Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 447
Filtrar
1.
Heliyon ; 10(15): e34776, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-39165971

RESUMO

In recent years, there has been a growing interest in piezoelectric energy harvesting systems, particularly for their potential to recharge or replace batteries in energy-efficient electronic devices and wireless sensor networks. Nonetheless, the conventional linear piezoelectric energy harvesters (PEH) face limitations in ultra-low frequency vibrations (1-10 Hz) due to their narrow operating bandwidth and higher resonance frequencies. To address this, researchers explored compact shaped geometries, with spiral PEH being one such design to lower resonance frequencies by reducing structural stiffness. While trying to achieve this lower resonance frequency, spiral designs overlooked that they were spreading the stress across the structure. This was a significant drawback because it reduced the structure's ability to stress the piezoelectric transducer. The issue remains unaddressed, limiting the power generation of spiral beam harvesters. Furthermore, spiral structures also fail to broaden the operating bandwidth, posing additional constraints on their effectiveness. This study introduces a novel solution - the "branch spiral beam harvester," combining the benefits of both spiral and branch beam designs. The integration of the branch beam concept into the spiral structure aimed to broaden the effective frequency range and establish a concentrated stress area for the placement of the piezoelectric transducer. Finite Element Analysis (FEA) was employed to assess operating bandwidth and stress distribution, while experimental studies evaluated voltage and power generation. Once the workability was confirmed, a statistical optimisation method was introduced to tailor the harvester for specific frequencies in the ultra-low frequency range. Results indicated that the branch spiral beam harvester exhibits a wider operating bandwidth with six natural frequencies in the ultra-low frequency range. It harnessed significantly higher output voltages and power compared to conventional linear PEH. This innovation presents a promising advancement in piezoelectric energy harvesting, offering improved performance without the need for proof masses or additional accessories.

2.
J Microbiol Biol Educ ; : e0013324, 2024 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-39189729

RESUMO

It is well known that bacterial communities are an essential component to maintain the balance of terrestrial ecosystems due to the functions and services performed by microorganisms in the environment. The research seeking on alternative energy sources has shown that bacterial communities can bioconvert the chemical energy of an organic substrate into electrical energy, within devices known as microbial fuel cells. For this reason, this class project allows students of Biotechnology, Environmental Science, and Microbiology to apply the appropriate methodology to develop a class project throughout an environmental bacterial community capable of generating electrical energy.

3.
Int Microbiol ; 2024 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-39186133

RESUMO

Dermatophyte infections globally account for 20 to 25% of fungal infections. Dermatophytes have begun exhibiting antifungal drug resistance, making it challenging to treat this particular infection. Essential oils could be used as alternative solutions as they have been used for a long period to treat different infections. The research has demonstrated the antifungal efficacy of cinnamon, clove, lemongrass, tea tree, thyme, and garlic essential oils, and the impact of their combinations was assayed against Microsporum canis, Trichophyton tonsurans, T. violaceum, T. verrucosum, and Epidermophyton floccosum. Polymerase chain reaction (PCR)-restriction fragment length polymorphism (RFLP) was used to identify the most prevalent M. canis. The accession number of M. canis was obtained as ON007275. All tested essential oils exhibited antidermatophytic action except garlic. A synergistic effect was attained by cinnamon + clove, cinnamon + lemongrass, clove + lemongrass, clove + tea tree, and thyme + tea tree combinations. Concerning antifungal activity, M. canis was the most susceptible dermatophytic species, except in the case of thyme T. violaceum, which was the most susceptible dermatophytic species. The maximum inhibition was recorded in the cases of cinnamon and cinnamon + lemongrass combination against M. canis. The least minimum inhibitory concentrations were attained by cinnamon and clove against M. canis, cinnamon + clove against M. canis and T. violaceum, and cinnamon + lemongrass against M. canis, T. violaceum, T. verrucosum, and E. floccosum. The least minimum fungicidal concentration showed by cinnamon against M. canis, cinnamon + clove against M. canis and T. violaceum, cinnamon + lemongrass against M. canis, T. violaceum, T. verrucosum, and E. floccosum, and clove + lemongrass against M. canis.

4.
Biosens Bioelectron ; 264: 116693, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39167887

RESUMO

The microbial fuel cell (MFC) is a device that simultaneously achieves electricity generation and sewage degradation. In this study, a novel cathode catalyst metal-organic frameworks (MOFs) have been fabricated by two-step hydrothermal and dual-solution method (CuCo-MOF@ZIF-8). The synthesized trimetal MOFs exhibited a 3D badminton-like structure morphology and porosity. The results of the characterizations showed that CuCo-MOF@ZIF-8 possesses greater surface area porosity and novel functional groups. The Trimetal MOF-on-MOF mode not only demonstrated the stability of the structure but also enhanced its mechanism. Molecular mechanism analysis revealed changes in the organic ligand and metal binding site due to the transformation of Cu2+ to Cu+, Co2+ to Co3+, and Zn-N to Zn-O organic connection. Furthermore, differences between the two fabrication methods were compared. The solid-state single preparation (CuCo-MOF@ZIF-8-1), was synthesized using the two-step hydrothermal method; the liquid mixed preparation material (CuCo-MOF@ZIF-8-2), was synthesized using the dual-solution method; they exhibited completely different chemical structures and morphologies during material testing and characterization. The maximum output power density of CuCo-MOF@ZIF-8-2-MFC was 246.38 mW/m2, about 2.49 times of ZIF-8 (98.72 mW/m2). The output voltage of CuCo-MOF@ZIF-8-1-MFC was measured at 357 mV over 10 d, while that of CuCo-MOF@ZIF-8-2-MFC reached 365 mV over 12 d.

5.
J Hazard Mater ; 476: 135179, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39003811

RESUMO

Basalt fiber (BF) with modification of iron (Fe-MBF) and calcium (Ca-MBF) were filled into constructed wetland-microbial fuel cell (CW-MFC) for innovative comparison of improved performance under perfluorooctanoic acid (PFOA) exposure. More enhancement on nitrogen and phosphorus removal was observed by Fe-MBF than Ca-MBF, with significant increase of ammonium (NH4+-N) removal by 3.36-5.66 % (p < 0.05) compared to control, even under PFOA stress. Markedly higher removal efficiency of PFOA by 4.76-8.75 % (p < 0.05) resulted from Fe-MBF, compared to Ca-MBF and control BF groups. Besides, superior electrochemical performance was found in Fe-MBF group, with maximum power density 28.65 % higher than control. Fe-MBF caused higher abundance of dominant microbes on electrodes ranged from phylum to family. Meanwhile, ammonia oxidizing bacteria like Nitrosomonas was more abundant in Fe-MBF group, which was positively correlated to NH4+-N and total nitrogen removal. Some other functional genera involved in denitrification and phosphorus-accumulation were enriched by Fe-MBF on electrodes and MBF carrier, including Dechloromonas, Candidatus_Competibacter, and Pseudomonas. Additionally, there were more biomarkers in Fe-MBF group, like Pseudarcobacter and Acidovorax, conducive to nitrogen and iron cycling. Most functional genes of nitrogen, carbon, and sulfur metabolisms were up-regulated with Fe-MBF filling, causing improvement on nitrogen removal.


Assuntos
Bactérias , Fontes de Energia Bioelétrica , Fósforo , Áreas Alagadas , Bactérias/metabolismo , Bactérias/genética , Fósforo/química , Nitrogênio , Poluentes Químicos da Água/toxicidade , Ferro/química , Caprilatos , Cálcio/metabolismo
6.
Chemosphere ; 363: 142849, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39009093

RESUMO

The present study focuses on the application of fungal-based microbial fuel cells (FMFC) for the degradation of organic pollutants including Acetaminophen (APAP), Para-aminophenol (PAP), Sulfanilamide (SFA), and finally Methylene Blue (MB). The objective is to investigate the patterns of degradation (both individually and as a mixture solution) of the four compounds in response to fungal metabolic processes, with an emphasis on evaluating the possibility of generating energy. Linear Sweep Voltammetry (LSV) has been used for electrochemical analysis of the targeted compounds on a Glassy Carbon Electrode (GCE). A dual chamber MFC has been applied wherein the cathodic compartment, the reduction reaction of oxygen was catalyzed by an elaborated biofilm of Trametes trogii, and the anodic chamber consists of a mixed solution of 200 mg L-1 APAP, PAP, MB, and SFA in 0.1 M PBS and an elaborated biofilm of Trichoderma harzianum. The obtained results showed that all the tested molecules were degraded over time by the Trichoderma harzianum. The biodegradation kinetics of all the tested molecules were found to be in the pseudo-first-order. The results of half-lives and the degradation rate reveal that APAP in its individual form degrades relatively slower (0.0213 h-1) and has a half-life of 33 h compared to its degradation in a mixed solution with a half-life of 20 h. SFA showed the longest half-life in the mixed condition (98 h) which is the opposite of its degradation as individual molecules (20 h) as the fastest molecule compared to other pollutants. The maximum power density of the developed MFC dropped from 0.65 mW m-2 to 0.32 mW m-2 after 45.5 h, showing that the decrease of the residual concentration of molecules in the anodic compartment leads to the decrease of the MFC performance.


Assuntos
Biodegradação Ambiental , Fontes de Energia Bioelétrica , Biofilmes , Azul de Metileno , Poluentes Químicos da Água , Poluentes Químicos da Água/metabolismo , Azul de Metileno/metabolismo , Azul de Metileno/química , Acetaminofen/metabolismo , Aminofenóis/metabolismo , Eletrodos , Trametes/metabolismo , Sulfanilamida/metabolismo , Cinética
7.
Front Microbiol ; 15: 1384463, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39077733

RESUMO

Bioelectrochemical systems offer unique opportunities to remove recalcitrant environmental pollutants in a net positive energy process, although it remains challenging because of the toxic character of such compounds. In this study, microbial fuel cell (MFC) technology was applied to investigate the benzene degradation process for more than 160 days, where glucose was used as a co-metabolite and a control. We have applied an inoculation strategy that led to the development of 10 individual microbial communities. The electrochemical dynamics of MFC efficiency was observed, along with their 1H NMR metabolic fingerprints and analysis of the microbial community. The highest power density of 120 mW/m2 was recorded in the final period of the experiment when benzene/glucose was used as fuel. This is the highest value reported in a benzene/co-substrate system. Metabolite analysis confirmed the full removal of benzene, while the dominance of fermentation products indicated the strong occurrence of non-electrogenic reactions. Based on 16S rRNA gene amplicon sequencing, bacterial community analysis revealed several petroleum-degrading microorganisms, electroactive species and biosurfactant producers. The dominant species were recognised as Citrobacter freundii and Arcobacter faecis. Strong, positive impact of the presence of benzene on the alpha diversity was recorded, underlining the high complexity of the bioelectrochemically supported degradation of petroleum compounds. This study reveals the importance of supporting the bioelectrochemical degradation process with auxiliary substrates and inoculation strategies that allow the communities to reach sufficient diversity to improve the power output and degradation efficiency in MFCs beyond the previously known limits. This study, for the first time, provides an outlook on the syntrophic activity of biosurfactant producers and petroleum degraders towards the efficient removal and conversion of recalcitrant hydrophobic compounds into electricity in MFCs.

8.
Materials (Basel) ; 17(12)2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38930401

RESUMO

In nature, lakes and water channels offer abundant underwater energy sources. However, effectively harnessing these green and sustainable underwater energy sources is challenging due to their low flow velocities. Here, we propose an underwater energy-harvesting system based on a cylindrical bluff body and a cantilever beam composed of a macro fiber composite (MFC), taking advantage of the MFC's low-frequency, lightweight, and high piezoelectric properties to achieve energy harvesting in low-frequency and low-speed water flows. When a water flow impacts the cylindrical bluff body, it generates vibration-enhanced and low-frequency vortices behind the bluff body. The optimized diameter of the bluff body and the distance between the bluff body and the MFC were determined using finite element analysis software, specifically COMSOL. According to the simulation results, an energy-harvesting system based on an MFC cantilever beam applied in a low-frequency and low-speed water flow was designed and prepared. When the diameter of the bluff body was 25 mm, and the distance between the bluff body and MFC was 10 mm and the maximum output voltage was 22.73 V; the power density could reach 0.55 mW/cm2 after matching the appropriate load. The simulation results and experimental findings of this study provide valuable references for designing and investigating energy-harvesting systems applied in low-frequency and low-speed water flows.

9.
Water Sci Technol ; 89(11): 2880-2893, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38877619

RESUMO

As a new pollutant treatment technology, microbial fuel cell (MFC) has a broad prospect. In this article, the devices assembled using walnut shells are named biochar-microbial fuel cell (B-MFC), and the devices assembled using graphene are named graphene-microbial fuel cell (G-MFC). Under the condition of an external resistance of 1,000 Ω, the B-MFC with biochar as the electrode plate can generate a voltage of up to 75.26 mV. The maximum power density is 76.61 mW/m2, and the total internal resistance is 3,117.09 Ω. The removal efficiency of B-MFC for ammonia nitrogen (NH3-N), chemical oxygen demand (COD), total nitrogen (TN), and total phosphorus (TP) was higher than that of G-MFC. The results of microbial analysis showed that there was more operational taxonomic unit (OTU) on the walnut shell biochar electrode plate. The final analysis of the two electrode materials using BET specific surface area testing method (BET) and scanning electron microscope (SEM) showed that the pore size of walnut shell biochar was smaller, the specific surface area was larger, and the pore distribution was smoother. The results show that using walnut shells to make electrode plates is an optional waste recycling method and an electrode plate with excellent development prospects.


Assuntos
Fontes de Energia Bioelétrica , Carvão Vegetal , Eletrodos , Grafite , Juglans , Esgotos , Juglans/química , Carvão Vegetal/química , Esgotos/química , Grafite/química , Eliminação de Resíduos Líquidos/métodos , Nitrogênio/química , Fósforo/química
10.
J Environ Manage ; 365: 121514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908152

RESUMO

Microbial fuel cells (MFCs) have been recently proven to synthesise biosurfactants from waste products. In classic bioreactors, the efficiency of biosynthesis process can be controlled by the concentration of nitrogen content in the electrolyte. However, it was not known whether a similar control mechanism could be applied in current-generating conditions. In this work, the effect of nitrogen concentration on biosurfactant production from waste cooking oil was investigated. The concentration of NH4Cl in the electrolyte ranged from 0 to 1 g L-1. The maximum power density equal to 17.5 W m-3 was achieved at a concentration of 0.5 g L-1 (C/N = 2.32) and was accompanied by the highest surface tension decrease (to 54.6 mN m-1) and an emulsification activity index of 95.4%. Characterisation of the biosurfactants produced by the LC-MS/MS method showed the presence of eleven compounds belonging to the mono- and di-rhamnolipids group, most likely produced by P. aeruginosa, which was the most abundant (19.6%) in the community. Importantly, we have found a strong correlation (R = -0.96) of power and biosurfactant activity in response to C/N ratio. This study shows that nitrogen plays an important role in the current-generating metabolism of waste cooking oil. To the best of our knowledge, this is the first study where the nitrogen optimisation was investigated to improve the synthesis of biosurfactants and power generation in a bioelectrochemical system.


Assuntos
Fontes de Energia Bioelétrica , Glicolipídeos , Nitrogênio , Tensoativos , Nitrogênio/metabolismo , Tensoativos/metabolismo , Glicolipídeos/metabolismo , Eletrodos , Reatores Biológicos
11.
Bioresour Technol ; 406: 131019, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38908764

RESUMO

Basalt fiber (BF) was filled in constructed wetland-microbial fuel cell (CW-MFC) as bio-carrier for enhancement of operation performance under perfluorooctanoic acid (PFOA) exposure. In this study, although PFOA caused significant decline of ammonium removal by 7.5-7.7 %, slight promotion on nitrogen and phosphorus removal was observed with BF filling, compared to control. PFOA removal also increased by 1.7-3.4 % in BF filling group. Besides, improved electrochemical performance was discovered with BF filling, in which the highest power density increased by 86.6 % than control, even under PFOA stress. Enhanced stability and performance of CW-MFC resulted from stimulation of functional bacteria on electrodes like Dechloromonas, Thauera, Zoogloea, Gemmobacter, and Pseudomonas, which were further enriched on BF carrier. Higher abundance of nitrogen metabolism and related genes on electrodes and BF carrier was also discovered with BF filling. This study offered new findings on application of BF in CW-MFC systems with PFOA exposure.


Assuntos
Fontes de Energia Bioelétrica , Caprilatos , Fluorocarbonos , Áreas Alagadas , Caprilatos/farmacologia , Fluorocarbonos/química , Nitrogênio , Bactérias/metabolismo , Eletrodos , Fósforo/farmacologia , Poluentes Químicos da Água
12.
Nanomaterials (Basel) ; 14(12)2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38921883

RESUMO

Fungal growth on construction materials in tropical climates can degrade aesthetics and manifestations on modern and historical sick buildings, affecting the health of their inhabitants. This study synthesized ZnO nanoparticles with enhanced antifungal properties using a precipitation method. Different concentrations (25%, 50%, and 100%) of Eichhornia crassipes aqueous extract were used with Zn(NO3)2·6H2O as the precursor to evaluate their spectroscopic, morphological, textural, and antifungal properties. X-ray diffraction confirmed the hexagonal wurtzite phase of ZnO with crystallite sizes up to 20 nm. Fourier-transform infrared spectroscopy identified absorption bands at 426, 503, and 567 cm-1 for ZnO-100, ZnO-50, and ZnO-25, respectively. Nitrogen physisorption indicated a type II isotherm with macropores and a fractal dimension coefficient near 2 across all concentrations. Polydispersity index analysis showed that ZnO-50 had a higher PDI, indicating a broader size distribution, while ZnO-25 and ZnO-100 exhibited lower PDI values, reflecting uniform and monodisperse particle sizes. FESEM observations revealed semi-spherical ZnO morphologies prone to agglomeration, particularly in ZnO-25. Antifungal tests highlighted ZnO-25 as the most effective, especially against Phoma sp. with an MFC/MIC ratio of 78 µg/mL. Poisoned plate assays demonstrated over 50% inhibition at 312 µg/mL for all tested fungi, outperforming commercial antifungals. The results indicate that ZnO NPs synthesized using E. crassipes extract effectively inhibit fungal growth on construction materials. This procedure offers a practical approach to improving the durability of building aesthetics and may contribute to reducing the health risks associated with exposure to fungal compounds.

13.
Environ Sci Technol ; 58(22): 9471-9486, 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38776077

RESUMO

To date, dozens of pilot-scale microbial fuel cell (MFC) devices have been successfully developed worldwide for treating various types of wastewater. The availability and configurations of separators are determining factors for the economic feasibility, efficiency, sustainability, and operability of these devices. Thus, the concomitant advances between the separators and pilot-scale MFC configurations deserve further clarification. The analysis of separator configurations has shown that their evolution proceeds as follows: from ion-selective to ion-non-selective, from nonpermeable to permeable, and from abiotic to biotic. Meanwhile, their cost is decreasing and their availability is increasing. Notably, the novel MFCs configured with biotic separators are superior to those configured with abiotic separators in terms of wastewater treatment efficiency and capital cost. Herein, a highly comprehensive review of pilot-scale MFCs (>100 L) has been conducted, and we conclude that the intensive stack of the liquid cathode configuration is more advantageous when wastewater treatment is the highest priority. The use of permeable biotic separators ensures hydrodynamic continuity within the MFCs and simplifies reactor configuration and operation. In addition, a systemic comparison is conducted between pilot-scale MFC devices and conventional decentralized wastewater treatment processes. MFCs showed comparable cost, higher efficiency, long-term stability, and significant superiority in carbon emission reduction. The development of separators has greatly contributed to the availability and usability of MFCs, which will play an important role in various wastewater treatment scenarios in the future.


Assuntos
Águas Residuárias , Purificação da Água , Eletrodos , Projetos Piloto , Eliminação de Resíduos Líquidos/métodos
14.
Sci Total Environ ; 938: 173530, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38815818

RESUMO

Microbial fuel cells (MFCs), known for their low energy consumption, high efficiency, and environmental friendliness, have been widely utilized for removing antibiotics from wastewater. Compared to conventional wastewater treatment methods, MFCs produce less sludge while exhibiting superior antibiotic removal capacity, effectively reducing the spread of antibiotic resistance genes (ARGs). This study investigates 1) the mechanisms of ARGs generation and proliferation in MFCs; 2) the influencing factors on the fate and removal of antibiotics and ARGs; and 3) the fate and mitigation of ARGs in MFC and MFC-coupled systems. It is indicated that high removal efficiency of antibiotics and minimal amount of sludge production contribute the mitigation of ARGs in MFCs. Influencing factors, such as cathode potential, electrode materials, salinity, initial antibiotic concentration, and additional additives, can lead to the selection of tolerant microbial communities, thereby affecting the abundance of ARGs carried by various microbial hosts. Integrating MFCs with other wastewater treatment systems can synergistically enhance their performance, thereby improving the overall removal efficiency of ARGs. Moreover, challenges and future directions for mitigating the spread of ARGs using MFCs are suggested.


Assuntos
Antibacterianos , Fontes de Energia Bioelétrica , Resistência Microbiana a Medicamentos , Eliminação de Resíduos Líquidos , Águas Residuárias , Eliminação de Resíduos Líquidos/métodos , Resistência Microbiana a Medicamentos/genética , Águas Residuárias/microbiologia , Poluentes Químicos da Água
15.
Biosensors (Basel) ; 14(5)2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38785698

RESUMO

Wastewater pipelines are present everywhere in urban areas. Wastewater is a preferable fuel for renewable electricity generation from microbial fuel cells. Here, we created an integrated microbial fuel cell pipeline (MFCP) that could be connected to wastewater pipelines and work as an organic content biosensor and energy harvesting device at domestic waste-treatment plants. The MFCP used a pipeline-like terracotta-based membrane, which provided structural support for the MFCP. In addition, the anode and cathode were attached to the inside and outside of the terracotta membrane, respectively. Co-MnO2 was used as a catalyst to improve the performance of the MFCP cathode. The experimental data showed a good linear relationship between wastewater chemical oxygen demand (COD) concentration and the MFCP output voltage in a COD range of 200-1900 mg/L. This result implies the potential of using the MFCP as a sensor to detect the organic content of the wastewater inside the wastewater pipeline. Furthermore, the MFCP can be used as a long-lasting sustainable energy harvester with a maximum power density of 400 mW/m2 harvested from 1900 mg/L COD wastewater at 25 °C.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Eletrodos , Águas Residuárias , Análise da Demanda Biológica de Oxigênio , Eletricidade , Óxidos/química , Compostos de Manganês/química
16.
Materials (Basel) ; 17(10)2024 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-38793366

RESUMO

This study developed an innovative active vibration canceling (AVC) system designed to mitigate non-periodic vibrations during road driving to enhance passenger comfort. The macro-fiber composite (MFC) used in the system is a smart material that is flexible, soft, lightweight, and applicable in many fields as a dual-purpose sensor and actuator. The target vibrations are road vibration data that were collected while driving on standard urban (Seoul) and highway roads at 40 km/s. To predict and cancel the target vibration accurately before passing it, we modeled the vibration prediction algorithm using a long short-term memory recurrent neural network (LSTM RNN). We regenerated vibrations on Seoul and highway roads at 40 km/s using MFCs and measured the displacements of the measured, predicted, and AVC vibrations of each road condition. To evaluate the vibration, we computed the root mean squared error (RMSE) and compared standard deviation (SD) values. The accuracies of LSTM RNN vibration prediction algorithms are 97.27% and 96.36% on Seoul roads and highway roads, respectively, at 40 km/s. Although the vibration ratio compared with the AVC results are different, there was no difference between the values of the AVC vibrations. According to a previous study and the principle of the AVC system, the target vibrations decrease by canceling the inverse vibration of the MFC actuator.

17.
J Transl Med ; 22(1): 410, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38689269

RESUMO

BACKGROUND: Droplet digital PCR (ddPCR) is widely applied to monitor measurable residual disease (MRD). However, there are limited studies on the feasibility of ddPCR-MRD monitoring after allogeneic hematopoietic stem cell transplantation (allo-HSCT), especially targeting multiple molecular markers simultaneously. METHODS: Our study collected samples from patients with acute myeloid leukemia (AML) or high-risk myelodysplastic syndrome (MDS) in complete remission after allo-HSCT between January 2018 and August 2021 to evaluate whether posttransplant ddPCR-MRD monitoring can identify patients at high risk of relapse. RESULTS: Of 152 patients, 58 (38.2%) were MRD positive by ddPCR within 4 months posttransplant, with a median variant allele frequency of 0.198%. The detectable DTA mutations (DNMT3A, TET2, and ASXL1 mutations) after allo-HSCT were not associated with an increased risk of relapse. After excluding DTA mutations, patients with ddPCR-MRD positivity had a significantly higher cumulative incidence of relapse (CIR, 38.7% vs. 9.7%, P < 0.001) and lower rates of relapse-free survival (RFS, 55.5% vs. 83.7%, P < 0.001) and overall survival (OS, 60.5% vs. 90.5%, P < 0.001). In multivariate analysis, ddPCR-MRD positivity of non-DTA genes was an independent adverse predictor for CIR (hazard ratio [HR], 4.02; P < 0.001), RFS (HR, 2.92; P = 0.002) and OS (HR, 3.12; P = 0.007). Moreover, the combination of ddPCR with multiparameter flow cytometry (MFC) can further accurately identify patients at high risk of relapse (F+/M+, HR, 22.44; P < 0.001, F+/M-, HR, 12.46; P < 0.001 and F-/M+, HR, 4.51; P = 0.003). CONCLUSION: ddPCR-MRD is a feasible approach to predict relapse after allo-HSCT in AML/MDS patients with non-DTA genes and is more accurate when combined with MFC. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT06000306. Registered 17 August 2023 -Retrospectively registered ( https://clinicaltrials.gov/study/NCT06000306?term=NCT06000306&rank=1 ).


Assuntos
Transplante de Células-Tronco Hematopoéticas , Leucemia Mieloide Aguda , Síndromes Mielodisplásicas , Neoplasia Residual , Recidiva , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/terapia , Masculino , Feminino , Pessoa de Meia-Idade , Adulto , Estudos Retrospectivos , Síndromes Mielodisplásicas/terapia , Síndromes Mielodisplásicas/genética , Reação em Cadeia da Polimerase , Adulto Jovem , Adolescente , Idoso , Mutação/genética
18.
Environ Sci Pollut Res Int ; 31(20): 29185-29198, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38568314

RESUMO

Bioreduction of Cr(VI) is recognized as a cost-effective and environmentally friendly method, attracting widespread interest. However, the slow rate of Cr(VI) bioreduction remains a practical challenge. Additionally, the direct removal efficiency of microbes for high concentrations of Cr(VI) is not ideal due to the toxicity. Therefore, this study investigated the effects of exogenous riboflavin or cytochrome on the cathodic reduction of Cr(VI) in microbial fuel cells. The results demonstrated that the exogenous riboflavin or cytochrome effectively improved the voltage output of the cells, with riboflavin increasing the voltage by 52.08%. Within the first 24 h, the Cr(VI) removal ratio in the normal, cytochrome, and riboflavin groups was 14.3%, 29.3%, and 53.8%, respectively. And the final removal ratio was 55.1%, 69.1%, and 98.0%, respectively. These results showed different enhancement effects of riboflavin and cytochrome on Cr(VI) removal. The analysis of riboflavin and cytochrome contents revealed that the additions did not have a significant impact on the autocrine riboflavin of S. putrefaciens, but affected the autocrine cytochrome. SEM, XPS, and FTIR results confirmed the presence of reduced Cr(III) on the cathode, which formed precipitate and adhered to the cathode surface. The EDS analysis showed that the amount of Cr on the cathode in normal, cytochrome, and riboflavin groups was 4.71%, 6.37%, 7.56%, respectively, which was consistent with the voltage and Cr(VI) removal data. These findings demonstrated the significant enhancement of exogenous riboflavin or cytochrome on Cr(VI) reduction, thereby providing data reference for the future bio-assisted remediation of Cr(VI) pollution.


Assuntos
Fontes de Energia Bioelétrica , Cromo , Riboflavina , Shewanella putrefaciens , Shewanella putrefaciens/metabolismo , Eletrodos , Citocromos/metabolismo , Oxirredução
19.
Bioresour Technol ; 399: 130555, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460556

RESUMO

The CO2 fixation mechanism by Alcaligenes faecalis ZS-1 in a biocathode microbial fuel cell (MFC) was investigated. The closed-circuit MFC (CM) exhibited a significantly higher CO2 fixation rate (10.7%) compared to the open-circuit MFC (OC) (2.0%), indicating that bioelectricity enhances CO2 capture efficiency. During the inward extracellular electron transfer (EET) process, riboflavin concentration increased in the supernatant while cytochrome levels decreased. Genome sequencing revealed diverse metabolic pathways for CO2 fixation in strain ZS-1, with potential dominance of rTCA and C4 pathways under electrotrophic conditions as evidenced by significant upregulation of the ppc gene. Differential metabolite analysis using LC-MS demonstrated that CM promoted upregulation of various lipid metabolites. These findings collectively highlight that ZS-1 simultaneously generated electricity and fixed CO2 and that the ppc associated with bioelectricity played a critical role in CO2 capture. In conclusion, bioelectricity resulted in a significant enhancement in the efficiency of CO2 fixation and lipid production.


Assuntos
Alcaligenes faecalis , Fontes de Energia Bioelétrica , Dióxido de Carbono , Alcaligenes faecalis/genética , Eletrodos , Eletricidade , Lipídeos
20.
Chemosphere ; 354: 141754, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38508464

RESUMO

The emission of recalcitrant wastewater poses serious threats to the environment. In this study, an integrated approach combining electrocatalytic oxidation (EC) for pretreatment and microbial fuel cells (MFC) for thorough pollutant degradation is proposed to ensure efficient degradation of target substances, with low energy input and enhanced bioavailability of refractory organics. When phenol was used as the pollutant, an initial concentration of 2000 mg/L phenol solution underwent EC treatment under constant current-exponential attenuation power supply mode, resulting in a COD removal rate of 54.53%, and a phenol degradation rate of 99.83%. Intermediate products such as hydroquinone and para-diphenol were detected in the solution. After subsequent MFC treatment, only minor amounts of para-diphenol were left, and the degradation rate of phenol and its intermediate products reached 100%, with an output power density of 110.4 mW m-2. When coal chemical wastewater was used as the pollutant, further examination of the EC-MFC system performance showed a COD removal rate of 49.23% in the EC section, and a 76.21% COD removal rate in the MFC section, with an output power density of 181.5 mW m-2. Microbiological analysis revealed typical electrogenic bacteria (such as Pseudomonas and Geobacter), and specific degrading functional bacteria (such as Stenotrophomonas, Delftia, and Brevundimonas). The dominant microbial communities and their proportions adapted to environmental changes in response to the variation of carbon sources.


Assuntos
Fontes de Energia Bioelétrica , Poluentes Ambientais , Fontes de Energia Bioelétrica/microbiologia , Águas Residuárias , Eletricidade , Fenol , Fenóis , Eletrodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA