Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Mech Ageing Dev ; 222: 111979, 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39265710

RESUMO

Mosaic loss of the Y chromosome (mLOY) is a common somatic mutation in the blood of elderly men and several studies have found mLOY in blood cells to be associated with an increased risk of various diseases and mortality. However, most of these studies have focused on middle-aged and older adults, meaning that mLOY in extremely old individuals like centenarians is understudied. To explore mLOY across a wider age range compared to earlier studies and to specifically focus on centenarians, mLOY was estimated in 917 Danish men aged 56-100 years. We found that the percentage of men with LOY increased with age until age 85, after which it plateaued at around 40 %. Consistently, a longitudinal comparison of mLOY revealed that mLOY predominantly increased with age, although inter-individual variation was seen. Using a twin sub-sample, the broad-sense heritability of mLOY was estimated at 72 %, indicating a substantial genetic influence. Supporting previous findings, mLOY was found to associate with increased mortality across all study participants and in men younger than 80 years. In centenarians, however, a higher level of mLOY associated with better survival, most likely due to selection, although confirmation of our findings in larger studies is needed.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39180225

RESUMO

Marked differences in survival from melanoma are noted between men and women that cannot be accounted for by behavioral differences. We and others have provided evidence that this difference may be due to increased expression of immune-related genes from the second X chromosome because of failure of X inactivation. In the present review, we have examined evidence for the contrary view that survival differences are due to weaker immune responses in males. One reason for this may be the loss of Y chromosomes (LOY), particularly in older males. The genes involved may have direct roles in immune responses or be noncoding RNAs that regulate both sex and autosomal genes involved in immune responses or tumor growth. Loss of the KDM6C and KDM5D demethylases appeared to common genes involved. The second factor appears to be the activation of androgen receptors (AR) on melanoma cells that increase their invasiveness and growth. Induction of T-cell exhaustion by AR that limits immune responses against melanoma appeared a common finding. The development of treatments to overcome effects related to gene loss on Y poses challenges, but several avenues related to AR signaling appear worthy of further study in the treatment of metastatic disease.

3.
Circulation ; 150(10): 746-757, 2024 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-39005209

RESUMO

BACKGROUND: Chronic kidney disease represents one of the strongest risk factors for cardiovascular diseases, and particularly for heart failure. Despite improved pharmaceutical treatments, mortality remains high. Recently, experimental studies demonstrated that mosaic loss of Y chromosome (LOY) associates with cardiac fibrosis in male mice. Since diffuse cardiac fibrosis is the common denominator for progression of all forms of heart failure, we determined the association of LOY on mortality and cardiovascular disease outcomes in patients with chronic kidney disease. METHODS: LOY was quantified in men with stable chronic kidney disease (CARE for HOMe study, n=279) and dialysis patients (4D study, n=544). The association between LOY and mortality, combined cardiovascular and heart failure-specific end points, and echocardiographic measures was assessed. RESULTS: In CARE for HOMe, the frequency of LOY increased with age. LOY >17% was associated with increased mortality (heart rate, 2.58 [95% CI, 1.33-5.03]) and risk for cardiac decompensation or death (heart rate, 2.30 [95% CI, 1.23-4.27]). Patients with LOY >17% showed a significant decline of ejection fraction and an increase of E/E' within 5 years. Consistently, in the 4D study, LOY >17% was significantly associated with increased mortality (heart rate, 2.76 [95% CI, 1.83-4.16]), higher risk of death due to heart failure and sudden cardiac death (heart rate, 4.11 [95% CI, 2.09-8.08]), but not atherosclerotic events. Patients with LOY >17% showed significantly higher plasma levels of soluble interleukin 1 receptor-like 1, a biomarker for myocardial fibrosis. Mechanistically, intermediate monocytes from patients with LOY >17% showed significantly higher C-C chemokine receptor type 2 expression and higher plasma levels of the C-C chemokine receptor type 2 chemokine (C-C motif) ligand 2, which may have contributed to increased heart failure events. CONCLUSIONS: LOY identifies male patients with chronic kidney disease at high risk for mortality and heart failure events.


Assuntos
Cromossomos Humanos Y , Insuficiência Renal Crônica , Humanos , Masculino , Insuficiência Renal Crônica/diagnóstico , Insuficiência Renal Crônica/mortalidade , Insuficiência Renal Crônica/genética , Idoso , Pessoa de Meia-Idade , Cromossomos Humanos Y/genética , Doenças Cardiovasculares/mortalidade , Doenças Cardiovasculares/genética , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/mortalidade , Idoso de 80 Anos ou mais , Fatores de Risco , Fibrose
5.
Int J Mol Sci ; 25(8)2024 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-38673816

RESUMO

Until a few years ago, it was believed that the gradual mosaic loss of the Y chromosome (mLOY) was a normal age-related process. However, it is now known that mLOY is associated with a wide variety of pathologies in men, such as cardiovascular diseases, neurodegenerative disorders, and many types of cancer. Nevertheless, the mechanisms that generate mLOY in men have not been studied so far. This task is of great importance because it will allow focusing on possible methods of prophylaxis or therapy for diseases associated with mLOY. On the other hand, it would allow better understanding of mLOY as a possible marker for inferring the age of male samples in cases of human identification. Due to the above, in this work, a comprehensive review of the literature was conducted, presenting the most relevant information on the possible molecular mechanisms by which mLOY is generated, as well as its implications for men's health and its possible use as a marker to infer age.


Assuntos
Cromossomos Humanos Y , Saúde do Homem , Humanos , Cromossomos Humanos Y/genética , Masculino , Envelhecimento/genética , Mosaicismo , Deleção Cromossômica
6.
Adv Biol (Weinh) ; 8(7): e2300512, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38684458

RESUMO

The phenomenon of sex chromosome loss from hematopoietic cells is an emerging indicator of biological aging. While many methods to detect this loss have been developed, enhancing the field, these existing methods often suffer from being labor-intensive, expensive, and not sufficiently sensitive. To bridge this gap, a novel and more efficient technique is developed, named the SinChro assay. This method employs multiplexed single-cell droplet PCR, designed to detect cells with sex chromosome loss at single-cell resolution. Through the SinChro assay, the age-dependent increase in Y chromosome loss in male blood is successfully mapped. The age-dependent loss of the X chromosome in female blood is also identified, a finding that has been challenging with existing methods. The advent of the SinChro assay marks a significant breakthrough in the study of age-related sex mosaicism. Its utility extends beyond blood analysis, applicable to a variety of tissues, and it holds the potential to deepen the understanding of biological aging and related diseases.


Assuntos
Cromossomos Humanos Y , Mosaicismo , Humanos , Masculino , Feminino , Cromossomos Humanos Y/genética , Cromossomos Humanos X/genética , Análise de Célula Única/métodos , Envelhecimento/genética , Aberrações dos Cromossomos Sexuais
7.
Vet J ; 304: 106088, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38412887

RESUMO

The loss of the Y chromosome (ChrY), also known as LOY, is a common genetic alteration observed in men. It occurs in non-neoplastic cells as an age-related change as well as in neoplastic cells of various cancer types. While well-documented in humans, LOY has not been extensively studied in non-human mammals. In this study, we developed simple digital PCR-based assays to assess the copy number of ChrY relative to the X chromosome (ChrX) and chromosome 8 (Chr8) to evaluate ChrY numerical alterations in male canine DNA specimens. Using these assays, we analyzed non-neoplastic leukocytes from 162 male dogs without hematopoietic neoplasia to investigate the occurrence of age-related LOY in non-neoplastic leukocytes. Additionally, we examined 101 tumor DNA specimens obtained from male dogs diagnosed with various types of lymphoma and leukemia to determine whether copy number alterations of the ChrY occur in canine hematopoietic cancers. Analysis of the 162 non-neoplastic leukocyte DNA specimens from male dogs of varying ages revealed a consistent ∼1:1 ChrY:ChrX ratio. This suggests that age-related LOY in non-neoplastic leukocytes is rare or absent in dogs. Conversely, a decreased or increased ChrY:ChrX ratio was detected in canine neoplastic leukocytes at varying frequencies across different canine hematopoietic malignancies (P = 0.01, Fisher's exact test). Notably, a higher incidence of LOY was observed in more aggressive cancer types. To determine if this relative LOY to ChrX was caused by changes in ChrY or ChrX, we further analyzed their relative copy numbers using Chr8 as a reference. Loss of ChrX relative to Chr8 was found in 21% (9/41) of B-cell lymphomas and 6% (1/18) of non-T-zone/high-grade T-cell lymphomas. In contrast, a subset (29%, 4/14) of T-cell chronic lymphocytic leukemia showed gain of ChrX relative to Chr8. Notably, no relative LOY to Chr8 was detected indolent hematopoietic cancers such as T-zone lymphoma (0/9) and chronic lymphocytic leukemia of B-cell (0/11) and T-cell origins (0/14). However, relative LOY to Chr8 was present in more aggressive canine hematopoietic cancers, with incidences of 24% (10/41) in B-cell lymphoma, 44% (8/18) in non-T-zone/high-grade T-cell lymphoma, and 75% (6/8) in acute leukemia. This study highlights both similarities and differences in LOY between human and canine non-neoplastic and neoplastic leukocytes. It underscores the need for further research into the role of ChrY in canine health and disease, as well as the significance of LOY across various species.


Assuntos
Doenças do Cão , Leucemia Linfocítica Crônica de Células B , Leucemia , Linfoma , Humanos , Masculino , Cães , Animais , Variações do Número de Cópias de DNA , Leucemia Linfocítica Crônica de Células B/veterinária , Cromossomos Humanos Y , Linfoma/veterinária , Leucemia/veterinária , Leucócitos , DNA , Mamíferos/genética , Doenças do Cão/genética
8.
Adv Ther ; 41(3): 885-890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38198042

RESUMO

Immune checkpoint inhibitors (ICI) have emerged as an important therapeutic approach for patients with cancers including bladder cancer (BC). This commentary describes a recent study that demonstrated that the loss of Y chromosome (LOY) and/or loss of specific genes on Y chromosome confers an aggressive phenotype to BC because of T cell dysfunction resulting in CD8+T cell exhaustion. Loss of expression of Y chromosome genes KDM5D and UTY was similarly associated with an unfavorable prognosis in patients with BC as these genes were partially responsible for the impaired anti-tumor immunity in LOY tumors. From a clinical perspective, the study showed that tumors with LOY may be susceptible to treatment with ICIs.


Assuntos
Cromossomos Humanos Y , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Fenótipo , Prognóstico , Imunoterapia , Antígenos de Histocompatibilidade Menor/genética , Histona Desmetilases/genética
9.
Cancer Sci ; 115(3): 706-714, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38258457

RESUMO

Hematopoietic mosaic loss of Y chromosome (mLOY) has emerged as a potential male-specific accelerator of biological aging, increasing the risk of various age-related diseases, including cancer. Importantly, mLOY is not confined to hematopoietic cells; its presence has also been observed in nonhematological cancer cells, with the impact of this presence previously unknown. Recent studies have revealed that, whether occurring in leukocytes or cancer cells, mLOY plays a role in promoting the development of an immunosuppressive tumor microenvironment. This occurs through the modulation of tumor-infiltrating immune cells, ultimately enabling cancer cells to evade the vigilant immune system. In this review, we illuminate recent progress concerning the effects of hematopoietic mLOY and cancer mLOY on cancer progression. Examining cancer progression from the perspective of LOY adds a new layer to our understanding of cancer immunity, promising insights that hold the potential to identify innovative and potent immunotherapy targets for cancer.


Assuntos
Cromossomos Humanos Y , Neoplasias , Humanos , Masculino , Cromossomos Humanos Y/genética , Mosaicismo , Neoplasias/genética , Leucócitos , Envelhecimento , Microambiente Tumoral/genética
10.
Vavilovskii Zhurnal Genet Selektsii ; 27(5): 502-511, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37808213

RESUMO

The development of new biomarkers for prediction and early detection of human diseases, as well as for monitoring the response to therapy is one of the most relevant areas of modern human genetics and genomics. Until recently, it was believed that the function of human Y chromosome genes was limited to determining sex and controlling spermatogenesis. Thanks to occurance of large databases of the genome-wide association study (GWAS), there has been a transition to the use of large samples for analyzing genetic changes in both normal and pathological conditions. This has made it possible to assess the association of mosaic aneuploidy of the Y chromosome in somatic cells with a shorter lifespan in men compared to women. Based on data from the UK Biobank, an association was found between mosaic loss of the Y chromosome (mLOY) in peripheral blood leukocytes and the age of men over 70, as well as a number of oncological, cardiac, metabolic, neurodegenerative, and psychiatric diseases. As a result, mLOY in peripheral blood cells has been considered a potential marker of biological age in men and as a marker of certain age-related diseases. Currently, numerous associations have been identified between mLOY and genes based on GWAS and transcriptomes in affected tissues. However, the exact cause of mLOY and the impact and consequences of this phenomenon at the whole organism level have not been established. In particular, it is unclear whether aneuploidy of the Y chromosome in blood cells may affect the development of pathologies that manifest in other organs, such as the brain in Alzheimer's disease, or whether it is a neutral biomarker of general genomic instability. This review examines the main pathologies and genetic factors associated with mLOY, as well as the hypotheses regarding their interplay. Special attention is given to recent studies on mLOY in brain cells in Alzheimer's disease.

11.
Bio Protoc ; 13(15): e4729, 2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37575386

RESUMO

This protocol describes the generation of chimeric mice in which the Y chromosome is deleted from a proportion of blood cells. This model recapitulates the phenomenon of hematopoietic mosaic loss of Y chromosome (mLOY), which is frequently observed in the blood of aged men. To construct mice with hematopoietic Y chromosome loss, lineage-negative cells are isolated from the bone marrow of ROSA26-Cas9 knock-in mice. These cells are transduced with a lentivirus vector encoding a guide RNA (gRNA) that targets multiple repeats of the Y chromosome centromere, effectively removing the Y chromosome. These cells are then transplanted into lethally irradiated wildtype C57BL6 mice. Control gRNAs are designed to target either no specific region or the fourth intron of Actin gene. Transduced cells are tracked by measuring the fraction of blood cells expressing the virally encoded reporter gene tRFP. This model represents a clinically relevant model of hematopoietic mosaic loss of Y chromosome, which can be used to study the impact of mLOY on various age-related diseases. Graphical overview.

12.
Cell Biosci ; 13(1): 135, 2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37488646

RESUMO

BACKGROUND: Genetics evidences have long linked mosaic loss of Y-chromosome (mLOY) in peripheral leukocytes with a wide range of male age-associated diseases. However, a lack of cellular and molecular mechanistic explanations for this link has limited further investigation into the relationship between mLOY and male age-related disease. Excitingly, Sano et al. have provided the first piece of evidence directly linking mLOY to cardiac fibrosis through mLOY enriched profibrotic transforming growth factor ß1 (TGF-ß1) regulons in hematopoietic macrophages along with suppressed interleukin-1ß (IL-1ß) proinflammatory regulons. The results of this novel finding can be extrapolated to other disease related to mLOY, such as cancer, cardiac disease, and age-related macular degeneration. RESULTS: Sano et al. used a CRISPR-Cas9 gRNAs gene editing induced Y-chromosome ablation mouse model to assess results of a UK biobank prospective analysis implicating the Y-chromosome in male age-related disease. Using this in vivo model, Sano et al. showed that hematopoietic mLOY accelerated cardiac fibrosis and heart failure in male mice through profibrotic pathways. This process was linked to monocyte-macrophage differentiation during hematopoietic development. Mice confirmed to have mLOY in leukocytes, by loss of Y-chromosome genes Kdm5d, Uty, Eif2s3y, and Ddx3y, at similar percentages to the human population were shown to have accelerated rates of interstitial and perivascular fibrosis and abnormal echocardiograms. These mice also recovered poorly from the transverse aortic constriction (TAC) model of heart failure and developed left ventricular dysfunction at higher rates. This was attributed to aberrant proliferation of cardiac MEF-SK4 + fibroblasts promoted by mLOY macrophages enriched in profibrotic regulons and lacking in proinflammatory regulons. These pro-fibrotic macrophages localized to heart and eventually resulted in cardiac fibrosis via enhanced TGF-ß1 and suppressed IL-1ß signaling. Furthermore, treatment of mLOY mice with TGFß1 neutralizing antibody was able to improve their cardiac function. This study by Sano et al. was able to provide a causative link between the known association between mLOY and male cardiac disease morbidity and mortality for the first time, and thereby provide a new target for improving human health. CONCLUSIONS: Using a CRISPR-Cas9 induced Y-chromosome ablation mouse model, Sano et al. has proven mosaic loss of Y-chromosome in peripheral myeloid cells to have a causative effect on male mobility and mortality due to male age-related cardiac disease. They traced the mechanism of this effect to hyper-expression of the profibrotic TGF-ß1 and reduced pro-inflammatory IL-1ß signaling, attenuation of which could provide another potential strategy in improving outcomes against age-related diseases in men.

13.
Mol Genet Genomics ; 298(5): 1073-1085, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37285076

RESUMO

Age prediction is an important field in forensic and aging research. Traditional methods used DNA methylation, telomere shortening, and mitochondrial DNA mutations to conduct age prediction models. Sex chromosomes, like the Y chromosome, have a significant role in aging as previously reported in hematopoietic disease and many non-reproductive cancers. Until now, there is no age predictor based on the percentage of loss of Y chromosome (LOY). LOY has been previously revealed to be correlated with Alzheimer's disease, short survival, and higher risk of cancer. The possible correlation of LOY between normal aging was not fully explored. In this study, we conducted age prediction by measuring LOY percentage by droplet digital PCR (ddPCR), based on 232 healthy male samples, including 171 blood samples, 49 saliva samples, 12 semen samples. The age group of samples ranges from 0 to 99 years, with two individuals in almost every single age. Pearson correlation method was performed to calculate the correlation index. The result indicated a correlation index of 0.21 (p = 0.0059) between age and LOY percentage in blood samples, with the regression formula being y = - 0.016823 + 0.001098x. The correlation between LOY percentage and age is obvious only when the individuals were divided into different age groups (R = 0.73, p = 0.016). In the studied saliva and semen samples, p-values of the correlation are 0.11 and 0.20, respectively, showing no significant association between age and LOY percentage in these two biological materials. For the first time, we investigated male-specific age predictor based on LOY. The study showed that LOY in leukocytes can be regarded as a male-specific age predictor for age group estimation in forensic genetics. This study might be indicative for forensic applications and aging research.


Assuntos
Genética Forense , Neoplasias , Humanos , Masculino , Recém-Nascido , Lactente , Pré-Escolar , Criança , Adolescente , Adulto Jovem , Adulto , Pessoa de Meia-Idade , Idoso , Idoso de 80 Anos ou mais , Cromossomos Humanos Y/genética , Leucócitos , Envelhecimento/genética , Neoplasias/genética
14.
Eur Heart J ; 44(21): 1943-1952, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-36932691

RESUMO

AIMS: Mosaic loss of Y chromosome (LOY) in blood cells is the most common acquired mutation, increases with age, and is related to cardiovascular disease. Loss of Y chromosome induces cardiac fibrosis in murine experiments mimicking the consequences of aortic valve stenosis, the prototypical age-related disease. Cardiac fibrosis is the major determinant of mortality even after transcatheter aortic valve replacement (TAVR). It was hypothesized that LOY affects long-term outcome in men undergoing TAVR. METHODS AND RESULTS: Using digital PCR in DNA of peripheral blood cells, LOY (Y/X ratio) was assessed by targeting a 6 bp sequence difference between AMELX and AMELY genes using TaqMan. The genetic signature of monocytes lacking the Y chromosome was deciphered by scRNAseq. In 362 men with advanced aortic valve stenosis undergoing successful TAVR, LOY ranged from -4% to 83.4%, and was >10% in 48% of patients. Three-year mortality increased with LOY. Receiver operating characteristic (ROC) curve analysis revealed an optimal cut-off of LOY >17% to predict mortality. In multivariate analysis, LOY remained a significant (P < 0.001) independent predictor of death during follow-up. scRNAseq disclosed a pro-fibrotic gene signature with LOY monocytes displaying increased expression of transforming growth factor (TGF) ß-associated signaling, while expression of TGFß-inhibiting pathways was down-regulated. CONCLUSION: This is the first study to demonstrate that LOY in blood cells is associated with profoundly impaired long-term survival even after successful TAVR. Mechanistically, the pro-fibrotic gene signature sensitizing the patient-derived circulating LOY monocytes for the TGFß signaling pathways supports a prominent role of cardiac fibrosis in contributing to the effects of LOY observed in men undergoing TAVR.


Assuntos
Estenose da Valva Aórtica , Substituição da Valva Aórtica Transcateter , Humanos , Masculino , Animais , Camundongos , Substituição da Valva Aórtica Transcateter/métodos , Cromossomos Humanos Y , Monócitos , Mosaicismo , Estenose da Valva Aórtica/genética , Estenose da Valva Aórtica/cirurgia , Fibrose , Valva Aórtica/cirurgia , Resultado do Tratamento , Fatores de Risco
15.
Stem Cell Rev Rep ; 18(8): 3050-3065, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35809166

RESUMO

Patient-derived cells hold great promise for precision medicine approaches in human health. Human dermal fibroblasts have been a major source of cells for reprogramming and differentiating into specific cell types for disease modeling. Postmortem human dura mater has been suggested as a primary source of fibroblasts for in vitro modeling of neurodegenerative diseases. Although fibroblast-like cells from human and mouse dura mater have been previously described, their utility for reprogramming and direct differentiation protocols has not been fully established. In this study, cells derived from postmortem dura mater are directly compared to those from dermal biopsies of living subjects. In two instances, we have isolated and compared dermal and dural cell lines from the same subject. Notably, striking differences were observed between cells of dermal and dural origin. Compared to dermal fibroblasts, postmortem dura mater-derived cells demonstrated different morphology, slower growth rates, and a higher rate of karyotype abnormality. Dura mater-derived cells also failed to express fibroblast protein markers. When dermal fibroblasts and dura mater-derived cells from the same subject were compared, they exhibited highly divergent gene expression profiles that suggest dura mater cells originated from a mixed mural lineage. Given their postmortem origin, somatic mutation signatures of dura mater-derived cells were assessed and suggest defective DNA damage repair. This study argues for rigorous karyotyping of postmortem derived cell lines and highlights limitations of postmortem human dura mater-derived cells for modeling normal biology or disease-associated pathobiology.


Assuntos
Dura-Máter , Transcriptoma , Humanos , Animais , Camundongos , Dura-Máter/metabolismo , Dura-Máter/patologia , Diferenciação Celular/genética , Fibroblastos , Células Cultivadas
16.
Cell Biosci ; 12(1): 73, 2022 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-35642040

RESUMO

BACKGROUND: Age-related macular degeneration (AMD) is the leading cause of severe vision loss in patients over 55 years old in the industrialized world. In the past 20 years, approximately 288 million patents have been affected by this disease. Despite this high prevalence, the molecular mechanism for AMD remains unclear, and there remains no effective treatment for this disease. The mosaic loss of Y chromosome (mLOY) has been identified as a common phenomenon in multiple age-related disease (i.e., oncogenesis and cardiovascular disease) has recently been identified by genome-wide analysis to be linked to AMD as well. As the Y chromosome mainly possesses three genomic functions, sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling, here we characterize the Y chromosome euchromatic genes and non-chromosome AMD genes in relevance to cellular proliferation and apoptotic signaling of leukocytes. RESULTS: Using STRING, a publically available database of all protein-protein interaction, Grassmann et al. found the genes on the Y chromosome is mainly believed to take part in three major cellular genomic functions- sister chromatin cohesion, cell cycle mitosis, and apoptotic signaling. Based on data from the Ensembl Genome database, we focus on our discussion on coding genes found in the euchromatins but not the PAR1 and PAR2 regions of the Y chromosomes. All 14 known euchromatic genes on the Y chromosome short arm and all 31 known euchromatic genes on the Y chromosome long arm (Yq) are directly or indirectly involved in the cell cycle (meiosis and mitosis) and proliferation. We sorted non-Y chromosome AMD associated genes into these three categories to identify signaling pathways that may compound with cellular dysregulation due to mLOY. Of the genes associated with AMD, complement pathway genes such as C2, C9 and CFH/ARMD4 are associated with proliferation, receptor-mediated endocytosis genes such as APOE, DAB2 and others associated with apoptotic signaling. Because nucleated cells found in peripheral circulation are mainly composed of leukocytes with reduced expression of CD99, a protein essential for leukocytes adhesion, translocation, and function, mLOY in these cells likely affect retinal degeneration through altered immunological surveillance. In fact, there is precedence that circulating macrophage can stabilize and modify the cardiac rhythm and contractility post ischemic damage. Therefore, the most likely mechanism through which peripheral mLOY affects AMD development in men is through the role affected leukocytes play in retinal proliferation and apoptosis. CONCLUSIONS: mLOY in peripheral blood is newly discovered in AMD by Grassmann et al. as it is a common phenomenon in oncogenesis and cardiac dysfunction. Here the recent data conclude the possible mechanism for the newly identified link between mLOY and AMD, and provide support that mLOY in circulating macrophage-monocyte of affected male patients promotes AMD by targeting the retina and causing macular degeneration.

17.
Annu Rev Physiol ; 84: 113-133, 2022 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-34637327

RESUMO

Contrary to earlier beliefs, every cell in the individual is genetically different due to somatic mutations. Consequently, tissues become a mixture of cells with distinct genomes, a phenomenon termed somatic mosaicism. Recent advances in genome sequencing technology have unveiled possible causes of mutations and how they shape the unique mutational landscape of the tissues. Moreover, the analysis of sequencing data in combination with clinical information has revealed the impacts of somatic mosaicism on disease processes. In this review, we discuss somatic mosaicism in various tissues and its clinical implications for human disease.


Assuntos
Biologia , Mosaicismo , Humanos , Mutação/genética
18.
Expert Rev Mol Diagn ; 20(12): 1259-1263, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33210965

RESUMO

Background: LOY is associated with ageing and increase the incidence of cancers. Aims: To elucidate the role of LOY in various cancer types, namely, prostate (PRT), pancreatic (PC), and colorectal (CRC) cancers in males. Material and Methods: Fifty CRC patients [mean age = 44.58±11.2 years], fifty PRT [mean age= 60.48± 17.07 years] and fifty PC [mean age = 48.74 ±16.45 years] along with 100 healthy controls [mean age= 54.06 ±15.04 years] were recruited. DNA was isolated from peripheral blood and was subjected to multiplex QF-PCR. The Y/X ratio was calculated from the peak height. Results: The mean Y/X ratio was lower in all patients with cancers (0.875333± 0.086; p value˂ 0.0001) than in controls (1.11 ± 0.071), as well as, in CRC (0.926±0.192; p value˂0.0001), PC (0.85 ± 0.0311; p value˂0.0001) and PRT (0.85±0.122; p value˂0.0001) when calculated separately. Multivariate logistic regression analysis was used to analyze the strength of the presence of cancer prediction using the percentage of LOY and age showed that LOY (p= 0.001) is a better predictor of cancer presence than age (p= 0.359). Conclusion: LOY in blood could be a predictive biomarker in the carcinogenesis of males.


Assuntos
Deleção Cromossômica , Cromossomos Humanos Y , Neoplasias Colorretais/genética , Predisposição Genética para Doença , Neoplasias Pancreáticas/genética , Neoplasias da Próstata/genética , Adulto , Idoso , Biomarcadores Tumorais , Estudos de Casos e Controles , Cromossomos Humanos X , Neoplasias Colorretais/diagnóstico , Estudos de Associação Genética , Humanos , Masculino , Pessoa de Meia-Idade , Reação em Cadeia da Polimerase Multiplex , Neoplasias Pancreáticas/diagnóstico , Neoplasias da Próstata/diagnóstico
19.
Int J Mol Sci ; 21(13)2020 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-32605299

RESUMO

Sex has not received enough attention as an important biological variable in basic research, even though the sex of cells often affects cell proliferation, differentiation, apoptosis, and response to stimulation. Knowing and considering the sex of cells used in basic research is essential as preclinical and clinical studies are planned based on basic research results. Cell lines derived from tumor have been widely used for proof-of-concept experiments. However, cell lines may have limitations in testing the effect of sex on cell level, as chromosomal abnormality is the single most characteristic feature of tumor. To examine the status of sex chromosomes in a cell line, 12 commercially available gastric carcinoma (GC) cell lines were analyzed using several different methods. Loss of Y chromosome (LOY) accompanied with X chromosome duplication was found in three (SNU-484, KATO III, and MKN-1) out of the six male-derived cell lines, while one cell line (SNU-638) showed at least partial deletion in the Y chromosome. Two (SNU-5 and MKN-28) out of six female-derived cell lines showed a loss of one X chromosome, while SNU-620 gained one extra copy of the X chromosome, resulting in an XXX karyotype. We found that simple polymerase chain reaction (PCR)-based sex determination gives a clue for LOY for male-derived cells, but it does not provide detailed information for the gain or loss of the X chromosome. Our results suggest that carefully examining the sex chromosome status of cell lines is necessary before using them to test the effect of sex on cell level.


Assuntos
Aberrações Cromossômicas , Cromossomos Humanos X/genética , Cromossomos Humanos Y/genética , Neoplasias Gástricas/genética , Neoplasias Gástricas/patologia , Feminino , Humanos , Cariotipagem , Masculino , Células Tumorais Cultivadas
20.
Cancers (Basel) ; 12(3)2020 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-32182822

RESUMO

Loss of Y-chromosome (LOY) is associated with increased cancer mortality in males. The prevalence of LOY in male breast cancer (BC) is unknown. The aim of this study is to assess the presence and prognostic effect of LOY during male BC progression. We included male BC patients diagnosed between 1989 and 2009 (n = 796). A tissue microarray (TMA) was constructed to perform immunohistochemistry and fluorescent in situ hybridization (FISH), using an X and Y probe. We also performed this FISH on a selected number of patients using whole tissue slides to study LOY during progression from ductal carcinoma in situ (DCIS) to invasive BC. In total, LOY was present in 12.7% (n = 92) of cases, whereby LOY was associated with ER and PR negative tumors (p = 0.017 and p = 0.01). LOY was not associated with the outcome. Using whole slides including invasive BC and adjacent DCIS (n = 22), we detected a concordant LOY status between both components in 17 patients. In conclusion, LOY is an early event in male breast carcinogenesis, which generally starts at the DCIS stage and is associated with ER and PR negative tumors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA