Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-39374170

RESUMO

Industry-produced hydrazine (N2H4) is released into the environment, posing a major risk to human health and the ecosystem. Therefore, it is imperative to develop an effective and convenient method for the detection of N2H4. Herein, artificial light-harvesting systems (ALHSs) for N2H4 detection were constructed by applying an aggregation-induced emission-active platinum(II) metallacycle (TPEMc) as the energy donor and rhodols (P1, P2, and P3) as the energy acceptors. The ratiometric fluorescence probes based on ALHSs for N2H4 showed obvious signal amplification and lower limits of detection compared to those of rhodols (P1, P2, P3) alone. The TPEMc-rhodols systems clearly demonstrated a noticeable increase in fluorescence intensity at 550 nm and an obvious fluorescent color shift from cyan to yellow in the presence of N2H4. Fascinatingly, N2H4 could be visually and quantitatively detected in water by the TPEMc-rhodol systems paired with smartphone RGB analysis. Therefore, the combination of platinum(II) metallacycle with rhodols is a promising strategy for simple, sensitive, and visual detection of N2H4.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125152, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39332073

RESUMO

As donors for effective energy transfer, metal-organic frameworks (MOFs) have attracted the attention of many experts in the field of artificial light-harvesting materials. This study introduces a novel two-dimensional Zn-MOF, synthesized using flexible 1,3-phenyldiacetic acid (H2mpda) and rigid 1,3,5-tris(1-imidazolyl)benzene (tib) as organic ligands. Through atomic force microscopy (AFM), we have determined the monolayer thickness of this novel material to be 5 nm. Achieving two-dimensional Zn-MOF nanosheets with large BET surface area was made possible by employing ultrasonic stripping techniques. The fluorescence emission spectrum of Zn-MOF nanosheets overlaps with the UV-vis absorption spectrum of coumarin 6 (CM6), so they can be used as a donor and acceptor for fluorescence resonance energy transfer (FRET) to construct an artificial light-harvesting system (ALHS). Compared with single crystal Zn-MOF, CM6@Zn-MOF(2) has a larger BET surface area (41 m2/g), higher quantum yield (Φfl, 30.56 %), narrower energy gap (Eg, 2.87 eV), and the light-harvesting range extends to the visible green light area. Notably, CM6@Zn-MOF(2) demonstrates a robust photocurrent response, characterized by a photocurrent on/off ratio (Ilight/Idark) of 21, and a maximum photocurrent density that surpasses that of pure Zn-MOF (2.25:1). This study successfully designed a high-performance photoelectric conversion material CM6@Zn-MOF(2), which laid a certain theoretical foundation for new artificial optical acquisition systems and electrochemical material selection.

3.
Sci Rep ; 14(1): 18869, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143143

RESUMO

Few scholars study light efficiency of solar-cell arrays in theory, while it is difficult to experimentally determine the maximum capacity of a photovoltaic panel to collect solar radiation. This paper proposes a solar energy comparison model (SECM), considering the sunshine duration changes every day to optimize the solar radiation collection model in an ideal state for a whole year, which is easy to use, and can quickly obtain the optimal tilt angle of photovoltaic panels and the solar radiation collecting efficiency enhancement of intelligent light tracking photovoltaic panels. The results show that the sunshine duration is an important factor affecting the solar radiation received by photovoltaic panels. In regions from 66°34'N to 66°34'S, intelligent light tracking photovoltaic panels can increase the collected solar radiation by at least 63.55%, up to 122.51% compared to stationary photovoltaic panels during the effective light time, which is much higher than what most people generally thought. And the advantage of intelligent light tracking photovoltaic panels is more obvious in high latitudes, with a longer and more variable sunshine duration. These findings provide a theoretical basis for the solar radiation collection and photovoltaic panels.

4.
Biosens Bioelectron ; 258: 116343, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38718636

RESUMO

Recently, the non-covalently activated supramolecular scaffold method has become a prominent research area in the field of intelligent materials. Here, the inorganic clay (LP) promoted the AIE properties of 4,4',4″,4‴-(ethene-1,1,2,2-tetrayltetrakis(benzene-4,1-diyl))tetrakis(1-ethylpyridin-1-ium) (P-TPE), showing an astonishing 42-fold enhancement of the emission intensity of the yellow-green luminescence and a 34-fold increase of the quantum yield via organic-inorganic supramolecular strategy as well as the efficient light-harvesting properties (energy transfer efficiency up to 33 %) after doping with the dye receptor Rhodamine B. Furthermore, the full-color spectral regulation, including white light, was achieved by adjusting the ratio of the donor to the acceptor component and co-assembling with the carbon dots (CD). Interestingly, this TPE-based non-covalently activated full-color supramolecular light-harvesting system (LHS) could be achieved not only in aqueous media but also in the hydrogel and the solid state. More importantly, this panchromatic tunable supramolecular LHS exhibited the multi-mode and quadruple digital logic encryption property as well as the specific detection ability towards the perfluorobutyric acid and the perfluorobutanesulfonic acid, which are harmful to human health in drinking water. This result develops a simple, convenient and effective approach for the intelligent anti-counterfeiting and the pollutant sensing.


Assuntos
Técnicas Biossensoriais , Poluentes Químicos da Água , Técnicas Biossensoriais/métodos , Poluentes Químicos da Água/análise , Corantes Fluorescentes/química , Fluorocarbonos/química , Luminescência , Silicatos/química , Rodaminas/química , Limite de Detecção , Pontos Quânticos/química
5.
Chemistry ; 30(41): e202401426, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-38757380

RESUMO

The fabrication of supramolecular light-harvesting systems (LHS) with sequential energy transfer is of significance in utilizing light energy. In this study, we report the non-covalent self-assembly of a sequential LHS by pillar[5]arene-based host-guest interaction in water and its applications in white light-emitting diode (LED) device and latent fingerprint imaging. The host-guest complex WP5 ⊃ ${ \supset }$ G self-assembles into nanoparticles in water and shows enhanced aggregation-induced emission (AIE) effect. The nanoparticles can be further used to construct sequential LHS with fluorescent dyes 4,7-di(2-thienyl)-benzo[2,1,3]thiadiazole (DBT) and sulforhodamine 101 (SR101). Impressively, the system shows white-light emission when the molar ratio of WP5 ⊃ ${ \supset }$ G/DBT/SR101 is 1100/2/16. The material can be coated on a LED bulb to achieve white-light emission. In addition, the sequential LHS exhibit multicolor fluorescence including red emission, which have been successfully applied to high-resolution imaging of latent fingerprints. Therefore, we demonstrated a general strategy for the construction of sequential LHS in water based on macrocyclic host-guest interaction and explored its multi-functional applications in white-light LED device and imaging of latent fingerprints, which will promote future development and application of supramolecular LHSs.

6.
J Colloid Interface Sci ; 652(Pt B): 1494-1502, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37659317

RESUMO

It is still challenging to develop multi-step cascaded artificial light-harvesting systems (ALHSs) with tunable efficiency. Here, we designed novel cascaded ALHSs with AIE-active metallacycles as the light-harvesting antenna, Eosin Y (ESY) and sulforhodamine 101 (SR101) as conveyors, near-infrared emissive chlorin-e6 (Ce6) as the final acceptor. The close contact and fair spectral overlap between donor and acceptor molecules at each level ensured the efficient sequential three-step energy transfer. The excited energy was sequentially and efficiently funneled to Ce6 along the cascaded line MTPEPt1 â†’ ESY â†’ SR101 â†’ Ce6. Additionally, a unique strategy for regulating the efficiency of ALHS was illustrated by adjusting hydrophilic and hydrophobic interactions.

7.
Spectrochim Acta A Mol Biomol Spectrosc ; 303: 123165, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37490841

RESUMO

White light emitting materials have broad application prospects in fields such as displays, lighting devices, etc., but developing such materials faces considerable challenges. In this study, 1,3,5-tris[4-(pyridine-4-butyl)phenyl]benzene derivative (BTPY) was synthesized and a supramolecular assembly with AIE properties named BTPY@Q[7] was prepared with cucurbit[7]uril (Q[7]). Furthermore, by adding rhodamine 6G (R6G) to it, and controlling its ratio with R6G, a dual-emission white light system (0.33, 0.33) was synthesized and used for white light emitting materials as well as anti-counterfeiting fields. In addition, based on the BTPY@Q[7]-R6G system, a light harvesting system in aqueous phase was constructed, with an energy transfer efficiency (ΦET) of 26.19 % and an antenna effect (AE) of 10.21. Interestingly, the supramolecular self-assembly can also be used as a fluorescent probe, specifically recognize Fe(CN)63- ions in water, with a detection limit of 2.5 × 10-8 M.

8.
Angew Chem Int Ed Engl ; 62(31): e202305767, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37280162

RESUMO

Macrocyclic molecule-based host-guest systems, which provide contributions for the design and construction of functional supramolecular structures, have gained increasing attention in recent years. In particular, platinum(II) metallacycle-based host-guest systems provide opportunities for chemical scientists to prepare novel materials with various functions and structures due to the well-defined shapes and cavity sizes of platinum(II) metallacycles. However, the research on platinum(II) metallacycle-based host-guest systems has been given little attention. In this article, we demonstrate the host-guest complexation between a platinum(II) metallacycle and a polycyclic aromatic hydrocarbon molecule, naphthalene. Taking advantage of metallacycle-based host-guest interactions and the dynamic property of reversible Pt coordination bonds, a [2]rotaxane is efficiently prepared by employing a template-directed clipping procedure. The [2]rotaxane is further applied to the fabrication of an efficient light-harvesting system with multi-step energy transfer process. This work comprises an important supplement to macrocycle-based host-guest systems and demonstrates a strategy for efficient production of well-defined mechanically interlocked molecules with practical values.

9.
J Colloid Interface Sci ; 641: 803-811, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36966569

RESUMO

A novel water-soluble phosphate-pillar[5]arene (WPP5)-based artificial light-harvesting system (LHS) was successfully fabricated through the supramolecular assembly of phenyl-pyridyl-acrylonitrile derivative (PBT), WPP5, and organic pigment Eosin Y (ESY). Initially, after host-guest interaction, WPP5 could bind well with PBT and form WPP5 âŠƒ PBT complexes in water, which further assembled into WPP5 âŠƒ PBT nanoparticles. WPP5 âŠƒ PBT nanoparticles performed an outstanding aggregation-induced emission (AIE) capability because of the J-aggregates of PBT in WPP5 âŠƒ PBT nanoparticles, which were appropriate as fluorescence resonance energy transfer (FRET) donors for artificial light-harvesting. Moreover, due to the emission region of WPP5 âŠƒ PBT overlapped well with the UV-Vis absorption of ESY, the energy of WPP5 âŠƒ PBT (donor) could be significantly transferred to ESY (acceptor) via FRET process in WPP5 âŠƒ PBT-ESY nanoparticles. Notably, the antenna effect (AEWPP5⊃PBT-ESY) of WPP5 âŠƒ PBT-ESY LHS was determined to be 30.3, which was much higher than that of recent artificial LHSs for photocatalytic cross-coupling dehydrogenation (CCD) reactions, suggesting a potential application in photocatalytic reaction. Furthermore, through the energy transfer from PBT to ESY, the absolute fluorescence quantum yields performed a remarkable increase from 14.4% (for WPP5 âŠƒ PBT) to 35.7% (for WPP5 âŠƒ PBT-ESY), further confirming their FRET processes in WPP5 âŠƒ PBT-ESY LHS. Subsequently, in order to output the harvested energy for catalytic reactions, WPP5 âŠƒ PBT-ESY LHSs were used as photosensitizers to catalyze the CCD reaction of benzothiazole and diphenylphosphine oxide. Compared to free ESY group (21%), a significant cross-coupling yield of 75% in WPP5 âŠƒ PBT-ESY LHS was observed, because more UV region energy of PBT was transferred to ESY for CCD reaction, which suggested more potential in improving the catalytic activity of organic pigment photosensitizers in aqueous systems.

10.
Chemistry ; 29(11): e202203463, 2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36428221

RESUMO

Responsive fluorescent nanomaterials have been received considerable attention in recent years. In this work, a bola-type amphiphilic molecule, CSO, was synthesized which contains a hydrophobic cyanostilbene core and hydrophilic oligo(ethylene glycol) (OEG) coils at both sides. The cyanostilbene group is aggregation-induced emission (AIE) active, while the OEG coils are thermo-responsive. As a result, the CSO molecules can self-assemble into blue-fluorescent nanoassemblies with lower critical solution temperature (LCST) behavior in aqueous media. It is noteworthy that the LCST behavior can be reversibly regulated with changes in concentration and the introduction of K+ . Intriguingly, fluorescence of CSO assembly shows a blue-shift upon heating. Finally, by employing CSO as a light capturing antenna and energy donor, an artificial light harvesting system with tunable emission and thermo-responsive characteristics was fabricated. This study not only demonstrates an integrated approach to create responsive fluorescent nanomaterials, but also shows great potential for producing luminescent materials and mimicking photosynthesis in nature.

11.
Molecules ; 27(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36558010

RESUMO

Dynamic emissive materials in aqueous media have received much attention owing to their ease of preparation, tunable luminescence and environmental friendliness. However, hydrophobic fluorophores usually suffer from aggregation-caused quenching in water. In this work, we constructed an artificial light-harvesting system by using a non-covalent aggregation-induced emission dimer as antenna and energy donor. The dimer is quadruple hydrogen bonded from a ureidopyrimidinone derivative (M) containing a tetraphenylethylene group. The dispersed nano-assemblies based on the dimer in aqueous media were fabricated with the help of surfactant. By loading a hydrophobic acceptor molecule DBT into the nano-assemblies, man-made light-harvesting nanoparticles were fabricated, showing considerable energy transfer efficiency and a relatively high antenna effect. Additionally, the fluorescence color of the system can be gradually tuned by varying the content of the acceptors. This study provides a general way for the construction of an aqueous light-harvesting system based on a supramolecular dimer, which is important for potential application in luminescent materials.


Assuntos
Nanopartículas , Água , Humanos , Água/química , Luz , Transferência de Energia , Luminescência
12.
ACS Appl Mater Interfaces ; 14(19): 22443-22453, 2022 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-35513893

RESUMO

Artificial supramolecular light-harvesting systems have expanded various properties on photoluminescence, enabling promising applications on cell imaging, especially for imaging in organelles. Supramolecular light-harvesting systems have been used for imaging in some organelles such as lysosome, Golgi apparatus, and mitochondrion, but developing a supramolecular light-harvesting platform for imaging two organelles synchronously still remains a great challenge. Here, we report a series of lower-rim dodecyl-modified sulfonato-calix[4]arene-mediated supramolecular light-harvesting platforms for efficient light-harvesting from three naphthalene diphenylvinylpyridiniums containing acceptors, Nile Red, and Nile Blue. All of the constructed supramolecular light-harvesting systems possess high light-harvesting efficiency. Furthermore, when the two acceptors are loaded simultaneously in a single light-harvesting donor system for imaging in human prostate cancer cells, organelle imaging in lysosome and Golgi apparatus can be realized at the same time with distinctive wavelength emission. Nile Red receives the light-harvesting energy from the donors, reaching orange emissions (625 nm) in lysosome while Nile Blue shows a near-infrared light-harvesting emission at 675 nm in Golgi apparatus in the same cells. Thus, the light harvesting system provides a pathway for synchronously efficient cell imaging in two distinct organelles with a single type of photoluminescent supramolecular nanoparticles.


Assuntos
Calixarenos , Nanopartículas , Diagnóstico por Imagem , Complexo de Golgi , Humanos , Lisossomos
13.
Angew Chem Int Ed Engl ; 61(16): e202200466, 2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35100478

RESUMO

The development of controllable artificial light-harvesting systems based on liquid crystal (LC) materials, i.e., anisotropic fluids, remains a challenge. Herein, an annulene-based discotic LC compound 6 with a saddle-shaped cyclooctatetrathiophene core has been synthesized to construct a tunable light-harvesting platform. The LC material shows a typical aggregation-induced emission, which can act as a suitable light-harvesting donor. By loading Nile red (NiR) as an acceptor, an artificial light-harvesting system is achieved. Relying on the thermal-responsive self-assembling ability of 6 with variable molecular order, the efficiency of such 6-NiR system can be controlled by temperature. This light-harvesting system works sensitively at a high donor/acceptor ratio as 1000 : 1, and exhibits a high antenna effect (39.1) at a 100 : 1 donor/acceptor ratio. This thermochromic artificial light-harvesting LC system could find potential applications in smart devices employing soft materials.

14.
J Phys Chem Lett ; 5(13): 2274-82, 2014 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26279546

RESUMO

Exciton transport lengths in double-walled and bundled cylindrical 3,3'-bis- (2-sulfopropyl)-5,5',6,6'-tetrachloro-1,1'-dioctylbenzimida-carbocyanine (C8S3) J-aggregates were measured using direct imaging of fluorescence from individual aggregates deposited on solid substrates. Regions identified in confocal images were excited with a focused laser spot, and the resulting fluorescence emission was imaged onto an electron multiplying charged coupled device camera. A two-dimensional Gaussian fitting scheme was used to quantitatively compare the excitation beam profile to the broadened aggregate emission profiles. The double-walled tubes exhibit average exciton transport lengths of 140 nm, while exciton transport in the bundled nanotubes was found to be remarkably long, with distances reaching many hundreds of nanometers. A steady-state one-dimensional diffusion model for the broadening of the emission profiles yields diffusion coefficients of 120 nm(2) ps(-1) for the nanotubes and 7000 nm(2) ps(-1) for the aggregate bundles. The level of structural hierarchy dramatically affects the exciton transport capabilities in these artificial light-harvesting systems, and energy migration is not limited to a single dimension in J-aggregate bundles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA