RESUMO
Liquid metal, as a novel material, has become ideal for the fabrication of flexible conductive fibers and has shown great potential in the field of biomedical sensing. This paper presents a comprehensive review of the unique properties of liquid metals such as gallium-based alloys, including their excellent electrical conductivity, mobility, and biocompatibility. These properties make liquid metals ideal for the fabrication of flexible and malleable biosensors. The article explores common preparation methods for liquid metal conductive fibers, such as internal liquid metal filling, surface printing with liquid metal, and liquid metal coating techniques, and their applications in health monitoring, neural interfaces, and wearable devices. By summarizing and analyzing the current research, this paper aims to reveal the current status and challenges of liquid metal conductive fibers in the field of biosensors and to look forward to their development in the future, which will provide valuable references and insights for researchers in the field of biomedical engineering.
Assuntos
Técnicas Biossensoriais , Metais , Dispositivos Eletrônicos Vestíveis , Humanos , Metais/química , Condutividade Elétrica , Gálio/químicaRESUMO
The low-temperature liquid metals Ga-In and Ga-Sn have previously showcased >95 % selectivity towards the electrochemical reduction of CO2 to formate, occuring only when the alloys are melted, not solid. Here, density functional theory molecular dynamics and metadynamics simulations reveal that CO2 does not directly adsorb to the Ga-alloy surface, but instead is reduced indirectly by reaction with an adsorbed hydrogen. The reaction barrier is vastly more favourable when this process occurs at In or Sn sites (average: 0.26â eV), than when it occurs on Ga (average: 0.47â eV). However, there is no difference in barrier between solid and liquid surfaces. Instead, we find that Hads is mobile only on the liquid surface, travelling due to the motion of the liquid beneath. This process drives Hads to In/Sn sites, allowing low-barrier CO2 reduction to occur only on the liquid. Therefore, the dynamic motion of liquid metal catalysts can underpin their unique reactivity. The result has far reaching implications for any protonation reaction conducted with a liquid metal catalyst.
RESUMO
Cardiovascular disease is a major public health issue, and smart diagnostic approaches play an important role in the analysis of electrocardiograms. Here, we present three-dimensional, soft electrodes of liquid metals that can be conformably attached to the surfaces of the heart and skin for long-term cardiac analysis. The fine micropillar structures of biocompatible liquid metals enable precise targeting to small tissue areas, allowing for spatiotemporal mapping and modulation of cardiac electrical activity with high resolution. The low mechanical modulus of these liquid-metal electrodes not only helps avoid inflammatory responses triggered by modulus mismatch between the tissue and electrodes, but also minimizes pain when embedded in biological tissues such as the skin and heart. Furthermore, in vivo experiments with animal models and human trials demonstrate long-term and accurate monitoring of electrocardiograms over a period of 30 days.
Assuntos
Eletrodos , Animais , Humanos , Eletrocardiografia , Metais/química , Tecnologia sem Fio , Coração , RatosRESUMO
Flexible optoelectronics have fully demonstrated their transformative roles in various fields, but their fabrication and application have been limited by complex processes. Liquid metals (LMs) are promising to be ideal raw materials for making flexible optoelectronics due to their extraordinary fluidity and printability. Herein, we propose a painting-modifying strategy based on solution processability for directly printing out fluorescent flexible optoelectronics from LMs via surface modification. The LMs of eGaIn, which were obtained by the mixing of gallium with indium metal spheres, were used as ink to paint high-finesse patterns on flexible substrates. Through introducing surface modification of LMs, the gallium atom on the surface of the LMs was directly transformed into the composite fluorescent functional layers of GaO(OH) and GaN after being modified with an ammonia aqueous solution. Owing to painting, this strategy is not limited by any curved surfaces, shapes, or facilities and has excellent adaptability. Particularly, the fluorescent layers were obtained through a spontaneous, instantaneous, and solution-processable process that is environmentally friendly, easy to administrate, recyclable, and adjustable. The present finding breaks through the limitations of LMs in making flexible optoelectronics and provides strategies for addressing severe challenges facing existing materials and flexible optoelectronics. This method is expected to be very useful for fabricating flexible lights, transformable displays, intelligent anticounterfeiting devices, skin-inspired optoelectronics, and chameleon-biomimetic soft robots in the coming time.
RESUMO
2D native surface oxides formed on low melting temperature metals such as indium and gallium offer unique opportunities for fabricating high-performance flexible electronics and optoelectronics based on a new class of liquid metal printing (LMP). An inherent property of these Cabrera-Mott 2D oxides is their suboxide nature (e.g., In2O3-x), which leads high mobility LMP semiconductors to exhibit high electron concentrations (ne > 1019 cm-3) limiting electrostatic control. Binary alloying of the molten precursor can produce doped, ternary metal oxides such as In-X-O with enhanced electronic performance and greater bias-stress stability, though this approach demands a deeper understanding of the native oxides of alloys. This work presents an approach for hypoeutectic rapid LMP of crystalline InGaOx (IGO) at ultralow process temperatures (180 °C) beyond the state of the art to fabricate transistors with 10X steeper subthreshold slope and high mobility (≈18 cm2 Vs-1). Detailed characterization of IGO crystallinity, composition, and morphology, as well as measurements of its electronic density of states (DOS), show the impact of Ga-doping and reveal the limits of doping induced amorphization from hypoeutectic precursors. The ultralow process temperatures and compatibility with high-k Al2O3 dielectrics shown here indicate potential for 2D IGO to drive low-power flexible transparent electronics.
RESUMO
The demand of high-performance thin-film-shaped deformable electromagnetic interference (EMI) shielding devices is increasing for the next generation of wearable and miniaturized soft electronics. Although highly reflective conductive materials can effectively shield EMI, they prevent deformation of the devices owing to rigidity and generate secondary electromagnetic pollution simultaneously. Herein, soft and stretchable EMI shielding thin film devices with absorption-dominant EMI shielding behavior is presented. The devices consist of liquid metal (LM) layer and LM grid-patterned layer separated by a thin elastomeric film, fabricated by leveraging superior adhesion of aerosol-deposited LM on elastomer. The devices demonstrate high electromagnetic shielding effectiveness (SE) (SET of up to 75 dB) with low reflectance (SER of 1.5 dB at the resonant frequency) owing to EMI absorption induced by multiple internal reflection generated in the LM grid architectures. Remarkably, the excellent stretchability of the LM-based devices facilitates tunable EMI shielding abilities through grid space adjustment upon strain (resonant frequency shift from 81.3 to 71.3 GHz @ 33% strain) and is also capable of retaining shielding effectiveness even after multiple strain cycles. This newly explored device presents an advanced paradigm for powerful EMI shielding performance for next-generation smart electronics.
RESUMO
This article demonstrates scalable production of liquid metal (LM)-based microwires through the thermal drawing of extrudates. These extrudates were first co-extruded using a eutectic alloy of gallium and indium (EGaIn) as a core element and a thermoplastic elastomer, styrene-ethylene/butylene-styrene (SEBS), as a shell material. By varying the feed speed of the co-extruded materials and the drawing speed of the extrudate, it was possible to control the dimensions of the microwires, such as core diameter and shell thickness. How the extrusion temperature affects the dimensions of the microwire was also analyzed. The smallest microwire (core diameter: 52 ± 14 µm and shell thickness: 46 ± 10 µm) was produced from a drawing speed of 300.1 mm s-1 (the maximum attainable speed of the apparatus used), SEBS extrusion speed of 1.50 mm3 s-1, and LM injection rate of 5 × 105 µL s-1 at 190 °C extrusion temperature. The same extrusion condition without thermal drawing generated significantly large extrudates with a core diameter of 278 ± 26 µm and shell thickness of 430 ± 51 µm. The electrical properties of the microwires were also characterized under different degrees of stretching and wire kinking deformation which proved that these LM-based microwires change electrical resistance as they are deformed and fully self-heal once the load is removed. Finally, the sewability of these microwires was qualitatively tested by using a manual sewing machine to pattern microwires on a traditional cotton fabric.
RESUMO
Wearable sensors are rapidly gaining influence in the diagnostics, monitoring, and treatment of disease, thereby improving patient outcomes. In this review, we aim to explore how these advances can be applied to magnetic resonance imaging (MRI). We begin by (i) introducing limitations in current flexible/stretchable RF coils and then move to the broader field of flexible sensor technology to identify translatable technologies. To this goal, we discuss (ii) emerging materials currently used for sensor substrates, (iii) stretchable conductive materials, (iv) pairing and matching of conductors with substrates, and (v) implementation of lumped elements such as capacitors. Applicable (vi) fabrication methods are presented, and the review concludes with a brief commentary on (vii) the implementation of the discussed sensor technologies in MRI coil applications. The main takeaway of our research is that a large body of work has led to exciting new sensor innovations allowing for stretchable wearables, but further exploration of materials and manufacturing techniques remains necessary, especially when applied to MRI diagnostics.
Assuntos
Imageamento por Ressonância Magnética , Ondas de Rádio , Dispositivos Eletrônicos Vestíveis , Imageamento por Ressonância Magnética/instrumentação , Imageamento por Ressonância Magnética/métodos , Humanos , Desenho de Equipamento , Condutividade ElétricaRESUMO
The newly emerging liquid metal flexible electronics are gaining increasing applications over the world due to their outstanding adaptability and printability. Here, we proposed a generalized purpose thermo-activated hybrid transfer printing method for the rapid fabrication of multifunctional soft electronics, which can significantly reduce the difficulty facing existing technologies. This printing involves two delivery and deposition processes of liquid metals and the allied inks (toners) based on their adhesion selection mechanisms. Through developing office supplies, the laser printer could directly print toner masks on soft substrates, such as polydimethylsiloxane film. The heating plate was applied to remove the toner sacrificial mask after rolling liquid metal inks, resulting in retaining the liquid metal circuits on the target substrate. For illustration, diverse materials and inks are adapted to the strategy of constructing flexible electronics. Particularly, colorful circuits, flexible heaters, transparent circuitry, and soft programmable light-emitting diode array displays with multilayer circuits have been fabricated and tested. This general and easily accessible method allows for the rapid acquisition of user-designed soft electronics and is expected to promote the widespread use of flexible electronics in e-skin, sensing, displays, etc.
RESUMO
Low-melting liquid metals are emerging as a new group of highly functional solvents due to their capability to dissolve and alloy various metals in their elemental state to form solutions as well as colloidal systems. Furthermore, these liquid metals can facilitate and catalyze multiple unique chemical reactions. Despite the intriguing science behind liquid metals and alloys, very little is known about their fundamental structures in the nanometric regime. To bridge this gap, this work employs small angle neutron scattering and molecular dynamics simulations, revealing that the most commonly used liquid metal solvents, EGaIn and Galinstan, are surprisingly structured with the formation of clusters ranging from 157 to 15.7 Å. Conversely, noneutectic liquid metal alloys of GaSn or GaIn at low solute concentrations of 1, 2, and 5 wt%, as well as pure Ga, do not exhibit these structures. Importantly, the eutectic alloys retain their structure even at elevated temperatures of 60 and 90 °C, highlighting that they are not just simple homogeneous fluids consisting of individual atoms. Understanding the complex soft structure of liquid alloys will assist in comprehending complex phenomena occurring within these fluids and contribute to deriving reaction mechanisms in the realm of synthesis and liquid metal-based catalysis.
RESUMO
The synthesis of liquid metal-infused hydrogels, typically constituted by polyacrylamide networks crosslinked through covalent bonds, often encounters a conundrum: they exhibit restricted extensibility and a diminished capacity for self-repair, owing to the inherently irreversible nature of the covalent linkages. This study introduces a hydrophobically associated hydrogel embedding gallium (Ga)-droplets, realized through the in situ free radical copolymerization of hydrophobic hexadecyl methacrylate (HMA) and hydrophilic acrylamide (AM) in a milieu containing xanthan gum (XG) and PEDOT:PSS, which co-stabilizes the Ga-droplets. The Ga-droplets, synergistically functioning as conductive agents alongside PEDOT:PSS, also expedite the hydrogel's formation. The resultant XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel is distinguished by its remarkable extensibility (2950 %), exceptional toughness (3.28 MJ/m3), superior adherence to hydrophobic, smooth substrates, and an innate ability for hydrophobic-driven self-healing. As a strain sensing medium, this hydrogel-based sensor exhibits heightened sensitivity (gauge factor = 12.66), low detection threshold (0.1 %), and robust durability (>500 cycles). Furthermore, the inclusion of glycerol endows the XG/PEDOT:PSS-Ga-P(AM-HMA) hydrogel with anti-freezing properties without compromising its mechanical integrity and sensing acumen. This sensor adeptly captures a spectrum of human movements, from the nuanced radial pulse to extensive joint articulations. This research heralds a novel approach for fabricating multifaceted PAM-based hydrogels with toughness and superior sensing capabilities.
Assuntos
Hidrogéis , Interações Hidrofóbicas e Hidrofílicas , Polímeros , Polissacarídeos Bacterianos , Hidrogéis/química , Polissacarídeos Bacterianos/química , Polímeros/química , Poliestirenos/química , Gálio/química , Metais/química , Compostos Bicíclicos Heterocíclicos com PontesRESUMO
In this study, we examine the surface-derived electronic and chemical structures of nanostructured GaRh alloys as a model system for supported catalytically active liquid metal solutions (SCALMS), a novel catalyst candidate for dehydrogenation reactions that are important for the petrochemical and hydrogen energy industry. It is reported that under ambient conditions, SCALMS tends to form a gallium oxide shell, which can be removed by an activation treatment at elevated temperatures and hydrogen flow to enhance the catalytic reactivity. We prepared a 7 at. % Rh containing the GaRh sample and interrogated the evolution of the surface chemical and electronic structure by photoelectron spectroscopy (complemented by scanning electron microscopy) upon performing surface oxidation and (activation treatment mimicking) annealing treatments in ultrahigh vacuum conditions. The initially pronounced Rh 4d and Fermi level-derived states in the valence band spectra disappear upon oxidation (due to formation of a GaOx shell) but reemerge upon annealing, especially for temperatures of 600 °C and above, i.e., when the GaOx shell is efficiently being removed and the Ga matrix is expected to be liquid. At the same temperature, new spectroscopic features at both the high and low binding energy sides of the Rh 3d5/2 spectra are observed, which we attribute to new GaRh species with depleted and enriched Rh contents, respectively. A liquefied and GaOx-free surface is also expected for GaRh SCALMS at reaction conditions, and thus the revealed high-temperature properties of the GaRh alloy provide insights about respective catalysts at work.
RESUMO
Gallium (Ga) is a well-known liquid metals (LMs) that possesses the features, such as fluidity, low viscosity, high electrical and thermal conductivity, and relative low toxicity. Owing to the weak interactions between Ga atoms, Ga LMs can be adopted for fabrication of various Ga LMs-based functional materials via ultrasonic treatment and mechanical grinding. Moreover, many organic compounds/polymers can be coated on the surface of LMs-based materials through coordination between oxidized outlayers of Ga LMs and functional groups of organic components. Over the past decades, different strategies have been reported for synthesizing Ga LMs-based functional materials and their biomedical applications have been intensively investigated. Although some review articles have published over the past few years, a concise review is still needed to advance the latest developments in biomedical fields. The main context can be majorly divided into two parts. In the first section, various strategies for fabrication of Ga LMs-based functional materials via top-down strategies were introduced and discussed. Following that, biomedical applications of Ga LMs-based functional materials were summarized and design Ga LMs-based functional materials with enhanced performance for cancer photothermal therapy (PTT) and PTT combined therapy were highlighted. We trust this review article will be beneficial for scientists to comprehend this promising field and greatly advance future development for fabrication of other Ga LMs-based functional materials with better performance for biomedical applications.
Assuntos
Gálio , Gálio/química , Humanos , Neoplasias/tratamento farmacológico , Terapia Fototérmica/métodos , AnimaisRESUMO
An additional crossover of viscous flow in liquids occurs at a temperature Tvm above the known non-Arrhenius to Arrhenius crossover temperature (TA). Tvm is the temperature when the minimum possible viscosity value ηmin is attained, and the flow becomes non-activated with a further increase in temperature. Explicit equations are proposed for the assessments of both Tvm and ηmin, which are shown to provide data that are close to those experimentally measured. Numerical estimations reveal that the new crossover temperature is very high and can barely be achieved in practical uses, although at temperatures close to it, the contribution of the non-activated regime of the flow can be accounted for.
RESUMO
To address electromagnetic interference (EMI) pollution in modern society, the development of ultrathin, high-performance, and highly stable EMI shielding materials is highly desired. Liquid metal (LM) based conductive materials have received enormous amounts of attention. However, the processing approach of LM/polymer composites represents great challenges due to the high surface tension and cohesive energy of LMs. In this study, we develop a universal one-step fabrication strategy to directly process composites containing LMs and cellulose nanofibrils (CNFs) and successfully fabricate the ultrathin, flexible, and stable EMI shielding films with an average specific EMI shielding efficiency (EMI SE) value of 429 dB/mm and small thickness of only 70 µm in the wide frequency range of 8.2-18 GHz. In addition, the resulting films also exhibit excellent mechanical performance and flexibility, which endow the film with the ability to withstand repeated folding, bending, and folding into complex shapes without producing cracks or fractures. Besides, the resulting films display excellent thermal conductivity with a λ of 4.90 W/(m K) and an α of 3.17 mm2/s. Thus, the presented approach shows great potential in fabricating advanced materials for EMI shielding applications.
RESUMO
Liquid metal (LM) microdroplets have garnered significant interest as conductive materials for initiating free radical polymerization in the development of conductive hydrogels suited for strain sensors. However, crafting multi-functional conductive hydrogels that boast both high stretchability and superior sensing capabilities remains as a challenge. In this study, we have successfully synthesized LM-based conductive hydrogels characterized by remarkable stretchability and sensing performance employing acrylic acid (AA) to evenly distribute chitosan nanofibers (CSFs) and to subsequently catalyze the free radical polymerization of AA. The resultant polymer network was crosslinked within situ polyacrylic acid (PAA), facilitated by Ga3+ in conjunction with guar gum (GG)-stabilized Ga droplets. The strategic interplay between the rigid, and protonated CSFs and the pliable PAA matrix, coupled with the ionic crosslinking of Ga3+, endows the resulting GG-Ga-CSF-PAA hydrogel with high stretchability (3700 %), ultrafast self-healing, robust moldability, and strong adhesiveness. When deployed as a strain sensing material, this hydrogel exhibits a high gauge factor (38.8), a minimal detection threshold, enduring durability, and a broad operational range. This versatility enables the hydrogel-based strain sensor to monitor a wide spectrum of human motions. Remarkably, the hydrogel maintains its stretchability and sensing efficacy under extreme temperatures after a simple glycerol solution treatment.
Assuntos
Acrilatos , Quitosana , Nanofibras , Humanos , Hidrogéis , Condutividade Elétrica , Radicais LivresRESUMO
Direct 3D printing of active microfluidic elements on PCB substrates enables high-speed fabrication of stand-alone microdevices for a variety of health and energy applications. Microvalves are key components of microfluidic devices and liquid metal (LM) microvalves exhibit promising flow control in microsystems integrated with PCBs. In this paper, we demonstrate LM microvalves directly 3D printed on PCB using advanced digital light processing (DLP). Electrodes on PCB are coated by carbon ink to prevent alloying between gallium-based LM plug and copper electrodes. We used DLP 3D printers with in-house developed acrylic-based resins, Isobornyl Acrylate, and Diurethane Dimethacrylate (DUDMA) and functionalized PCB surface with acrylic-based resin for strong bonding. Valving seats are printed in a 3D caterpillar geometry with chamber diameter of 700 µm. We successfully printed channels and nozzles down to 90 µm. Aiming for microvalves for low-power applications, we applied square-wave voltage of 2 Vpp at a range of frequencies between 5 to 35 Hz. The results show precise control of the bistable valving mechanism based on electrochemical actuation of LMs.
Assuntos
Microfluídica , Bifenilos Policlorados , Catéteres , Metais , LigasRESUMO
Gallium liquid metals (LMs) like Galinstan and eutectic Gallium-Indium (EGaIn) have seen increasing applications in heavy metal ion (HMI) sensing, because of their ability to amalgamate with HMIs like lead, their high hydrogen potential, and their stable electrochemical window. Furthermore, coating LM droplets with nanopowders of tungsten oxide (WO) has shown enhancement in HMI sensing owing to intense electrical fields at the nanopowder-liquid-metal interface. However, most LM HMI sensors are droplet based, which show limitations in scalability and the homogeneity of the surface. A scalable approach that can be extended to LM electrodes is therefore highly desirable. In this work, we present, for the first time, WO-Galinstan HMI sensors fabricated via photolithography of a negative cavity, Galinstan brushing inside the cavity, lift-off, and galvanic replacement (GR) in a tungsten salt solution. Successful GR of Galinstan was verified using optical microscopy, SEM, EDX, XPS, and surface roughness measurements of the Galinstan electrodes. The fabricated WO-Galinstan electrodes demonstrated enhanced sensitivity in comparison with electrodes structured from pure Galinstan and detected lead at concentrations down to 0.1 mmol·L-1. This work paves the way for a new class of HMI sensors using GR of WO-Galinstan electrodes, with applications in microfluidics and MEMS for a toxic-free environment.
RESUMO
Thermoplastic polyurethane (TPU) composites with eutectic gallium (Ga) and indium (In) (eGaIn) fillings of 0 wt%-75 wt% were prepared using the electrostatic spinning method. Field emission scanning electron microscopy (SEM), X-ray diffraction (XRD), and Fourier-transform infrared (FTIR) spectroscopy were used to characterize the eGaIn NDs/TPU composites. To evaluate their X-ray shielding properties, Phy-X/PSD and WinXCom were employed to calculate the mass attenuation coefficients, linear attenuation coefficients, half-value layers, tenth value layers, mean free paths, and adequate atomic numbers of the eGaIn NDs/TPU composites. The SEM results indicated that the eGaIn nanodroplets were evenly distributed throughout the TPU fibers, and the flowable eGaIn was well-suited for interfacial compatibility with the TPU. A comparison of the eGaIn NDs/TPU composites with different content levels showed that the composite with 75 wt% eGaIn had the highest µm at all the evaluated energies, indicating a superior ability to attenuate X-rays. This non-toxic, lightweight, and flexible composite is a potential material for shielding against medical diagnostic X-rays.
RESUMO
Implantable neuroelectronic interfaces have gained significant importance in long-term brain-computer interfacing and neuroscience therapy. However, due to the mechanical and geometrical mismatches between the electrode-nerve interfaces, personalized and compatible neural interfaces remain serious issues for peripheral neuromodulation. This study introduces the stretchable and flexible electronics class as a self-rolled neural interface for neurological diagnosis and modulation. These stretchable electronics are made from liquid metal-polymer conductors with a high resolution of 30 µm using microfluidic printing technology. They exhibit high conformability and stretchability (over 600% strain) during body movements and have good biocompatibility during long-term implantation (over 8 weeks). These stretchable electronics offer real-time monitoring of epileptiform activities with excellent conformability to soft brain tissue. The study also develops self-rolled microfluidic electrodes that tightly wind the deforming nerves with minimal constraint (160 µm in diameter). The in vivo signal recording of the vagus and sciatic nerve demonstrates the potential of self-rolled cuff electrodes for sciatic and vagus neural modulation by recording action potential and reducing heart rate. The findings of this study suggest that the robust, easy-to-use self-rolled microfluidic electrodes may provide useful tools for compatible neuroelectronics and neural modulation.