Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Food Chem ; 442: 138411, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38271901

RESUMO

Seeds of ten Andean lupin (Lupinus mutabilis Sweet) ecotypes were collected from different regions of Peru and treated with an aqueous debittering method. Both untreated and treated seeds were analyzed by using LC-MS to investigate flavonoid profiles of different ecotypes and impact of debittering process on these compounds. Thirteen isoflavones (mainly as glycosides of genistein and methoxy-genistein) and eight flavones (glycosylated apigenins and methyl-luteolins) were characterized as the main flavonoids in the seed samples. The untreated lupin seeds contained 187-252 mg/100 g (dry weight) of flavonoids. The main difference among lupin ecotypes was observed in the levels of genistein-malonylhexoside, methoxy-genistein-malonylhexoside, and methyl-luteolin-malonylhexoside. After the debittering treatment, the total flavonoid content in the seeds was decreased to 125-203 mg/100 g dry weight, the aglycones of genistein, methoxy-genistein, and methyl-luteolin being the key distinguishing compounds of ecotypes. The aqueous treatment was effective in degrading flavonoid glycosides and releasing the corresponding aglycones.


Assuntos
Lupinus , Flavonoides , Genisteína , Luteolina , Sementes , Glicosídeos
2.
Front Bioeng Biotechnol ; 10: 1087933, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36545685

RESUMO

In the last decades, the cultivation of quinoa and lupin became an important source of income for Andean farmers due to the demand for high nutrient-density foods from the Global North. The increase in the cultivation intensity caused by this exogenous demand led to the overexploitation of local ecosystems and a decrease in soil fertility. As an alternative to recover and improve soil quality, this work uses a pilot-scale auger pyrolysis reactor, implemented in the Andes, to assess the conversion of the agro residues generated in the post-harvesting processes of quinoa and lupin into biochar for soil amendment. Following the European Biochar Certificate guidelines, the pyrolyzed quinoa stems can be classified as biochar while the pyrolyzed quinoa husks can be classified as pyrogenic carbonaceous material. Both can be used for soil amendment considering their molar ratios (H/Corg, O/Corg) and carbon content. It was not possible to carbonize lupin stems and seedcases. Despite the altitude (2,632 m.a.s.l), the CO concentration during the carbonization of quinoa stems and husks were 1,024.4 and 559 mg/Nm3, this last, near the European eco-design standard of 500 mg/Nm3. A subsequent SWOT analysis showed the need to explore low-cost and low-complexity pyrolysis reactors that allow the decentralized conversion of agro residues at the farm-scale. The development of local standards to regulate the production and use of biochar is also essential to grant the safety of the processes, the quality of the products, and mobilize funds that allow implementation at relevant scales.

3.
J Sci Food Agric ; 102(15): 7282-7292, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35753031

RESUMO

BACKGROUND: The flours of two Andean crops, tarwi (Lupinus mutabilis) and kañiwa (Chenopodium pallidicaule Aellen), present an excellent nutritional profile for inclusion in vegan gluten-free muffin formulations. In this study, the proximal composition and techno-functional properties of tarwi and kañiwa flours, and the technological quality of batters and muffins (potato starch-based) formulated with 50% of these flours were evaluated. RESULTS: Andean flours have high protein, fiber, and fat content, and display high water and oil absorption. In premixes formulated with potato starch and Andean flours, a reduction in paste viscosity was observed due to starch dilution and lower water availability. Depending on their ability to interact with water, the batters formulated with these flours had a higher consistency. Confocal laser scanning micrographs showed that batters with Andean flours presented a complex matrix with dispersed starch granules surrounded by proteins and fiber fragments. Muffins made with Andean flours had a slightly lower specific volume than the control, but crumb hardness was not modified by tarwi flour (50%) and a mixture of tarwi (25%) and kañiwa (25%) flours. The intrinsic color of these flours modified crumb color, and their reducing sugar content also favored Maillard reactions in the crust. These color changes are desirable in gluten-free products because such products are frequently pale due to their high starch content. CONCLUSIONS: This study showed that tarwi and kañiwa flours are suitable for developing vegan, gluten-free muffins of good technological quality and improved nutritional profile, adding value to these underutilized ancestral flours. © 2022 Society of Chemical Industry.


Assuntos
Farinha , Veganos , Humanos , Dieta Livre de Glúten , Produtos Agrícolas , Amido/química , Fibras na Dieta , Água
4.
Adv Food Nutr Res ; 84: 287-343, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29555072

RESUMO

The Andes is considered the longest continental mountain range in the world. It covers 7000km long and about 200-700km wide and an average height of about 4000m. Very unique plant species are endemic of this area including fruits (e.g., lucuma, cherimoya, sweet pepino, sauco), roots and tubers (potatoes, sweet potatoes, yacón, chicuru, mashua, olluco, etc.), and seeds (quinoa, amaranth, tarwi, etc.). These crops have been used for centuries by the native population and relatively recently have gained the world attention due to the wide range of nutrients and/or phytochemicals they possess. In this chapter, main Andean fruits, seeds, and roots and tubers have been selected and detailed nutritional and functional information is provided. In addition, traditional and current uses are provided and their bioactive potential is reported based on published scientific literature.


Assuntos
Frutas , Tubérculos , Plantas Comestíveis , Plantas Medicinais , Sementes , Produtos Agrícolas , Alimento Funcional , Humanos , Compostos Fitoquímicos , Raízes de Plantas , América do Sul
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA