prognostic marker of leukemia, but also a potential therapeutic target for the treatment of affected patients, with particular potential when targeted by adjuvant treatments alongside traditional treatment to improve their survival rate.

3.
Drug Des Devel Ther ; 14: 2695-2705, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32753848

RESUMO

BACKGROUND: Peripheral nerve injury is characterized as a common clinical problem. Ulinastatin (UTI) is a serine protease inhibitor with many biological activities including anti-inflammatory and antioxidant effects. Nonetheless, it is unknown whether UTI has a protective effect on peripheral nerve injury. METHODS: Thirty rats were divided into the sham operation group, the sciatic nerve injury group (injected with normal saline), and the UTI treatment group (80mg/kg/day for two consecutive weeks). Sciatic nerve function index (SFI) was used to assess the biological functions of the sciatic nerve, and compound muscle action potential (CMAP) was measured by electrophysiology. The expressions of let-7 miRNA members were detected by quantitative real-time polymerase chain reaction (qRT-PCR). Nerve growth factor (NGF), nerve regeneration-related proteins GAP43 and NF200, and myelin formation-related proteins MAG and PMP22 expressions were explored by Western blot. After Schwann cells were transfected with let-7 mimics, pcDNA3.1-NGF, let-7 inhibitors, NGF siRNA and their corresponding controls, 5-ethynyl-2'-deoxyuridine (EdU) assay, and Transwell assays were employed to investigate the proliferation and migration of Schwann cells. H2O2 was utilized to construct oxidative injury to cells, and the contents of MDA, SOD, GSH, and CAT were determined. RESULTS: UTI treatment remarkably increased SFI of the rats and CMAP of sciatic nerve, enhanced nerve regeneration, and myelin regeneration, and raised the production of GAP43, NF200, MAG, and PMP22. Furthermore, it was found that UTI markedly reduced let-7 miRNAs' expressions and increased NGF expression after sciatic nerve injury. The dual-luciferase reporter assay validated that let-7 miRNAs targeted NGF, and functional experiments demonstrated that low expression of let-7 miRNAs and NGF overexpression contributed to Schwann cells' proliferation and migration. Additionally, UTI treatment repressed the oxidative stress regulated by let-7/NGF axis. CONCLUSION: UTI modulates the let-7/NGF axis to inhibit oxidative stress, promote nerve regeneration, and facilitate function recovery after peripheral nerve injury.


Assuntos
Glicoproteínas/farmacologia , MicroRNAs/antagonistas & inibidores , Fator de Crescimento Neural/genética , Traumatismos dos Nervos Periféricos/tratamento farmacológico , Animais , Masculino , MicroRNAs/genética , MicroRNAs/metabolismo , Fator de Crescimento Neural/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Traumatismos dos Nervos Periféricos/metabolismo , Ratos , Ratos Sprague-Dawley
4.
Mol Ther Nucleic Acids ; 20: 518-533, 2020 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-32330870

RESUMO

Circular RNA (circRNA), as a kind of novel identified non-coding RNA, has become the focus of attention for its vital physiological and pathological roles. However, the function and mechanism of circRNAs in the regulation of cancer progression are largely unknown. In the present study we found a circRNA termed circHMCU whose expression was associated with poor prognosis. It was upregulated in cell lines with high metastatic potential compared with its parental cell line and in breast cancer tissues compared with normal tissues. In vitro results proved that circHMCU could significantly promote proliferation, migration, and invasion abilities of breast cancer cells via affecting the G1 phase cell cycle checkpoint and the epithelial-mesenchymal transition (EMT) pathway. Further in vivo studies showed that overexpression of circHMCU contributed to rapid proliferation and lung metastasis of breast cancer. For determination of the mechanisms, bioinformatics analysis revealed two complementary sequences within circHMCU for let-7 microRNAs, which was validated by a luciferase reporter assay. Finally, let-7 microRNAs could rescue the functions of circHMCU in breast cancer via suppressing the expression of MCY, HMGA2, and CCND1. Taken together, our findings demonstrated that circHMCU exerted oncogenic functions in breast cancer and could be a used as a novel biomarker in the diagnosis and prognosis of breast cancer.

5.
Molecules ; 24(20)2019 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-31615053

RESUMO

We report a universal smart probe (SP) that is capable of detecting several homologous let-7 microRNAs (miRNAs). While the SP is complementary to let-7a, and therefore, strongly binds to this target, due to sequence homology, the SP also has equal propensity to non-specifically hybridize with let-7b and let-7c, which are homologous to let-7a. The fluorescence signal of the SP was switched off in the absence of any homologous member target, but the signal was switched on when any of the three homologous members was present. With the assistance of nucleic acid blockers (NABs), this SP system can discriminate between homologous miRNAs. We show that the SP can discriminate between let-7a and the other two sequences by using linear NABs (LNABs) to block non-specific interactions between the SP and these sequences. We also found that LNABs used do not cross-react with the let-7a target due to the low LNABs:SP molar ratio of 6:1 used. Overall, this SP represents a universal probe for the recognition of a homologous miRNA family. The assay is sensitive, providing a detection limit of 6 fmol. The approach is simple, fast, usable at room temperature, and represents a general platform for the in vitro detection of homologous microRNAs by a single fluorescent hairpin probe.


Assuntos
MicroRNAs/genética , Técnicas de Amplificação de Ácido Nucleico , Ácidos Nucleicos/genética , Corantes Fluorescentes/química , Humanos , Limite de Detecção , MicroRNAs/isolamento & purificação , Conformação de Ácido Nucleico , Ácidos Nucleicos/química , Homologia de Sequência
6.
Worm ; 1(4): 221-30, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-24058853

RESUMO

Animal development requires temporal coordination between recurrent processes and sequential events, but the underlying timing mechanisms are not yet understood. The molting cycle of C. elegans provides an ideal system to study this basic problem. We recently characterized LIN-42, which is related to the circadian clock protein PERIOD, as a key component of the developmental timer underlying rhythmic molting cycles. In this context, LIN-42 coordinates epithelial stem cell dynamics with progression of the molting cycle. Repeated actions of LIN-42 may enable the reprogramming of seam cell temporal fates, while stage-specific actions of LIN-42 and other heterochronic genes select fates appropriate for upcoming, rather than passing, life stages. Here, we discuss the possible configuration of the molting timer, which may include interconnected positive and negative regulatory loops among lin-42, conserved nuclear hormone receptors such as NHR-23 and -25, and the let-7 family of microRNAs. Physiological and environmental conditions may modulate the activities of particular components of this molting timer. Finding that LIN-42 regulates both a sleep-like behavioral state and epidermal stem cell dynamics further supports the model of functional conservation between LIN-42 and mammalian PERIOD proteins. The molting timer may therefore represent a primitive form of a central biological clock and provide a general paradigm for the integration of rhythmic and developmental processes.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA