Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 191: 34-41, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36179517

RESUMO

The natural mechanism of underlying the low nitrogen (N) tolerance of wild bermudagrass (Cynodon dactylon (L.) Pers.) germplasm was important for reducing N fertilizer input to turf while also maintaining acceptable turf quality. The growth, N uptake, assimilation and remobilization of two wild bermudagrass accessions (C291, low N tolerant and C716, low N sensitive) were determined under low N (0.5 mM) and control N (5 mM) levels. C291 exhibited lower reduction in shoot and plant dry weight than C716. Furthermore, C291 presented a lower decrease in 15NO3- influx compared with C716, maintained its root dry weight and root surface and showed obviously enhanced CyNRT2.2 and CyNRT2.3 expression resulting in higher shoot NO3--N content than the control. Moreover, in C291, nitrate reductase (NR) activity had no significant difference with control, and cytosolic glutamine synthetase (GS1) protein content, glutamate synthetase (GOGAT) activity and glutamate dehydrogenase (GDH) activity higher than control, result in the soluble protein and free amino acid contents in the shoots did not differ compared with that in the control under low N conditions. Overall, the low N tolerant wild bermudagrass accessions adopted a low N supply based on improved root N uptake ability to achieve more nitrate to kept shoot N assimilation, and meanwhile increased N remobilization in the shoots, thereby maintaining a better N status in bermudagrass. The findings may help elucidate the low N tolerance mechanisms in bermudagrass and therefore facilitate genetic improvement of N use efficiency aiming to promote low-input turfgrass management.


Assuntos
Cynodon , Nitrogênio , Aminoácidos/metabolismo , Cynodon/metabolismo , Fertilizantes , Glutamato Desidrogenase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Glutamatos/metabolismo , Nitrato Redutases/metabolismo , Nitratos/metabolismo , Nitrogênio/metabolismo
2.
BMC Plant Biol ; 21(1): 480, 2021 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-34674655

RESUMO

BACKGROUND: Nitrogen (N) is an essential macronutrient that significantly affects turf quality. Commercial cultivars of bermudagrass (Cynodon dactylon (L.) Pers.) require large amounts of nitrogenous fertilizer. Wild bermudagrass germplasm from natural habitats with poor nutrition and diverse N distributions is an important source for low-N-tolerant cultivated bermudagrass breeding. However, the mechanisms underlying the differences in N utilization among wild germplasm resources of bermudagrass are not clear. RESULTS: To clarify the low N tolerance mechanism in wild bermudagrass germplasm, the growth, physiology, metabolome and transcriptome of two wild accessions, C291 (low-N-tolerant) and C716 (low-N-sensitive), were investigated. The results showed that root growth was less inhibited in low-N-tolerant C291 than in low-N-sensitive C716 under low N conditions; the root dry weight, soluble protein content and free amino acid content of C291 did not differ from those of the control, while those of C716 were significantly decreased. Down-regulation of N acquisition, primary N assimilation and amino acid biosynthesis was less pronounced in C291 than in C716 under low N conditions; glycolysis and the tricarboxylic acid (TCA) cycle pathway were also down-regulated, accompanied by a decrease in the biosynthesis of amino acids; strikingly, processes such as translation, biosynthesis of the structural constituent of ribosome, and the expression of individual aminoacyl-tRNA synthetase genes, most of genes associated with ribosomes related to protein synthesis were all up-regulated in C291, but down-regulated in C716. CONCLUSIONS: Overall, low-N-tolerant wild bermudagrass tolerated low N nutrition by reducing N primary assimilation and amino acid biosynthesis, while promoting the root protein synthesis process and thereby maintaining root N status and normal growth.


Assuntos
Cynodon/genética , Regulação da Expressão Gênica de Plantas , Metaboloma , Nitrogênio/deficiência , Proteínas de Plantas/metabolismo , Estresse Fisiológico , Transcriptoma , Cynodon/metabolismo , Nitrogênio/metabolismo , Melhoramento Vegetal , Proteínas de Plantas/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Banco de Sementes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA