RESUMO
Lithium-carbon dioxide (Li-CO2) and Li-air batteries hold great potential in achieving carbon neutral given their ultrahigh theoretical energy density and eco-friendly features. However, these Li-gas batteries still suffer from low discharging-charging rate and poor cycling life due to sluggish decomposition kinetics of discharge products especially Li2CO3. Here we report the theory-guided design and preparation of unconventional phase metal heteronanostructures as cathode catalysts for high-performance Li-CO2/air batteries. The assembled Li-CO2 cells with unconventional phase 4H/face-centered cubic (fcc) ruthenium-nickel heteronanostructures deliver a narrow discharge-charge gap of 0.65â V, excellent rate capability and long-term cycling stability over 200 cycles at 250â mA g-1. The constructed Li-air batteries can steadily run for above 150 cycles in ambient air. Electrochemical mechanism studies reveal that 4H/fcc Ru-Ni with high-electroactivity facets can boost redox reaction kinetics and tune discharge reactions towards Li2C2O4 path, alleviating electrolyte/catalyst failures induced by the aggressive singlet oxygen from solo decomposition of Li2CO3.
RESUMO
Li-CO2 batteries have been recognized as an emerging technology for energy storage systems owing to their high theoretical specific energy and environmentally friendly CO2 fixation ability. However, their development for applications requires a high energy efficiency and long cycle-life, this is currently limited to the formation of wide-bandgap insulator Li2CO3 during discharge. Here, nanoparticle Pd supported on reduced graphene oxide (rGO) is utilized as cathodes for Li-CO2 batteries, Pd nanoparticles as active centers significantly enhance CO2RR/CO2ER reaction activity, which can support the fast formation and decomposition of Li2CO3 in organic electrolytes and achieve a high discharge capacity of 7500 mAh g-1. It also performs remarkably high cycling stability of over 500 cycles with a long cycle-life of 5000 hours. The observed super electrochemical performance is attributable to the thick electrode design and uniform distribution of ultrafine catalyst nanoparticle Pd. When Li2CO3 is adsorbed on Pd particle, the Li-O bond in Li2CO3 will be elongated due to the interactions of two nucleophilic O atoms with Pd, resulting in a weakening of the Li-O bond and activation of Li2CO3. Our work suggests a way to design catalysts with high activity that can be used to activate the performance of Li-CO2 batteries.
RESUMO
CO2 electrochemistry has been considered as a promising cathode reaction for energy storage due to its high theoretical energy density, high electrochemical potential, and ability to fix CO2. However, the low efficiency and poor reversibility of Li-CO2 evolution significantly impede the applications of Li-CO2 batteries. Herein, first-principles calculations were employed to investigate the 21 M1M2N4C dual-atom catalysts and explore the catalytic mechanism for the Li-CO2 evolution reaction. Among these dual-atom catalysts, the MoMoN4C shows the highest adsorption interaction with CO2 due to its high d-center and d-p orbital coupling. The effects of dual-atom sites on the catalytic activities and selectivities were investigated by searching the possible reaction pathways toward the battery-discharging processes in the ether electrolyte with the help of implicit constant electrode potential simulations. The compared results show that the Li-CO2 discharging process was limited by the rate-determining reactions involving *Li + CO2 â *LiCO2 and *LiC2O4@ + Li+ + e- â *CO + Li2CO3, and these processes on graphene are relatively sluggish due to the low onset potential range of -2 to -2.36 V vs. SHE. By contrast, The optimized onset potentials of -1.15 to -1.31 V vs. SHE were obtained at the MoMoN4C active site. Furthermore, the MoMoN4C active site shows a lower energy barrier for the decomposition of *Li2CO3 than the pure graphene, which reveals the MoMoN4C active site with excellent CO2 activation ability can reduce the polarization of the discharging reactions and energy barrier for the CO bond cleavage. This work provides deep insight into the Li-CO2 evolution mechanisms and guides the design of advanced dual-atom catalysts for highly reversible Li-CO2 batteries.
RESUMO
The challenges of Lithium-carbon dioxide (Li-CO2) batteries for ensuring long-term cycling stability arise from the thermodynamically stable and electrically insulating discharge products (e.g., Li2CO3), which primarily rely on their interaction with the active materials. To achieve the optimized intermediates, the bifunctional electron donor-acceptor (D-A) pairs are proposed in cathode design to adjust such interactions in the case of B-O pairs. The inclusion of BC2O sites allows for the optimized redistribution of electrons via p-π conjugation. The as-obtained DO-AB pairs endow the enhanced interactions with Li+, CO2, and various intermediates, accompanied by the adjustable growth mode of Li2CO3. The shift from solvation-mediated mode into surface absorption mode in turn manipulates the morphology and decomposition kinetics of Li2CO3. Therefore, the corresponding Li-CO2 battery got twofold improved in both the capacity and reversibility. The cycling prolongs exceed 1300 h and well operates at a wide temperature range (20-50 °C) and different folding angles (0-180°). Such a strategy of introducing electron donor-acceptor pairs provides a distinct direction to optimize the lifetime of Li-CO2 battery from local structure regulation at the atomic scale, further inspiring in-depth understandings for developing electrochemical energy storage and carbon capture technologies.
RESUMO
In recent years, functional electrolyte additives have been widely studied during the CO2 evolution reaction (CO2ER) and CO2 reduction reaction (CO2RR) processes for Li-CO2 batteries. Owing to different concerns, functions of these additives are also multiple and limited. In this work, the multiple impacts of functional electrolyte additives for Li-CO2 batteries are discussed. N-phenylpyrrolidine (PPD) and 1-(3-bromophenyl) pyrrole (Br-PPD) are investigated as additives successively. First, the corresponding charging potential during the CO2ER process can be reduced to 3.65 V with PPD; then the Li||Li symmetric cells with Br-PPD possess a superior long-term cycling of 800 h benefited from a stable solid electrolyte interphase (SEI) on the surface of a Li metal by using a Li anode protected with bromine functional groups. In Br-PPD-based Li-CO2 cells, the charging potential can be maintained at 3.70 V for 120 cycles even with a Super P cathode. In this work, the relationship between the structural properties of organic molecules and their electrochemical applications is discussed and investigated. This is essential for the targeted design and preparation of additives in rechargeable batteries.
RESUMO
Elaborately designed multifunctional electrocatalysts capable of promoting Li+ and CO2 transport are essential for upgrading the cycling stability and rate capability of Li-CO2 batteries. Hydrogen-bonded organic frameworks (HOFs) with open channels and easily functionalized surfaces hold great potential for applications in efficient cathodes of Li-CO2 batteries. Herein, a robust HOFS (HOF-FJU-1) is introduced for the first time as a co-catalyst in the cathode material of Li-CO2 batteries. HOF-FJU-1 with cyano groups located periodically in the pore can induce homogeneous deposition of discharge products and accommodate volumetric expansion of discharge products during cycling. Besides, HOF-FJU-1 enables effective interaction between Ru0 nanoparticles and cyano groups, thus forming efficient and uniform catalytic sites for CRR/CER. Moreover, HOF-FJU-1 with regularly arranged open channels are beneficial for CO2 and Li+ transport, enabling rapid redox kinetic conversion of CO2 . Therefore, the HOF-based Li-CO2 batteries are capable of stable operation at 400â mA g-1 for 1800â h and maintain a low overpotential of 1.96â V even at high current densities up to 5â A g-1 . This work provides valuable guidance for developing multifunctional HOF-based catalysts to upgrade the longevity and rate capability of Li-CO2 batteries.
RESUMO
Leveraging designed electronic oxide-metal interactions (EOMI), cerium-supported copper demonstrates remarkable competitiveness in the carbon dioxide reduction reaction (CO2RR). Nevertheless, the limited utilization efficiency of conventional cerium oxide (CeO2) support hampers the EOMI effect. Furthermore, a comprehensive understanding of the influence of distinct crystalline surfaces of CeO2 on the loaded active copper (Cu) species remains elusive. Herein, oxide carriers with diverse crystal facets are acquire for loading to load Cu species through the incorporation of cerium-based metal organic frameworks (MOFs) precursors. Simultaneously, owing to the elevated specific surface area conferred by MOF precursors, Cu/CeO2 hosts ample catalytically active sites for carbon dioxide (CO2) electrocatalytic reactions and as catalytic cathodes for lithium-CO2 (Li-CO2) batteries. Furthermore, the carbon converted from organic ligands in MOFs precursors not only proficiently immobilizes and disperses the active sites, but also enhances the inherent conductive stability of the oxide while augmenting energy utilization efficiency. Leveraging these advantages, the electrocatalyst derived from MOFs achieves a peak CO2-to-methane Faradaic efficiency of 57.9 %, whereas the assembled Li-CO2 batteries exhibit notable activity and durability, boasting a substantial full-discharge capacity of 8907 mAh/g, a discharge voltage of 2.65 V, and an extended cycle life exceeding 1000 h. Mechanistic investigations were conducted using density functional theory (DFT) calculations to thoroughly explore the impact of CeO2 carrier crystal facets, specifically (111), (100), and (110), on the loaded copper species. Notably, (110) was identified as the optimal facet due to its favorable contributions to electronic structure optimization and stability enhancement.
RESUMO
Rechargeable Li-CO2 battery represents a sustainable technology by virtue of CO2 recyclability and energy storage capability. Unfortunately, the sluggish mass transport and electron transfer in bulky high-crystalline discharge product of Li2 CO3 , severely hinder its practical capacity and rechargeability. Herein, a heterostructure of isolated metalloid Te atomic cluster anchored on N-doped carbon nanosheets is designed (TeAC @NCNS) as a metal-free cathode for Li-CO2 battery. X-ray absorption spectroscopy analysis demonstrates that the abundant and dispersed Te active centers can be stabilized by C atoms in form of the covalent bond. The fabricated battery shows an unprecedented full-discharge capacity of 28.35 mAh cm-2 at 0.05 mA cm-2 and long-term cycle life of up to 1000 h even at a high cut-off capacity of 1 mAh cm-2 . A series of ex situ characterizations combined with theoretical calculations demonstrate that the abundant Te atomic clusters acting as active centers can drive the electron redistribution of carbonate via forming TeO bonds, giving rise to poor-crystalline Li2 CO3 film during the discharge process. Moreover, the efficient electron transfer between the Te centers and intermediate species is energetically beneficial for nucleation and accelerates the decomposition of Li2 CO3 on the TeAC @NCNS during the discharge/charge process.
RESUMO
Lithium-carbon dioxide (Li-CO2) batteries are regarded as a promising electrochemical system owing to their energy storage capability and CO2 utilization. However, the reported operating voltage of ~2.6 V is increasingly questioned as seemingly beyond the capability of the electrochemical carbon dioxide reduction reaction to carbon. Herein, the real operating voltage of a Li-CO2 battery is reacquainted, and the operating voltage and the equilibrium potential are clarified to be ~1.1 V and ~2.82 V, respectively. The products formed at low voltage are identified to be crystalline Li2CO3, amorphous C, and explicitly amorphous Li2CO3. Moreover, by decoupling small currents, 1% O2, and 500 ppm H2O, the operating voltage plateaus are stimulated to ~2.0 V. An ever-increasing plateau can be achieved up to the reported level of ~2.6 V activated by a minor air leak or residue in test environments. Conclusively, the operating voltages of Li-CO2 batteries are proposed to be deceptive and extremely sensitive to the surrounding environments. This work unveils the real operating voltage and provides the voltage regulation rules to advance next-generation Li-CO2 batteries.
RESUMO
Given the high energy density and eco-friendly characteristics, lithium-carbon dioxide (Li-CO2) batteries have been considered to be a next-generation energy technology to promote carbon neutral and space exploration. However, Li-CO2 batteries suffer from sluggish reaction kinetics, causing large overpotential and poor energy efficiency. Here, we observe enhanced reaction kinetics in aprotic Li-CO2 batteries with unconventional phase 4H/face-centered cubic (fcc) iridium (Ir) nanostructures grown on gold template. Significantly, 4H/fcc Ir exhibits superior electrochemical performance over fcc Ir in facilitating the round-trip reaction kinetics of Li+-mediated CO2 reduction and evolution, achieving a low charge plateau below 3.61 V and high energy efficiency of 83.8%. Ex situ/in situ studies and theoretical calculations reveal that the boosted reaction kinetics arises from the highly reversible generation of amorphous/low-crystalline discharge products on 4H/fcc Ir via the Ir-O coupling. The demonstration of flexible Li-CO2 pouch cells with 4H/fcc Ir suggests the feasibility of using unconventional phase nanomaterials in practical scenarios.
RESUMO
At present, photoassisted Li-air batteries are considered to be an effective approach to overcome the sluggish reaction kinetics of the Li-air batteries. And, the organic liquid electrolyte is generally adopted by the current conventional photoassisted Li-air batteries. However, the superior catalytic activity of photoassisted cathode would in turn fasten the degradation of the organic liquid electrolyte, leading to limited battery cycling life. Herein, we tame the above limitation of the traditional liquid electrolyte system for Li-CO2 batteries by constructing a photoassisted all-solid-state Li-CO2 battery with an integrated bilayer Au@TiO2/Li1.5Al0.5Ge1.5(PO4)3 (LAGP)/LAGP (ATLL) framework, which can essentially improve battery stability. Taking advantage of photoelectric and photothermal effects, the Au@TiO2/LAGP layer enables the acceleration of the slow kinetics of the carbon dioxide reduction reaction and evolution reaction processes. The LAGP layer could resolve the problem of liquid electrolyte decomposition under illumination. The integrated double-layer LAGP framework endows the direct transportation of heat and Li+ in the entire system. The photoassisted all-solid-state Li-CO2 battery achieves an ultralow polarization of 0.25 V with illumination, as well as a high round-trip efficiency of 92.4%. Even at an extremely low temperature of -73 °C, the battery can still deliver a small polarization of 0.6 V by converting solar energy into heat to achieve self-heating. This study is not limited to the Li-air batteries but can also be applied to other battery systems, constituting a significant step toward the practical application of all-solid-state photoassisted Li-air batteries.
RESUMO
Metal-air batteries are considered the research, development, and application direction of electrochemical devices in the future because of their high theoretical energy density. Among them, lithium-carbon dioxide (Li-CO2) batteries can capture, fix, and transform the greenhouse gas carbon dioxide while storing energy efficiently, which is an effective technique to achieve "carbon neutrality". However, the current research on this battery system is still in the initial stage, the selection of key materials such as electrodes and electrolytes still need to be optimized, and the actual reaction path needs to be studied. Carbon tube-based composites have been widely used in this energy storage system due to their excellent electrical conductivity and ability to construct unique spatial structures containing various catalyst loads. In this review, the basic principle of Li-CO2 batteries and the research progress of carbon tube-based composite cathode materials were introduced, the preparation and evaluation strategies together with the existing problems were described, and the future development direction of carbon tube-based materials in Li-CO2 batteries was proposed.
RESUMO
Sluggish CO2 reduction/evolution kinetics at cathodes seriously impede the realistic applications of Li-CO2 batteries. Herein, synergistic photoelectric effect and plasmonic interaction are introduced to accelerate CO2 reduction/evolution reactions by designing a silver nanoparticle-decorated titanium dioxide nanotube array cathode. The incident light excites energetic photoelectrons/holes in titanium dioxide to overcome reaction barriers, and induces the intensified electric field around silver nanoparticles to enable effective separation/transfer of photogenerated carriers and a thermodynamically favorable reaction pathway. The resulting Li-CO2 battery demonstrates ultra-low charge voltage of 2.86â V at 0.10â mA cm-2 , good cycling stability with 86.9 % round-trip efficiency after 100 cycles, and high rate capability at 2.0â mA cm-2 . This work offers guidance on rational cathode design for advanced Li-CO2 batteries and beyond.