Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
1.
J Thorac Dis ; 16(8): 5248-5261, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39268127

RESUMO

Background: Recent studies have observed the relationships of circulatory and dietary intake of branched-chain amino acids (BCAAs) with long-term risk of certain cancers. However, the exact causality of BCAA with lung cancer (LUCA) and its pathological subtypes remains obscure. The aim of this study is to investigate the association between BCAA metabolism and risk of LUCA. Methods: Here we conducted Mendelian randomization (MR) and observational epidemiological analyses to investigate the association between BCAA and risk of LUCA. With single nucleotide polymorphism (SNP)-phenotype association data extracted from genome-wide association studies (GWAS), we performed univariate and multivariate MR analyses to infer the causal effect of circulatory BCAA concentrations on LUCA. We further investigated the effects of several potential mediators and quantified the mediation effects. Population-level analyses were performed in the National Health and Nutrition Examination Survey (NHANES) III. Results: Our results demonstrated that genetically predicted circulatory valine concentrations causally increased the risk of overall LUCA [odds ratio (OR) =1.324, 95% confidence interval (CI): 1.058-1.658, P=0.01]. For pathological subgroups, elevated levels of leucine, isoleucine, valine, and total BCAA were founded to be significantly associated with a higher risk of squamous cell lung cancer (LUSC); however, they did not significantly affect lung adenocarcinoma (LUAD). Moreover, body mass index (BMI) mediated approximately 3.91% (95% CI: 1.22-7.18%) of the total effect of leucine on LUSC. In the NHANES III population, dietary total BCAA intake was significantly associated with BMI ≥30 kg/m2, while no non-linear relationships were observed. Conclusions: This study provides genetic evidence for the histology-specific causality of BCAA on LUCA and implies the mediation role of BMI in this relationship. Further studies are needed to confirm these findings and elucidate the underlying mechanisms.

2.
J Mol Evol ; 92(5): 539-549, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39244680

RESUMO

Abiogenesis is frequently envisioned as a linear, ladder-like progression of increasingly complex chemical systems, eventually leading to the ancestors of extant cellular life. This "pre-cladistics" view is in stark contrast to the well-accepted principles of organismal evolutionary biology, as informed by paleontology and phylogenetics. Applying this perspective to origins, I explore the paradigm of "Stem Life," which embeds abiogenesis within a broader continuity of diversification and extinction of both hereditary lineages and chemical systems. In this new paradigm, extant life's ancestral lineage emerged alongside and was dependent upon many other complex prebiotic chemical systems, as part of a diverse and fecund prebiosphere. Drawing from several natural history analogies, I show how this shift in perspective enriches our understanding of Origins and directly informs debates on defining Life, the emergence of the Last Universal Common Ancestor (LUCA), and the implications of prebiotic chemical experiments.


Assuntos
Evolução Biológica , Origem da Vida , Prebióticos , Filogenia
3.
J Mol Evol ; 92(5): 593-604, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39259330

RESUMO

The Last Common Ancestor (LCA) is understood as a hypothetical population of organisms from which all extant living creatures are thought to have descended. Its biology and environment have been and continue to be the subject of discussions within the scientific community. Since the first bacterial genomes were obtained, multiple attempts to reconstruct the genetic content of the LCA have been made. In this review, we compare 10 of the most extensive reconstructions of the gene content possessed by the LCA as they relate to aspects of the translation machinery. Although each reconstruction has its own methodological biases and many disagree in the metabolic nature of the LCA all, to some extent, indicate that several components of the translation machinery are among the most conserved genetic elements. The datasets from each reconstruction clearly show that the LCA already had a largely complete translational system with a genetic code already in place and therefore was not a progenote. Among these features several ribosomal proteins, transcription factors like IF2, EF-G, and EF-Tu and both class I and class II aminoacyl tRNA synthetases were found in essentially all reconstructions. Due to the limitations of the various methodologies, some features such as the occurrence of rRNA posttranscriptional modified bases are not fully addressed. However, conserved as it is, non-universal ribosomal features found in various reconstructions indicate that LCA's translation machinery was still evolving, thereby acquiring the domain specific features in the process. Although progenotes from the pre-LCA likely no longer exist recent results obtained by unraveling the early history of the ribosome and other genetic processes can provide insight to the nature of the pre-LCA world.


Assuntos
Bactérias , Evolução Molecular , Biossíntese de Proteínas , Biossíntese de Proteínas/genética , Bactérias/genética , Bactérias/metabolismo , Filogenia , Código Genético , Aminoacil-tRNA Sintetases/genética , Aminoacil-tRNA Sintetases/metabolismo , Proteínas Ribossômicas/genética , Ribossomos/genética , Ribossomos/metabolismo , Genoma Bacteriano
4.
Genes (Basel) ; 15(9)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39336786

RESUMO

From the most ancient RNAs, which followed an RNY pattern and folded into small hairpins, modern RNA molecules evolved by two different pathways, dubbed Extended Genetic Code 1 and 2, finally conforming to the current standard genetic code. Herein, we describe the evolutionary path of the RNAome based on these evolutionary routes. In general, all the RNA molecules analysed contain portions encoded by both genetic codes, but crucial features seem to be better recovered by Extended 2 triplets. In particular, the whole Peptidyl Transferase Centre, anti-Shine-Dalgarno motif, and a characteristic quadruplet of the RNA moiety of RNAse-P are clearly unveiled. Differences between bacteria and archaea are also detected; in most cases, the biological sequences are more stable than their controls. We then describe an evolutionary trajectory of the RNAome formation, based on two complementary evolutionary routes: one leading to the formation of essentials, while the other complemented the molecules, with the cooperative assembly of their constituents giving rise to modern RNAs.


Assuntos
Archaea , Evolução Molecular , RNA , Archaea/genética , RNA/genética , Bactérias/genética , Código Genético , Conformação de Ácido Nucleico , RNA Bacteriano/genética
5.
Biosystems ; 244: 105287, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39127441

RESUMO

I analyzed the polyphyletic origin of glycyl-tRNA synthetase (GlyRS) and lysyl-tRNA synthetase (LysRS), making plausible the following implications. The fact that the genetic code needed to evolve aminoacyl-tRNA synthetases (ARSs) only very late would be in perfect agreement with a late origin, in the main phyletic lineages, of both GlyRS and LysRS. Indeed, as suggested by the coevolution theory, since the genetic code was structured by biosynthetic relationships between amino acids and as these occurred on tRNA-like molecules which were evidently already loaded with amino acids during its structuring, this made possible a late origin of ARSs. All this corroborates the coevolution theory of the origin of the genetic code to the detriment of theories which would instead predict an early intervention of the action of ARSs in organizing the genetic code. Furthermore, the assembly of the GlyRS and LysRS protein domains in main phyletic lineages is itself at least evidence of the possibility that ancestral genes were assembled using pieces of genetic material that coded these protein domains. This is in accordance with the exon theory of genes which postulates that ancestral exons coded for protein domains or modules that were assembled to form the first genes. This theory is exemplified precisely in the evolution of both GlyRS and LysRS which occurred through the assembly of protein domains in the main phyletic lineages, as analyzed here. Furthermore, this late assembly of protein domains of these proteins into the two main phyletic lineages, i.e. a polyphyletic origin of both GlyRS and LysRS, appears to corroborate the progenote evolutionary stage for both LUCA and at least the first part of the evolutionary stages of the ancestor of bacteria and that of archaea. Indeed, this polyphyletic origin would imply that the genetic code was still evolving because at least two ARSs, i.e. proteins that make the genetic code possible today, were still evolving. This would imply that the evolutionary stages involved were characterized not by cells but by protocells, that is, by progenotes because this is precisely the definition of a progenote. This conclusion would be strengthened by the observation that both GlyRS and LysRS originating in the phyletic lineages leading to bacteria and archaea, would demonstrate that, more generally, proteins were most likely still in rapid and progressive evolution. Namely, a polyphyletic origin of proteins which would qualify at least the initial phase of the evolutionary stage of the ancestor of bacteria and that of archaea as stages belonging to the progenote.


Assuntos
Evolução Molecular , Código Genético , Glicina-tRNA Ligase , Lisina-tRNA Ligase , Filogenia , Código Genético/genética , Lisina-tRNA Ligase/genética , Lisina-tRNA Ligase/metabolismo , Glicina-tRNA Ligase/genética , Glicina-tRNA Ligase/metabolismo , Archaea/genética , Archaea/enzimologia , Bactérias/genética , Bactérias/enzimologia
6.
J Mol Evol ; 92(5): 550-583, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39158619

RESUMO

The existence of LUCA in the distant past is the logical consequence of the binary mechanism of cell division. The biosphere in which LUCA and contemporaries were living was the product of a long cellular evolution from the origin of life to the second age of the RNA world. A parsimonious scenario suggests that the molecular fabric of LUCA was much simpler than those of modern organisms, explaining why the evolutionary tempo was faster at the time of LUCA than it was during the diversification of the three domains. Although LUCA was possibly equipped with a RNA genome and most likely lacked an ATP synthase, it was already able to perform basic metabolic functions and to produce efficient proteins. However, the proteome of LUCA and its inferred metabolism remains to be correctly explored by in-depth phylogenomic analyses and updated datasets. LUCA was probably a mesophile or a moderate thermophile since phylogenetic analyses indicate that it lacked reverse gyrase, an enzyme systematically present in all hyperthermophiles. The debate about the position of Eukarya in the tree of life, either sister group to Archaea or descendants of Archaea, has important implications to draw the portrait of LUCA. In the second alternative, one can a priori exclude the presence of specific eukaryotic features in LUCA. In contrast, if Archaea and Eukarya are sister group, some eukaryotic features, such as the spliceosome, might have been present in LUCA and later lost in Archaea and Bacteria. The nature of the LUCA virome is another matter of debate. I suggest here that DNA viruses only originated during the diversification of the three domains from an RNA-based LUCA to explain the odd distribution pattern of DNA viruses in the tree of life.


Assuntos
Archaea , Filogenia , Ribossomos , Archaea/genética , Ribossomos/genética , Ribossomos/metabolismo , Eucariotos/genética , Evolução Molecular , Evolução Biológica
7.
J Mol Evol ; 92(5): 605-617, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39017923

RESUMO

Biogenic volatile organic compounds (VOCs) constitute a significant portion of gas-phase metabolites in modern ecosystems and have unique roles in moderating atmospheric oxidative capacity, solar radiation balance, and aerosol formation. It has been theorized that VOCs may account for observed geological and evolutionary phenomena during the Archaean, but the direct contribution of biology to early non-methane VOC cycling remains unexplored. Here, we provide an assessment of all potential VOCs metabolized by the last universal common ancestor (LUCA). We identify enzyme functions linked to LUCA orthologous protein groups across eight literature sources and estimate the volatility of all associated substrates to identify ancient volatile metabolites. We hone in on volatile metabolites with confirmed modern emissions that exist in conserved metabolic pathways and produce a curated list of the most likely LUCA VOCs. We introduce volatile organic metabolites associated with early life and discuss their potential influence on early carbon cycling and atmospheric chemistry.


Assuntos
Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/metabolismo , Planeta Terra , Redes e Vias Metabólicas , Archaea/metabolismo , Archaea/genética , Evolução Biológica , Atmosfera/química , Ecossistema
8.
Viruses ; 16(7)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-39066224

RESUMO

Virus taxonomy uses a Linnaean-like subsumption hierarchy to classify viruses into taxonomic units at species and higher rank levels. Virus species are considered monophyletic groups of mobile genetic elements (MGEs) often delimited by the phylogenetic analysis of aligned genomic or metagenomic sequences. Taxonomic units are assumed to be independent organizational, functional and evolutionary units that follow a 'natural history' rationale. Here, I use phylogenomic and other arguments to show that viruses are not self-standing genetically-driven systems acting as evolutionary units. Instead, they are crucial components of holobionts, which are units of biological organization that dynamically integrate the genetics, epigenetic, physiological and functional properties of their co-evolving members. Remarkably, phylogenomic analyses show that viruses share protein domains and loops with cells throughout history via massive processes of reticulate evolution, helping spread evolutionary innovations across a wider taxonomic spectrum. Thus, viruses are not merely MGEs or microbes. Instead, their genomes and proteomes conduct cellularly integrated processes akin to those cataloged by the GO Consortium. This prompts the generation of compositional hierarchies that replace the 'is-a-kind-of' by a 'is-a-part-of' logic to better describe the mereology of integrated cellular and viral makeup. My analysis demands a new paradigm that integrates virus taxonomy into a modern evolutionarily centered taxonomy of organisms.


Assuntos
Evolução Molecular , Genoma Viral , Filogenia , Domínios Proteicos , Vírus , Vírus/genética , Vírus/classificação , Genômica/métodos
9.
Microorganisms ; 12(4)2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38674651

RESUMO

Isoprenoids and their derivatives, essential for all cellular life on Earth, are particularly crucial in archaeal membrane lipids, suggesting that their biosynthesis pathways have ancient origins and play pivotal roles in the evolution of early life. Despite all eukaryotes, archaea, and a few bacterial lineages being known to exclusively use the mevalonate (MVA) pathway to synthesize isoprenoids, the origin and evolutionary trajectory of the MVA pathway remain controversial. Here, we conducted a thorough comparison and phylogenetic analysis of key enzymes across the four types of MVA pathway, with the particular inclusion of metagenome assembled genomes (MAGs) from uncultivated archaea. Our findings support an archaeal origin of the MVA pathway, likely postdating the divergence of Bacteria and Archaea from the Last Universal Common Ancestor (LUCA), thus implying the LUCA's enzymatic inability for isoprenoid biosynthesis. Notably, the Asgard archaea are implicated in playing central roles in the evolution of the MVA pathway, serving not only as putative ancestors of the eukaryote- and Thermoplasma-type routes, but also as crucial mediators in the gene transfer to eukaryotes, possibly during eukaryogenesis. Overall, this study advances our understanding of the origin and evolutionary history of the MVA pathway, providing unique insights into the lipid divide and the evolution of early life.

10.
Biosystems ; 239: 105199, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38641198

RESUMO

Over the past quarter-century, the field of evolutionary biology has been transformed by the emergence of complete genome sequences and the conceptual framework known as the 'Net of Life.' This paradigm shift challenges traditional notions of evolution as a tree-like process, emphasizing the complex, interconnected network of gene flow that may blur the boundaries between distinct lineages. In this context, gene loss, rather than horizontal gene transfer, is the primary driver of gene content, with vertical inheritance playing a principal role. The 'Net of Life' not only impacts our understanding of genome evolution but also has profound implications for classification systems, the rapid appearance of new traits, and the spread of diseases. Here, we explore the core tenets of the 'Net of Life' and its implications for genome-scale phylogenetic divergence, providing a comprehensive framework for further investigations in evolutionary biology.


Assuntos
Evolução Molecular , Fluxo Gênico , Genoma , Animais , Humanos , Transferência Genética Horizontal , Genoma/genética , Modelos Genéticos , Filogenia
11.
Life (Basel) ; 14(2)2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38398735

RESUMO

The path from life's origin to the emergence of the eukaryotic cell was long and complex, and as such it is rarely treated in one publication. Here, we offer a sketch of this path, recognizing that there are points of disagreement and that many transitions are still shrouded in mystery. We assume life developed within microchambers of an alkaline hydrothermal vent system. Initial simple reactions were built into more sophisticated reflexively autocatalytic food-generated networks (RAFs), laying the foundation for life's anastomosing metabolism, and eventually for the origin of RNA, which functioned as a genetic repository and as a catalyst (ribozymes). Eventually, protein synthesis developed, leading to life's biology becoming dominated by enzymes and not ribozymes. Subsequent enzymatic innovation included ATP synthase, which generates ATP, fueled by the proton gradient between the alkaline vent flux and the acidic sea. This gradient was later internalized via the evolution of the electron transport chain, a preadaptation for the subsequent emergence of the vent creatures from their microchamber cradles. Differences between bacteria and archaea suggests cellularization evolved at least twice. Later, the bacterial development of oxidative phosphorylation and the archaeal development of proteins to stabilize its DNA laid the foundation for the merger that led to the formation of eukaryotic cells.

12.
Biosystems ; 237: 105159, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38373543

RESUMO

I support the hypothesis that the origin of the genetic code occurred simultaneously with the evolution of cellularity. That is to say, I favour the hypothesis that the origin of the genetic code is a very, very late event in the history of life on Earth. I corroborate this hypothesis with observations favouring the progenote's stage for the Last Universal Common Ancestor (LUCA), for the ancestor of bacteria and that of archaea. Indeed, these progenotic stages would imply that - at that time - the origin of the genetic code was still ongoing simply because this origin would fall within the very definition of progenote. Therefore, if the evolution of cellularity had truly been coeval with the origin of the genetic code - at least in its terminal part - then this would favour theories such as the coevolution theory of the origin of the genetic code because this theory would postulate that this origin must have occurred in extremely complex protocellular conditions and not concerning stereochemical or physicochemical interactions having to do with other stages of the origin of life. In this sense, the coevolution theory would be corroborated while the stereochemical and physicochemical theories would be damaged. Therefore, the origin of the genetic code would be linked to the origin of the cell and not to the origin of life as sometimes asserted. Therefore, I will discuss the late hypothesis of the origin of the genetic code in the context of the theories proposed to explain this origin and more generally of its implications for the early evolution of life.


Assuntos
Evolução Molecular , Código Genético , Código Genético/genética , Bactérias/genética , Archaea/genética
13.
Genes (Basel) ; 14(12)2023 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-38136981

RESUMO

It is widely accepted that the earliest RNA molecules were folded into hairpins or mini-helixes. Herein, we depict the 2D and 3D conformations of those earliest RNA molecules with only RNY triplets, which Eigen proposed as the primeval genetic code. We selected 26 species (13 bacteria and 13 archaea). We found that the free energy of RNY hairpins was consistently lower than that of their corresponding shuffled controls. We found traces of the three ribosomal RNAs (16S, 23S, and 5S), tRNAs, 6S RNA, and the RNA moieties of RNase P and the signal recognition particle. Nevertheless, at this stage of evolution there was no genetic code (as seen in the absence of the peptidyl transferase centre and any vestiges of the anti-Shine-Dalgarno sequence). Interestingly, we detected the anticodons of both glycine (GCC) and threonine (GGU) in the hairpins of proto-tRNA.


Assuntos
Evolução Molecular , Código Genético , RNA de Transferência/genética , RNA/genética , Bactérias/genética
14.
Curr Biol ; 33(22): 5023-5033.e4, 2023 11 20.
Artigo em Inglês | MEDLINE | ID: mdl-37913770

RESUMO

Many proteins exist in the so-called "twilight zone" of sequence alignment, where low pairwise sequence identity makes it difficult to determine homology and phylogeny.1,2 As protein tertiary structure is often more conserved,3 recent advances in ab initio protein folding have made structure-based identification of putative homologs feasible.4,5,6 We present a pipeline for the identification and characterization of distant homologs and apply it to 7-transmembrane-domain ion channels (7TMICs), a protein group founded by insect odorant and gustatory receptors. Previous sequence and limited structure-based searches identified putatively related proteins, mainly in other animals and plants.7,8,9,10 However, very few 7TMICs have been identified in non-animal, non-plant taxa. Moreover, these proteins' remarkable sequence dissimilarity made it uncertain whether disparate 7TMIC types (Gr/Or, Grl, GRL, DUF3537, PHTF, and GrlHz) are homologous or convergent, leaving their evolutionary history unresolved. Our pipeline identified thousands of new 7TMICs in archaea, bacteria, and unicellular eukaryotes. Using graph-based analyses and protein language models to extract family-wide signatures, we demonstrate that 7TMICs have structure and sequence similarity, supporting homology. Through sequence- and structure-based phylogenetics, we classify eukaryotic 7TMICs into two families (Class-A and Class-B), which are the result of a gene duplication predating the split(s) leading to Amorphea (animals, fungi, and allies) and Diaphoretickes (plants and allies). Our work reveals 7TMICs as a cryptic superfamily, with origins close to the evolution of cellular life. More generally, this study serves as a methodological proof of principle for the identification of extremely distant protein homologs.


Assuntos
Archaea , Proteínas , Humanos , Animais , Sequência de Aminoácidos , Alinhamento de Sequência , Proteínas/genética , Archaea/genética , Plantas/genética , Filogenia , Evolução Molecular
15.
Arch Microbiol ; 205(12): 366, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37917352

RESUMO

The PVC superphylum is a diverse group of prokaryotes that require stringent growth conditions. RNA is a fascinating molecule to find evolutionary relatedness according to the RNA World Hypothesis. We conducted tRNA gene analysis to find evolutionary relationships in the PVC phyla. The analysis of genomic data (P = 9, V = 4, C = 8) revealed that the number of tRNA genes varied from 28 to 90 in Planctomycetes and Chlamydia, respectively. Verrucomicrobia has whole genomes and the longest scaffold (3 + 1), with tRNA genes ranging from 49 to 53 in whole genomes and 4 in the longest scaffold. Most tRNAs in the E. coli genome clustered with homologs, but approximately 43% clustered with tRNAs encoding different amino acids. Planctomyces, Akkermansia, Isosphaera, and Chlamydia were similar to E. coli tRNAs. In a phylum, tRNAs coding for different amino acids clustered at a range of 8 to 10%. Further analysis of these tRNAs showed sequence similarity with Cyanobacteria, Proteobacteria, Viridiplantae, Ascomycota and Basidiomycota (Eukaryota). This indicates the possibility of horizontal gene transfer or, otherwise, a different origin of tRNA in PVC bacteria. Hence, this work proves its importance for determining evolutionary relatedness and potentially identifying bacteria using tRNA. Thus, the analysis of these tRNAs indicates that primitive RNA may have served as the genetic material of LUCA before being replaced by DNA. A quantitative analysis is required to test these possibilities that relate the evolutionary significance of tRNA to the origin of life.


Assuntos
Escherichia coli , RNA de Transferência , Escherichia coli/genética , RNA de Transferência/genética , RNA de Transferência/metabolismo , Verrucomicrobia/genética , Aminoácidos/metabolismo , Planctomicetos , Evolução Molecular
16.
Biosystems ; 233: 105014, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37652180

RESUMO

I analysed the similarity gradient observed in protein families - of phylogenetically deep fundamental traits - of bacteria and archaea, ranging from cases such as the core of the DNA replication apparatus where there is no sequence similarity between the proteins involved, to cases in which, as in the translation initiation factors, only some proteins involved would be homologs, to cases such as for aminoacyl-tRNA synthetases in which most of the proteins involved would be homologs. This pattern of similarity between bacteria and archaea would seem to be a very clear indication of a transitional evolutionary stage that preceded both the Last Bacterial Common Ancestor and the Last Archaeal Common Ancestor, i.e. progenotic stages. Indeed, this similarity pattern would seem to exemplify an ongoing transition as all the evolutionary phases would be represented in it. Instead, in the cellular stage it is expected that these evolutionary phases should have already been overcome, i.e. completed, and therefore no longer detectable. In fact, if we had really been in the presence of the prokaryotic stage then we should not have observed this similarity pattern in proteins involved in defining the ancestral characters of bacteria and archaea, as the completion of the different cellular structures should have required a very low number of proteins to be late evolved in lineages leading to bacteria and archaea. Indeed, the already reached state of the Prokaryote would have determined complete cellular structures therefore a total absence of proteins to evolve independently in the two main phyletic lineages and able to complete the evolution of a particular character already evidently in a definitive state, which, on the other hand, does not appear to have been the case. All this would have prevented the formation of this pattern of similarity which instead would appear to be real. In conclusion, the existence of this pattern of similarity observed in the families of homologous proteins of bacteria and archaea would imply the absence of the evolutionary stage of the Prokaryote and consequently a progenotic status to be assigned to the LUCA. Indeed, the LUCA stage would have been a stage of evolutionary transition because it is belatedly marked by the presence of all the different evolutionary phases, evidently more easily interpretable within the definition of progenote than that of genote precisely because they are inherent in an evolutionary transition and not to an evolution that has already been achieved. Finally, I discuss the importance of these arguments for the polyphyletic origin of proteins.

17.
Front Microbiol ; 14: 1239189, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37601379

RESUMO

Energy metabolism in extant life is centered around phosphate and the energy-dense phosphoanhydride bonds of adenosine triphosphate (ATP), a deeply conserved and ancient bioenergetic system. Yet, ATP synthesis relies on numerous complex enzymes and has an autocatalytic requirement for ATP itself. This implies the existence of evolutionarily simpler bioenergetic pathways and potentially primordial alternatives to ATP. The centrality of phosphate in modern bioenergetics, coupled with the energetic properties of phosphorylated compounds, may suggest that primordial precursors to ATP also utilized phosphate in compounds such as pyrophosphate, acetyl phosphate and polyphosphate. However, bioavailable phosphate may have been notably scarce on the early Earth, raising doubts about the roles that phosphorylated molecules might have played in the early evolution of life. A largely overlooked phosphorus redox cycle on the ancient Earth might have provided phosphorus and energy, with reduced phosphorus compounds potentially playing a key role in the early evolution of energy metabolism. Here, we speculate on the biological phosphorus compounds that may have acted as primordial energy currencies, sources of environmental energy, or sources of phosphorus for the synthesis of phosphorylated energy currencies. This review encompasses discussions on the evolutionary history of modern bioenergetics, and specifically those pathways with primordial relevance, and the geochemistry of bioavailable phosphorus on the ancient Earth. We highlight the importance of phosphorus, not only in the form of phosphate, to early biology and suggest future directions of study that may improve our understanding of the early evolution of bioenergetics.

18.
Proteins ; 91(9): 1298-1315, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37519023

RESUMO

Amyloid-based prions have simple structures, a wide phylogenetic distribution, and a plethora of functions in contemporary organisms, suggesting they may be an ancient phenomenon. However, this hypothesis has yet to be addressed with a systematic, computational, and experimental approach. Here we present a framework to help guide future experimental verification of candidate prions with conserved functions to understand their role in the early stages of evolution and potentially in the origins of life. We identified candidate prions in all high-quality proteomes available in UniProt computationally, assessed their phylogenomic distributions, and analyzed candidate-prion functional annotations. Of the 27 980 560 proteins scanned, 228 561 were identified as candidate prions (~0.82%). Among these candidates, there were 84 Gene Ontology (GO) terms conserved across the three domains of life. We found that candidate prions with a possible role in adaptation were particularly well-represented within this group. We discuss unifying features of candidate prions to elucidate the primeval roles of prions and their associated functions. Candidate prions annotated as transcription factors, DNA binding, and kinases are particularly well suited to generating diverse responses to changes in their environment and could allow for adaptation and population expansion into more diverse environments. We hypothesized that a relationship between these functions and candidate prions could be evolutionarily ancient, even if individual prion domains themselves are not evolutionarily conserved. Candidate prions annotated with these universally occurring functions potentially represent the oldest extant prions on Earth and are therefore excellent experimental targets.

19.
Proc Natl Acad Sci U S A ; 120(18): e2303275120, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37094164

RESUMO

The presence of a cell membrane is one of the major structural components defining life. Recent phylogenomic analyses have supported the hypothesis that the last universal common ancestor (LUCA) was likely a diderm. Yet, the mechanisms that guided outer membrane (OM) biogenesis remain unknown. Thermotogae is an early-branching phylum with a unique OM, the toga. Here, we use cryo-electron tomography to characterize the in situ cell envelope architecture of Thermotoga maritima and show that the toga is made of extended sheaths of ß-barrel trimers supporting small (~200 nm) membrane patches. Lipidomic analyses identified the same major lipid species in the inner membrane (IM) and toga, including the rare to bacteria membrane-spanning ether-bound diabolic acids (DAs). Proteomic analyses revealed that the toga was composed of multiple SLH-domain containing Ompα and novel ß-barrel proteins, and homology searches detected variable conservations of these proteins across the phylum. These results highlight that, in contrast to the SlpA/OmpM superfamily of proteins, Thermotoga possess a highly diverse bipartite OM-tethering system. We discuss the implications of our findings with respect to other early-branching phyla and propose that a toga-like intermediate may have facilitated monoderm-to-diderm cell envelope transitions.


Assuntos
Bactérias , Proteômica , Membrana Celular , Parede Celular , Filogenia , Proteínas da Membrana Bacteriana Externa/genética
20.
Genome Biol Evol ; 15(4)2023 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-36951100

RESUMO

The origin of microbial mercury methylation has long been a mystery. Here, we employed genome-resolved phylogenetic analyses to decipher the evolution of the mercury-methylating gene, hgcAB, constrain the ancestral origin of the hgc operon, and explain the distribution of hgc in Bacteria and Archaea. We infer the extent to which vertical inheritance and horizontal gene transfer have influenced the evolution of mercury methylators and hypothesize that evolution of this trait bestowed the ability to produce an antimicrobial compound (MeHg+) on a potentially resource-limited early Earth. We speculate that, in response, the evolution of MeHg+-detoxifying alkylmercury lyase (encoded by merB) reduced a selective advantage for mercury methylators and resulted in widespread loss of hgc in Bacteria and Archaea.


Assuntos
Mercúrio , Compostos de Metilmercúrio , Metilação , Filogenia , Bactérias/genética , Archaea/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA