Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Transl Oncol ; 49: 102105, 2024 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-39191140

RESUMO

BACKGROUND: Previous research has elaborated on the role of long non-coding RNA LINC00173 in the pathogenesis of various cancers; however, our knowledge of its clinical consequences and mechanisms in endometrial cancer (EC) is limited. Our current work is aimed at investigating the effect of LINC00173 in combination with its upstream gene HNRNPC on EC progression. METHODS: LINC00173 and HNRNPC levels were investigated by qRT-PCR or western blotting in EC tissues. The functional roles of HNRNPC and LINC00173 were assessed using transwell, colony formation and CCK-8 assays. A xenograft was used to verify the phenotype of LINC00173 after its overexpression. The regulatory role between HNRNPC and LINC00173 was investigated using RIP and RNA pull-down analysis. RESULTS: In EC tissues, LINC00173 expression was down-regulated. We observed that increased LINC00173 inhibited EC cell growth and migration. LINC00173 was a downstream target of HNRNPC, and its expression level was elevated by HNRNPC silencing. LINC00173 overexpression shifted part of HNRNPC into the cytoplasm from the nucleus of EC cells. Furthermore, HNRNPC expression was upregulated in EC and its silencing inhibited EC cell malignancy in vitro. CONCLUSION: LINC00173 can impair the malignancy of EC cell by interacting with HNRNPC. This finding may contribute to the understanding of the tumorigenic effects of HNRNPC and LINC00173 on EC.

2.
Cancer Sci ; 115(7): 2318-2332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38705575

RESUMO

Persistent activation of estrogen receptor alpha (ERα)-mediated estrogen signaling plays a pivotal role in driving the progression of estrogen receptor positive (ER+) breast cancer (BC). In the current study, LINC00173, a long non-coding RNA, was found to bind both ERα and lipopolysaccharide (LPS)-induced tumor necrosis factor alpha (TNFα) factor (LITAF), then cooperatively to inhibit ERα protein degradation by impeding the nuclear export of ERα. Concurrently, LITAF was found to attenuate TNFα transcription after binding to LINC00173, and this attenuating transcriptional effect was quite significant under lipopolysaccharide stimulation. Distinct functional disparities between estrogen subtypes emerge, with estradiol synergistically promoting ER+ BC cell growth with LINC00173, while estrone (E1) facilitated LITAF-transcriptional activation. In terms of therapeutic significance, silencing LINC00173 alongside moderate addition of E1 heightened TNFα and induced apoptosis, effectively inhibiting ER+ BC progression.


Assuntos
Neoplasias da Mama , Receptor alfa de Estrogênio , Estrona , RNA Longo não Codificante , Fatores de Transcrição , Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/genética , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Estrona/metabolismo , Estrona/farmacologia , Estrona/análogos & derivados , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Fator de Necrose Tumoral alfa/metabolismo , Células MCF-7 , Linhagem Celular Tumoral , Proteínas Nucleares/metabolismo , Proteínas Nucleares/genética , Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Proteólise/efeitos dos fármacos , Animais , Camundongos , Inativação Gênica
3.
Int J Mol Sci ; 24(23)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069335

RESUMO

Long non-coding RNAs (lncRNAs) play a critical role in a variety of human diseases such as cancer. Here, to elucidate a novel function of a lncRNA called LINC00173, we investigated its binding partner, target gene, and its regulatory mechanism in lung adenocarcinoma, including the A549 cell line and patients. In the A549 cell line, RNA immunoprecipitation (RIP) assays revealed that LINC00173 efficiently binds to SNAIL. RNA-seq and RT-qPCR analyses revealed that the expression of FHIT was decreased upon LINC00173 depletion, indicating that FHIT is a target gene of LINC00173. Overexpression of SNAIL suppressed and depletion of SNAIL increased the expression of FHIT, indicating that SNAIL negatively regulates FHIT. The downregulation of FHIT expression upon LINC00173 depletion was restored by additional SNAIL depletion, revealing a LINC00173-SNAIL-FHIT axis for FHIT regulation. Data from 501 patients with lung adenocarcinoma also support the existence of a LINC00173-SNAIL-FHIT axis, as FHIT expression correlated positively with LINC00173 (p = 1.75 × 10-6) and negatively with SNAIL (p = 7.00 × 10-5). Taken together, we propose that LINC00173 positively regulates FHIT gene expression by binding to SNAIL and inhibiting its function in human lung adenocarcinoma. Thus, this study sheds light on the LINC00173-SNAIL-FHIT axis, which may be a key mechanism for carcinogenesis and progression in human lung adenocarcinoma.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , RNA Longo não Codificante , Humanos , Adenocarcinoma/genética , Adenocarcinoma/patologia , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica , Genes Supressores de Tumor , Pulmão/patologia , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/genética
4.
Mol Cell Biochem ; 478(11): 2553-2565, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36894691

RESUMO

Despite advances in diagnostic techniques and treatments, cancer remains one of the leading causes of death worldwide.Therefore, finding new biomarkers and therapeutic targets is crucial for improving the diagnosis and treatment of human cancer.LncRNA Linc00173 is a newly identified tumor marker, and in this study, we aimed to explore the relationship between Linc00173 and clinicopathological features and patient prognosis. By using The Cochrane Library, EMbase, Web of Science, PubMed, OVID, we conducted a complete and thorough literature search from its inception to November 10, 2022.Meta-analysis was performed using Stata SE16.0 software. Nine studies involving 1102 patients were included.Meta-analysis showed that the overexpression of Linc00173 was significantly associated with poorer OS (HR = 1.76,95%CI:1.36-2.26, P < 0.001) and shorter DFS (HR = 1.89, 95%CI:1.49-2.40,P < 0.001),and was significantly associated with gender (male) (OR = 1.31,95% CI:1.01-1.69, P = 0.042), tumor size (large) (OR = 1.34,95% CI:1.01-1.78, P = 0.045), and lymph node metastasis (positive) (OR = 1.72,95% CI:1.03-2.88, P = 0.038). Overexpression of Linc00173 is associated with poor prognosis in cancer patients and is a potential prognostic biomarker and therapeutic target.

5.
J Oral Pathol Med ; 52(6): 493-503, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36856154

RESUMO

BACKGROUND: Aberrant expression of collagen type V alpha 1 chain (COL5A1) has been linked to several forms of human cancers. In this work, we focused on the interaction of the LINC00173/GATA binding protein 6 (GATA6)/COL5A1 axis in the malignant property of oral squamous cell carcinoma (OSCC) cells. METHODS: We analyzed six publicly accessible datasets GSE160042, GSE74530, GSE138206, GSE23558, GSE31853 and GSE146483 to identify aberrantly expressed genes in OSCC. The expression of COL5A1 in OSCC tissues and cell lines was examined by reverse transcription-quantitative polymerase chain reaction and/or immunohistochemistry. The regulatory mechanism responsible for COL5A1 transcription was predicted via bioinformatics systems, and the interactions of LINC00173, GATA6, and COL5A1 were identified by immunoprecipitation and luciferase assays. Overexpression or downregulation of COL5A1, GATA6, and LINC00173 were induced in OSCC cell lines to determine their roles in the malignant phenotype of the OSCC cells in vitro and in vivo. RESULTS: COL5A1 showed elevated expression in OSCC tissues and cells. The COLA51 knockdown suppressed proliferation, migration and invasiveness, apoptosis resistance, and pro-angiogenic ability of OSCC cells, and it suppressed the growth and dissemination of xenograft tumors in vivo. GATA6 bound to COL5A1 promoter to activate its transcription, whereas LINC00173 bound to GATA6 to block this transcriptional activation. Overexpression of GATA6 or COL5A1 promoted the malignant phenotype of the OSCC cells, which were blocked upon LINC00173 upregulation. CONCLUSION: This work demonstrates that LINC00173 blocks GATA6-mediated transcription of COL5A1 to affect malignant development of OSCC.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , MicroRNAs , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Colágeno Tipo V/genética , Fator de Transcrição GATA6/genética , Fator de Transcrição GATA6/metabolismo , MicroRNAs/genética , Neoplasias Bucais/patologia , Carcinoma de Células Escamosas de Cabeça e Pescoço , Regulação para Cima
6.
Pathol Res Pract ; 243: 154351, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36774758

RESUMO

Long intergenic non-protein coding RNA 173 (LINC00173) is a long non-coding RNA with especial function in the tumorigenic process. Studies in different types of cancers support an oncogenic role for LINC00173 except for studies in B-cell precursor acute lymphoblastic leukemia, cervical cancer, pancreatic cancer and gastric cancer. In breast and lung cancers, both oncogenic and tumor suppressor roles have been reported for LINC00173. LINC00173 can serve as a molecular sponge for miRNAs. miR-218/Etk, miR-511-5p/VEGFA, miR-182-5p/AGER, miR-765/NUTF2, miR-765/PLP2, miR-182-5p/FBXW7, miR-338-3p/Rab25, miR­641/RAB14 and miR-1275/BCL2 are examples of the miRNA/mRNA axes being regulated by LINC00173 in the context of cancer. The current review provides a summary of different studies on the role of LINC00173 in these cancers.


Assuntos
Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Regulação Neoplásica da Expressão Gênica/genética , MicroRNAs/genética , Neoplasias Pulmonares/patologia , Genes Supressores de Tumor , Carcinogênese/genética , Proliferação de Células/genética , RNA Longo não Codificante/genética , Proteínas rab de Ligação ao GTP
7.
J Exp Clin Cancer Res ; 42(1): 12, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36627670

RESUMO

BACKGROUND: LINC00173 had been reported as a cisplatin (cis-diamminedichloroplatinum, DDP) chemotherapy-resistant inducer in small-cell lung cancer (SCLC) and lung squamous cell carcinoma (LUSC). This study aimed to display reverse data for LINC00173 as a DDP chemosensitivity-inducing factor in lung adenocarcinoma (LUAD). METHODS: LINC00173 was screened from the Gene Expression Omnibus database (GSE43493). The expression level of LINC00173 in LUAD tissues and cell lines was detected using in situ hybridization and quantitative reverse transcription-polymerase chain reaction. Colony formation, cell viability, half-maximal inhibitory concentration, flow cytometry, and xenograft mouse model were used to evaluate the role of LINC00173 in the chemosensitivity of LUAD to DDP. The mechanism of LINC00173 in DDP resistance by mediating miR-1275/PROCA1/ZFP36L2 axis to impair BCL2 mRNA stability was applied, and co-immunoprecipitation, chromatin immunoprecipitation, RNA antisense purification, RNA immunoprecipitation, and luciferase reporter assays were performed. RESULTS: LINC00173 downregulation in patients with DDP-resistant LUAD was correlated with poor prognosis. Further, LINC00173 expression was significantly reduced in DDP-resistant LUAD cells and DDP-treated human LUAD tissues. Suppressed LINC00173 expression in LUAD cells enhanced DDP chemoresistance in vivo and in vitro, while restored LINC00173 expression in DDP-resistant LUAD cells markedly regained chemosensitivity to DDP. Mechanistically, DDP-resistant LUAD cells activated PI3K/AKT signal and further elevated the c-Myc expression. The c-Myc, as an oncogenic transcriptional factor, bound to the promoter of LINC00173 and suppressed its expression. The reduced LINC00173 expression attenuated the adsorption of oncogenic miR-1275, downregulating the expression of miR-1275 target gene PROCA1. PROCA1 played a potential tumor-suppressive role inducing cell apoptosis and DDP chemosensitivity via recruiting ZFP36L2 to bind to the 3' untranslated region of BCL2, reducing the stability of BCL2 mRNA and thus activating the apoptotic signal. CONCLUSIONS: This study demonstrated a novel and critical role of LINC00173. It was transcriptionally repressed by DDP-activated PI3K/AKT/c-Myc signal in LUAD, promoting DDP-acquired chemotherapeutic resistance by regulating miR-1275 to suppress PROCA1/ZFP36L2-induced BCL2 degradation, which led to apoptotic signal reduction. These data were not consistent with the previously described role of LINC00173 in SCLC or LUSC, which suggested that LINC00173 could play fine-tuned DDP resistance roles in different pathological subtypes of lung cancer. This study demonstrated that the diminished expression of LINC00173 might serve as an indicator of DDP-acquired resistance in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Resistencia a Medicamentos Antineoplásicos , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Animais , Humanos , Camundongos , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral , Proliferação de Células , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Regulação para Baixo , Resistencia a Medicamentos Antineoplásicos/genética , Regulação Neoplásica da Expressão Gênica , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , MicroRNAs/genética , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Estabilidade de RNA
8.
Mol Oncol ; 17(3): 518-533, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36606322

RESUMO

An increasing number of studies have found that long non-coding RNA (lncRNA) play important roles in driving the progression of nasopharyngeal carcinoma (NPC). Our microarray screening revealed that expression of the lncRNA long intergenic non-protein coding RNA 173 (LINC00173) was upregulated in NPC. However, its role and mechanism in NPC have not yet been elucidated. In this study, we demonstrate that high LINC00173 expression indicated a poor prognosis in NPC patients. Knockdown of LINC00173 significantly inhibited NPC cell proliferation, migration and invasion in vitro. Mechanistically, LINC00173 interacted and colocalized with Ras-related protein Rab-1B (RAB1B) in the cytoplasm, but the modulation of LINC00173 expression did not affect the expression of RAB1B at either the mRNA or protein levels. Instead, relying on the stimulation of RAB1B, LINC00173 could facilitate the extracellular secretion of proliferation-associated 2G4 (PA2G4) and stromal cell-derived factor 4 (SDF4; also known as 45-kDa calcium-binding protein) proteins, and knockdown of these proteins could reverse the NPC aggressive phenotype induced by LINC00173 overexpression. Moreover, in vivo LINC00173-knockdown models exhibited a marked slowdown in tumor growth and a significant reduction in lymph node and lung metastases. In summary, LINC00173 serves as a crucial driver for NPC progression, and the LINC00173-RAB1B-PA2G4/SDF4 axis might provide a potential therapeutic target for NPC patients.


Assuntos
Neoplasias Nasofaríngeas , RNA Longo não Codificante , Proteínas de Ligação a RNA , Proteínas rab1 de Ligação ao GTP , Humanos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas de Ligação ao Cálcio/genética , Linhagem Celular Tumoral , Proliferação de Células , Regulação Neoplásica da Expressão Gênica , Glicoproteínas/genética , Carcinoma Nasofaríngeo/genética , Carcinoma Nasofaríngeo/patologia , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/patologia , Proteínas rab1 de Ligação ao GTP/genética , Proteínas rab1 de Ligação ao GTP/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Proteínas de Ligação a RNA/metabolismo
9.
Int J Mol Sci ; 23(24)2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36555493

RESUMO

Long-read sequencing (LRS) has been adopted to meet a wide variety of research needs, ranging from the construction of novel transcriptome annotations to the rapid identification of emerging virus variants. Amongst other advantages, LRS preserves more information about RNA at the transcript level than conventional high-throughput sequencing, including far more accurate and quantitative records of splicing patterns. New studies with LRS datasets are being published at an exponential rate, generating a vast reservoir of information that can be leveraged to address a host of different research questions. However, mining such publicly available data in a tailored fashion is currently not easy, as the available software tools typically require familiarity with the command-line interface, which constitutes a significant obstacle to many researchers. Additionally, different research groups utilize different software packages to perform LRS analysis, which often prevents a direct comparison of published results across different studies. To address these challenges, we have developed the Long-Read Analysis Pipeline for Transcriptomics (L-RAPiT), a user-friendly, free pipeline requiring no dedicated computational resources or bioinformatics expertise. L-RAPiT can be implemented directly through Google Colaboratory, a system based on the open-source Jupyter notebook environment, and allows for the direct analysis of transcriptomic reads from Oxford Nanopore and PacBio LRS machines. This new pipeline enables the rapid, convenient, and standardized analysis of publicly available or newly generated LRS datasets.


Assuntos
Computação em Nuvem , RNA , RNA/genética , Perfilação da Expressão Gênica/métodos , Biologia Computacional/métodos , Software , Análise de Sequência de RNA , Sequenciamento de Nucleotídeos em Larga Escala/métodos
10.
Cancers (Basel) ; 14(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36497407

RESUMO

Long non-coding RNAs belong to non-coding RNAs (ncRNAs) with a length of more than 200 nucleotides and limited protein-coding ability. Growing research has clarified that dysregulated lncRNAs are correlated with the development of various complex diseases, including cancer. LINC00173 has drawn researchers' attention as one of the recently discovered lncRNAs. Aberrant expression of LINC00173 affects the initiation and progression of human cancers. In the present review, we summarize the recent considerable research on LINC00173 in 11 human cancers. Through the summary of the abnormal expression of LINC00173 and its potential molecular regulation mechanism in cancers, this article indicates that LINC00173 may serve as a potential diagnostic biomarker and a target for drug therapy, thus providing novel clues for future related research.

11.
Front Oncol ; 12: 887766, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35719952

RESUMO

Background: B-cell precursor acute lymphoblastic leukemia (BCP-ALL) is the most frequent pediatric cancer worldwide. Despite improvements in treatment regimens, approximately 20% of the cases cannot be cured, highlighting the necessity for identifying new biomarkers to improve the current clinical and molecular risk stratification schemes. We aimed to investigate whether LINC00173 is a biomarker in ALL and to explore its expression level in other human cancer types. Methods: A nested case-control study including Mexican children with BCP-ALL was conducted. LINC00173 expression was evaluated by qRT-PCR using hydrolysis probes. To validate our findings, RNA-seq expression data from BCP-ALL and normal tissues were retrieved from Therapeutically Applicable Research to Generate Effective Treatments (TARGET) and Genotype-Tissue Expression (GTEx) repositories, respectively. LINC00173 expression was also evaluated in solid tumors by downloading available data from The Cancer Genome Atlas (TCGA). Results: A lower expression of LINC00173 in BCP-ALL cases compared to normal subjects was observed (p < 0.05). ALL patients who carry the TCF3/PBX1 fusion gene displayed lower expression of LINC00173 in contrast to other BCP-ALL molecular subtypes (p < 0.04). LINC00173 underexpression was associated with a high risk to relapse (HR = 1.946, 95% CI = 1.213-3.120) and die (HR = 2.073, 95% CI = 1.211-3.547). Patients with TCF3/PBX1 and underexpression of LINC00173 had the worst prognosis (DFS: HR = 12.24, 95% CI = 5.04-29.71; OS: HR = 11.19, 95% CI = 26-32). TCGA data analysis revealed that underexpression of LINC00173 is also associated with poor clinical outcomes in six new reported tumor types. Conclusion: Our findings suggest that LINC00173 is a biomarker of poor prognosis in BCP-ALL and other types of cancer. We observed an association between the expression of LINC00173 and TCF3/PBX1 and the risk to relapse and die in BCP-ALL, which is worse in TCF3/PBX1-positive cases displaying underexpression of LINC00173. Experimental studies are needed to provide insight into the LINC00173 and TCF3/PBX relationship.

12.
Cell Cycle ; 21(17): 1795-1810, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35491865

RESUMO

Recent studies have unveiled that LINC00173 promotes small cell lung cancer progression. However, LINC00173 has not been studied in Wilms' tumor (WT). N-glycosylation is a complex post-translational protein modification, and alterations of protein glycosylation have been identified to affect the development of multiple tumors, including WT. MGAT1, known as N-acetylglucosaminyltransferase I (GlcNAcT-1), could initiate synthesis of complex N-glycans, but it has never been related to LINC00173 in WT. This study aimed to explore if LINC00173 could impact WT progression via MGAT1. RT-qPCR and western blot were done to measure the expression and protein levels. Functional assays, as well as animal experiments were conducted to evaluate the function of genes in vivo and in vitro. Additionally, RNA pull-down, RIP, and dual-luciferase reporter assays were carried out to determine the molecular bindings. In vitro experiments proved that sh-LINC00173 inhibited WT cell invasion and promoted WT cell apoptosis, while in vivo experiments indicated sh-LINC00173 restrained WT progression. LINC00173 stabilized MGAT1 mRNA by recruiting HNRNPA2B1. Meanwhile, MGAT1 was verified to stabilize MUC3A protein by inducing N-glycosylation. In summary, our study first discovered that LINC00173 promoted WT progression through MGAT1-mediated MUC3A N-glycosylation, giving new clues to further understanding the mechanism underlying WT progression.


Assuntos
Neoplasias Renais , Tumor de Wilms , Animais , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Glicosilação , Neoplasias Renais/patologia , Tumor de Wilms/genética , Tumor de Wilms/metabolismo , Tumor de Wilms/patologia
13.
Bioengineered ; 13(4): 10373-10385, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35441583

RESUMO

As an endocrine and metabolic disorder, polycystic ovarian syndrome (PCOS) is common in females at childbearing age. Our work was intended to uncover the underlying role of LINC00173 and its potential regulatory mechanism in PCOS based on two cell lines (PCOS granulosa cells and KGN cells) and an in vivo model established from Sprague Dawley rats. It was revealed that LINC00173 and JAG1 expressions were upregulated, while miR-124-3p was poorly expressed in PCOS patients and PCOS rats. Functional assays showed that LINC00173 overexpression repressed proliferation and stimulated apoptosis in granulosa cells and KGN cells, while LINC00173 downregulation exhibited the opposite effects. Besides, it was verified that LINC00173 upregulated JAG1 expression in KGN cells via competitively binding to miR-124-3p. Similarly, miR-124-3p abundance was inversely related to LINC00173 and JAG1 level in PCOS. Subsequently, rescue assays elucidated that miR-124-3p upregulation or downregulation eliminated the effects on KGN cell proliferation and apoptosis mediated by LINC00173 overexpression or knockdown. In addition, it was found that the JAG1 level in KGN cells was adversely modulated by miR-124-3p and positively modulated by LINC00173. Moreover, it was further demonstrated that the reduced cell vitality and increased apoptosis of KGN cells induced by overexpressing LINC00173 could be relieved by JAG1 deletion. These findings suggested that LINC00173 could be a latent regulating factor for PCOS progression via modulating the miR-124-3p/JAG1 cascade.


Assuntos
MicroRNAs , Síndrome do Ovário Policístico , RNA não Traduzido/genética , Animais , Apoptose/genética , Proliferação de Células/genética , Feminino , Células da Granulosa/metabolismo , Humanos , Proteína Jagged-1/genética , Proteína Jagged-1/metabolismo , Proteína Jagged-1/farmacologia , Ligantes , MicroRNAs/metabolismo , Síndrome do Ovário Policístico/genética , Síndrome do Ovário Policístico/metabolismo , Ratos , Ratos Sprague-Dawley
14.
Toxicol Sci ; 187(2): 311-324, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35135009

RESUMO

Long-term exposure to benzene or its metabolite, hydroquinone (HQ), can causally contribute to acute myeloid leukemia. Long-noncoding RNAs are essential epigenetic regulators with critical roles in tumor initiation and malignant progression; however, the mechanism by which aberrantly expressed LINC00173 (long intergenic nonprotein coding RNA 173) regulates the pathogenesis of acute myeloid leukemia is not fully understood. Here, we found that the expression of LINC00173 decreased while the expression of DNA methyltransferase 1 (DNMT1) increased, and the methylation of LINC00173 promoter was negatively correlated with LINC00173 expression in GEPIA, CCLE databases, benzene-exposed workers, B-cell non-Hodgkin's lymphoma, K562, U937, or HQ-induced malignantly transformed TK6 (HQ-MT cells). Furthermore, in 5-aza-2'-deoxycytidine (DNA methyltransferase inhibitor) or trichostatin A (histone deacetylation inhibitor)-treated HQ-MT cells, the expression of LINC00173 was restored by reduced DNA promoter methylation levels. HQ-MT cells with DNMT1 knockout by CRISPR/Cas9 restored the expression of LINC00173 and inhibited the DNA methylation of its promoter as well as enrichment of DNMT1 to promoter. Overexpression of LINC00173 inhibited the expression of DNMT1, cell proliferation, tumor growth, enhanced chemosensitivity to cisplatin, and apoptosis in HQ-MT cells. LINC00173 interacts with DNMT1 to regulate the methylation of LINC00173 promoter. Overall, this study provides evidence that interaction between DNMT1 and LINC00173 regulates the expression of LINC00173 by regulating its promoter methylation level, thus regulating the function of HQ-MT cells in vitro and in vivo, providing a new therapeutic target for benzene-induced tumor.


Assuntos
Benzeno , DNA (Citosina-5-)-Metiltransferase 1 , Hidroquinonas , RNA Longo não Codificante , Benzeno/toxicidade , DNA (Citosina-5-)-Metiltransferase 1/genética , Metilação de DNA , Humanos , Hidroquinonas/toxicidade , Leucemia Mieloide Aguda , Regiões Promotoras Genéticas , RNA Longo não Codificante/genética
15.
Rev. Assoc. Med. Bras. (1992, Impr.) ; 68(2): 170-175, Feb. 2022. tab, graf
Artigo em Inglês | LILACS | ID: biblio-1365349

RESUMO

SUMMARY OBJECTIVE: A growing volume of literature has suggested long noncoding RNAs (lncRNAs) as important players in tumor progression. In this study, we aimed to investigate the expression and prognostic value of lncRNA LINC00173 (LINC00173) in melanoma. METHODS: LINC00173 expression was measured in 163 paired cancerous and noncancerous specimen samples by real-time polymerase chain reaction. The correlations between LINC00173 expression with clinicopathological characteristics and prognosis were analyzed by chi-square test, log-rank test, and multivariate survival analysis. Receiver-operating characteristic curves were used for the assessment of the diagnostic value of LINC00173 for melanoma patients. RESULTS: The expression level of LINC00173 in melanoma specimens was distinctly higher than that in adjacent non-neoplasm specimens (p<0.01). Besides, LINC00173 was expressed more frequently in patients with advanced melanoma than in patients with early melanoma. Multivariate assays confirmed that LINC00173 expression level was an independent prognostic predictor of melanoma patients (p<0.05). CONCLUSION: Our data indicated that LINC00173 expression could serve as an unfavorable prognostic biomarker for melanoma patients.


Assuntos
Humanos , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Melanoma/diagnóstico , Melanoma/genética , Prognóstico , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica , Estimativa de Kaplan-Meier
16.
Mol Ther ; 2021 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-34763086

RESUMO

This article has been withdrawn at the request of the editor-in-chief. Following publication of this article, the editor-in-chief discovered evidence of image duplication in Figures 1I, 1J, 3F, S5B, and S6B. Given the duplication of several western blots representing several gene products, the editor-in-chief has lost faith in the findings presented in this article. The authors maintain that these image duplications were the result of errors in file management and do not affect the conclusions of the study. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

17.
DNA Cell Biol ; 40(6): 757-775, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33978457

RESUMO

Pancreatic cancer is a common malignant tumor worldwide. Extensive studies have been conducted on the functional role of long noncoding RNAs in pancreatic cancer. In this study, long intergenic nonprotein coding RNA 173 (LINC00173) was highly expressed in pancreatic cancer tissues. In vitro functional experiments showed that LINC00173 overexpression inhibited the proliferation and invasion of pancreatic cancer cells and promoted cell apoptosis in MIA PaCa-2 and PANC-1 cells. RNA sequencing analysis and Western blot assays demonstrated that LINC00173 reduced the expression of sphingosine kinase 1 (SPHK1) and then inhibited the protein expression of activated phospho-protein kinase B (AKT) and NF-κB. In vivo functional assays also revealed that LINC00173 inhibited the growth of pancreatic cancer xenografts, repressed cell proliferation, promoted cell apoptosis, and inhibited SPHK1 expression. The combined results of this study indicate that LINC00173 inhibits pancreatic cancer progression by repressing SPHK1 expression. Improving LINC00173 may represent a therapeutic strategy for pancreatic cancer in the future.


Assuntos
Regulação Neoplásica da Expressão Gênica , Neoplasias Pancreáticas/metabolismo , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , RNA Longo não Codificante/fisiologia , Apoptose , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Humanos , NF-kappa B/metabolismo , Invasividade Neoplásica , Neoplasias Pancreáticas/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Oncol Lett ; 21(5): 371, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33777195

RESUMO

A growing body of evidence indicates that long non-coding RNAs (lncRNAs) play crucial roles in the chemoresistance of human cancers. However, the molecular mechanisms underlying the functions of certain lncRNAs in the chemotherapeutic resistance of hepatocellular carcinoma (HCC) remain unclear. The aim of the present study was to investigate the function and potential mechanism of action of lncRNA LINC00173 in HCC cisplatin (DDP) resistance. Reverse transcription-quantitative PCR analysis indicated that LINC00173 was highly expressed in DDP-resistant HCC tissues and cell lines, and high expression levels of LINC00173 were found to be associated with poor prognosis in patients with HCC. Moreover, LINC00173-knockdown improved the DDP sensitivity of DDP-resistant HCC cells. A luciferase reporter assay also demonstrated that microRNA (miR)-641 was a direct target of LINC00173. miR-641 inhibition restored the promoting effect of LINC00173 knockdown on DDP sensitivity in HCC cells. Furthermore, RAB14 was identified as a target of miR-641, and RAB14 overexpression restrained the inducing effect of LINC00173 knockdown on HCC cell DDP sensitivity. The findings of the present study demonstrated that LINC00173 increased DDP resistance in HCC via the miR-641/RAB14 axis, which may represent a promising therapeutic strategy for HCC.

19.
Mol Cell Biochem ; 476(2): 1005-1014, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33141309

RESUMO

Previous studies have demonstrated the involvement of long intergenic nonprotein coding RNA 173 (LINC00173) in several pathological disorders. However, the function of LINC00173 in the hypertrophic scar is not well understood. This study confirmed that the two transcript variants of TSV1 and TSV2 were both upregulated in hypertrophic scar fibroblasts. The overexpression of TSV1 or TSV2 promoted the apoptosis of fibroblasts, whereas the overexpression of TSV2 inhibited the proliferation of fibroblasts. RNA-sequencing (RNA-seq), Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis, and gene set enrichment analysis (GSEA) showed that phosphatidylinositol 3-kinase (PI3K)/Akt and Mitogen-activated protein kinases (MAPK) signaling might be involved in the role of LINC00173 in hypertrophic scar pathogenesis. Furthermore, the protein expression of ß-catenin was upregulated in the TSV1 or TSV2 overexpression group. Overall, the study demonstrated that LINC00173 promoted the apoptosis of fibroblasts through increasing ß-catenin expression, suggesting that LINC00173 might be a new target for hypertrophic scar treatment.


Assuntos
Apoptose , Cicatriz Hipertrófica/patologia , Fibroblastos/patologia , Regulação da Expressão Gênica , RNA Longo não Codificante/genética , beta Catenina/metabolismo , Estudos de Casos e Controles , Proliferação de Células , Criança , Pré-Escolar , Cicatriz Hipertrófica/genética , Cicatriz Hipertrófica/metabolismo , Feminino , Fibroblastos/metabolismo , Humanos , Masculino , Cultura Primária de Células , RNA Longo não Codificante/metabolismo , Análise de Sequência de RNA/métodos , Transdução de Sinais , Regulação para Cima , beta Catenina/genética
20.
Cancer Manag Res ; 12: 7211-7217, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32848473

RESUMO

BACKGROUND: Glioma is one of the leading causes of cancer-related deaths. This study aimed to investigate the function and mechanism of long noncoding RNA (lncRNA) LINC00173 in the regulation of glioma progression. METHODS: LINC00173 expression was measured using qRT-PCR. Survival rate was analyzed through Kaplan-Meier method. CCK8, colony formation and EdU assays were performed to measure cell proliferation while transwell was used to determine cell migration and invasion. Luciferase reporter assay was conducted to test RNA interaction. RESULTS: LINC00173 expression was elevated in glioma tissues and cells. LINC00173 high expression predicted poor prognosis. Loss of LINC00173 inhibited proliferation, migration and invasion. LINC00173 interacted with miR-765 to enhance NUTF2 expression. MiR-765 expression was negatively correlated with LINC00173 and NUTF2 in glioma tissues. NUTF2 level was increased in glioma tissues. NUTF2 overexpression rescued the potential of proliferation, migration and invasion in LINC00173-silenced cells. CONCLUSION: Our research demonstrated that LINC00173 promotes glioma progression through targeting miR-765/NUTF2 axis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA