Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 135
Filtrar
1.
Biochem Genet ; 2024 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-38460087

RESUMO

The excessive production of reactive oxygen species and weakening of antioxidant defense system play a pivotal role in the pathogenesis of different diseases. Extensive differences observed among individuals in terms of affliction with cancer, cardiovascular disorders, diabetes, bacterial, and viral infections, as well as response to treatments can be partly due to their genomic variations. In this work, we attempted to predict the effect of SNPs of the key genes of antioxidant defense system on their structure, function, and expression in relation to COVID-19 pathogenesis using in silico tools. In addition, the effect of SNPs on the target site binding efficiency of SNPs was investigated as a factor with potential to change drug response or susceptibility to COVID-19. According to the predicted results, only six missense SNPs with minor allele frequency (MAF) ≥ 0.1 in the coding region of genes GPX7, GPX8, TXNRD2, GLRX5, and GLRX were able to strongly affect their structure and function. Our results predicted that 39 SNPs with MAF ≥ 0.1 led to the generation or destruction of miRNA-binding sites on target antioxidant genes from GPX, PRDX, GLRX, TXN, and SOD families. The results obtained from comparing the expression profiles of mild vs. severe COVID-19 patients using GEO2R demonstrated a significant change in the expression of approximately 250 miRNAs. The binding efficiency of 21 of these miRNAs was changed due to the elimination or generation of target sites in these genes. Altogether, this study reveals the fundamental role of the SNPs of antioxidant defense genes in COVID-19 progression and susceptibility of individuals to this virus. In addition, different responses of COVID-19 patients to antioxidant defense system enhancement drugs may be due to presence of these SNPs in different individuals.

2.
Front Neurosci ; 17: 1174951, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38033547

RESUMO

Background: Parkinson's disease (PD) is an increasingly common neurodegenerative condition, which causes movement dysfunction and a broad range of non-motor symptoms. There is no molecular or biochemical diagnosis test for PD. The miRNAs are a class of small non-coding RNAs and are extensively studied owing to their altered expression in pathological states and facile harvesting and analysis techniques. Methods: A total of 48 samples (16 each of PD, aged-matched, and young controls) were recruited. The small extracellular vesicles (sEVs) were isolated and validated using Western blot, transmission electron microscope, and nanoparticle tracking analysis. Small RNA isolation, library preparation, and small RNA sequencing followed by differential expression and targeted prediction of miRNA were performed. The real-time PCR was performed with the targeted miRNA on PD, age-matched, and young healthy control of plasma and plasma-derived sEVs to demonstrate their potential as a diagnostic biomarker. Results: In RNA sequencing, we identified 14.89% upregulated (fold change 1.11 to 11.04, p < 0.05) and 16.54% downregulated (fold change -1.04 to -7.28, p < 0.05) miRNAs in PD and controls. Four differentially expressed miRNAs (miR-23b-3p, miR-29a-3p, miR-19b-3p, and miR-150-3p) were selected. The expression of miR-23b-3p was "upregulated" (p = 0.002) in plasma, whereas "downregulated" (p = 0.0284) in plasma-derived sEVs in PD than age-matched controls. The ROC analysis of miR-23b-3p revealed better AUC values in plasma (AUC = 0.8086, p = 0.0029) and plasma-derived sEVs (AUC = 0.7278, p = 0.0483) of PD and age-matched controls. Conclusion: We observed an opposite expression profile of miR-23b-3p in PD and age-matched healthy control in plasma and plasma-derived sEV fractions, where the expression of miR-23b-3p is increased in PD plasma while decreased in plasma-derived sEV fractions. We further observed the different miR-23b-3p expression profiles in young and age-matched healthy control.

3.
J Nutr Sci ; 12: e103, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37771507

RESUMO

This review discusses epigenetic mechanisms and the relationship of infertility in men and women in relation to parameters pertaining to nutrition. The prevalence of infertility worldwide is 8-12 %, and one out of every eight couples receives medical treatment. Epigenetic mechanisms, aging, environmental factors, dietary energy and nutrients and non-nutrient compounds; more or less energy intake, and methionine come into play in the occurrence of infertility. It also interacts with vitamins B12, D and B6, biotin, choline, selenium, zinc, folic acid, resveratrol, quercetin and similar factors. To understand the molecular mechanisms regulating the expression of genes that affect infertility, the environment, the role of genotype, age, health, nutrition and changes in the individual's epigenotype must first be considered. This will pave the way for the identification of the unknown causes of infertility. Insufficient or excessive intake of energy and certain macro and micronutrients may contribute to the occurrence of infertility as well. In addition, it is reported that 5-10 % of body weight loss, moderate physical activity and nutritional interventions for improvement in insulin sensitivity contribute to the development of fertility. Processes that pertain to epigenetics carry alterations which are inherited yet not encoded via the DNA sequence. Nutrition is believed to have an impact over the epigenetic mechanisms which are effective in the pathogenesis of several diseases like infertility. Epigenetic mechanisms of individuals with infertility are different from healthy individuals. Infertility is associated with epigenetic mechanisms, nutrients, bioactive components and numerous other factors.


Assuntos
Infertilidade Feminina , Humanos , Masculino , Feminino , Infertilidade Feminina/genética , Epigênese Genética , Genótipo
4.
Front Microbiol ; 14: 1097173, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37125151

RESUMO

Early disease diagnosis is critical for better management and treatment outcome of patients. Therefore, diagnostic methods should ideally be accurate, consistent, easy to perform at low cost and preferably non-invasive. In recent years, various biomarkers have been studied for the detection of cardiovascular diseases, cerebrovascular diseases, infectious diseases, diabetes mellitus and malignancies. Exosomal microRNA (miRNA) are small non-coding RNA molecules that influence gene expression after transcription. Previous studies have shown that these types of miRNAs can potentially be used as biomarkers for cancers of the breast and colon, as well as diffuse large B-cell lymphoma. It may also be used to indicate viral and bacterial infections, such as the human immunodeficiency virus (HIV), tuberculosis and hepatitis. However, its use in the diagnosis of vector-borne diseases is rather limited. Therefore, this review aims to introduce several miRNAs derived from exosomal plasma that may potentially serve as a disease biomarker due to the body's immune response, with special focus on the early detection of vector-borne diseases.

5.
Front Immunol ; 14: 1114239, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37077918

RESUMO

Previous studies have reported sex disparity in cystic fibrosis (CF) disease, with females experiencing more pulmonary exacerbations and frequent microbial infections resulting in shorter survival expectancy. This concerns both pubertal and prepubertal females, which is in support to the prominent role of gene dosage rather than the hormonal status. The underlying mechanisms are still poorly understood. The X chromosome codes for a large number of micro-RNAs (miRNAs) that play a crucial role in the post-transcriptional regulation of several genes involved in various biological processes, including inflammation. However, their level of expression in CF males and females has not been sufficiently explored. In this study, we compared in male and female CF patients the expression of selected X-linked miRNAs involved in inflammatory processes. Cytokine and chemokine profiles were also evaluated at both protein and transcript levels and cross-analyzed with the miRNA expression levels. We observed increased expression of miR-223-3p, miR-106a-5p, miR-221-3p and miR-502-5p in CF patients compared to healthy controls. Interestingly, the overexpression of miR-221-3p was found to be significantly higher in CF girls than in CF boys and this correlates positively with IL-1ß. Moreover, we found a trend toward lower expression in CF girls than in CF boys of suppressor of cytokine signaling 1 (SOCS1) and the ubiquitin-editing enzyme PDLIM2, two mRNA targets of miR-221-3p that are known to inhibit the NF-κB pathway. Collectively, this clinical study highlights a sex-bias in X-linked miR-221-3p expression in blood cells and its potential contribution to sustaining a higher inflammatory response in CF girls.


Assuntos
Fibrose Cística , MicroRNAs , Humanos , Masculino , Feminino , Criança , MicroRNAs/metabolismo , Fibrose Cística/metabolismo , Projetos Piloto , Citocinas/genética , Cromossomos , Proteínas dos Microfilamentos/genética , Proteínas com Domínio LIM/genética
7.
J Bone Oncol ; 39: 100474, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36936386

RESUMO

Primary bone cancer (PBC) comprises several subtypes each underpinned by distinctive genetic drivers. This driver diversity produces novel morphological features and clinical behaviour that serendipitously makes PBC an excellent metastasis model. Here, we report that some transfer RNA-derived small RNAs termed tRNA fragments (tRFs) perform as a constitutive tumour suppressor mechanism by blunting a potential pro-metastatic protein-RNA interaction. This mechanism is reduced in PBC progression with a gradual loss of tRNAGlyTCC cleavage into 5' end tRF-GlyTCC when comparing low-grade, intermediate-grade and high-grade patient tumours. We detected recurrent activation of miR-140 leading to upregulated RUNX2 expression in high-grade patient tumours. Both tRF-GlyTCC and RUNX2 share a sequence motif in their 3' ends that matches the YBX1 recognition site known to stabilise pro-metastatic mRNAs. Investigating some aspects of this interaction network, gain- and loss-of-function experiments using small RNA mimics and antisense LNAs, respectively, showed that ectopic tRF-GlyTCC reduced RUNX2 expression and dispersed 3D micromass architecture in vitro. iCLIP sequencing revealed YBX1 physical binding to the 3' UTR of RUNX2. The interaction between YBX1, tRF-GlyTCC and RUNX2 led to the development of the RUNX2 inhibitor CADD522 as a PBC treatment. CADD522 assessment in vitro revealed significant effects on PBC cell behaviour. In xenograft mouse models, CADD522 as a single agent without surgery significantly reduced tumour volume, increased overall and metastasis-free survival and reduced cancer-induced bone disease. Our results provide insight into PBC molecular abnormalities that have led to the identification of new targets and a new therapeutic.

8.
Heliyon ; 9(2): e13195, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36798768

RESUMO

Kinesin family member 20A (KIF20A) is a member of the kinesin family. It transports chromosomes during mitosis, plays a key role in cell division. Recently, studies proved that KIF20A was highly expressed in cancer. High expression of KIF20A was correlated with poor overall survival (OS). In this review, we summarized all the cancer that highly expressed KIF20A, described the role of KIF20A in cancer. We also organized phase I and phase II clinical trials of KIF20A peptides vaccine. All results indicated that KIF20A was a promising therapeutic target for multiple cancer.

9.
Noncoding RNA Res ; 8(2): 164-173, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36632615

RESUMO

Radiotherapy is widely used for cancer treatment, but paradoxically, it has been reported that surviving cancer cells can acquire resistance, leading to recurrence or metastasis. Efforts to reduce radioresistance are required to increase the effectiveness of radiotherapy. miRNAs are advantageous as therapeutic agents because it can simultaneously inhibit the expression of several target mRNAs. Therefore, this study discovered miRNA that regulated radioresistance and elucidated its signaling mechanism. Our previous study confirmed that miR-5088-5p was associated with malignancy and metastasis in breast cancer. As a study to clarify the relationship between radiation and miR-5088-5p identified as onco-miRNA, it was confirmed that radiation induced hypomethylation of the promoter of miR-5088-5p and its expression increased. On the other hand, miR-5088-5p inhibitors were confirmed to reduce radiation-induced epithelial-mesenchymal transition, stemness, and metastasis by reducing Slug. Therefore, this study showed the potential of miR-5088-5p inhibitors as therapeutic agents to suppress radioresistance.

10.
J Clin Exp Hepatol ; 13(1): 139-148, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36647415

RESUMO

Strategies to minimize immune-suppressive medications after liver transplantation are limited by allograft rejection. Biopsy of liver is the current standard of care in diagnosing rejection. However, it adds to physical and economic burden to the patient and has diagnostic limitations. In this review, we aim to highlight the different biomarkers to predict and diagnose acute rejection. We also aim to explore recent advances in molecular diagnostics to improve the diagnostic yield of liver biopsies.

11.
Comput Struct Biotechnol J ; 21: 535-549, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36659932

RESUMO

Head and neck squamous cell carcinoma (HNSC) is one of most common malignancies with high mortality worldwide. Importantly, the molecular heterogeneity of HNSC complicates the clinical diagnosis and treatment, leading to poor overall survival outcomes. To dissect the complex heterogeneity, recent studies have reported multiple molecular subtyping systems. For instance, HNSC can be subdivided to four distinct molecular subtypes: atypical, basal, classical, and mesenchymal, of which the mesenchymal subtype is characterized by upregulated epithelial-mesenchymal transition (EMT) and associated with poorer survival outcomes. Despite a wealth of studies into the complex molecular heterogeneity, the regulatory mechanism specific to this aggressive subtype remain largely unclear. Herein, we developed a network-based bioinformatics framework that integrates lncRNA and mRNA expression profiles to elucidate the subtype-specific regulatory mechanisms. Applying the framework to HNSC, we identified a clinically relevant lncRNA LNCOG as a key master regulator mediating EMT underlying the mesenchymal subtype. Five genes with strong prognostic values, namely ANXA5, ITGA5, CCBE1, P4HA2, and EPHX3, were predicted to be the putative targets of LNCOG and subsequently validated in other independent datasets. By integrative analysis of the miRNA expression profiles, we found that LNCOG may act as a ceRNA to sponge miR-148a-3p thereby upregulating ITGA5 to promote HNSC progression. Furthermore, our drug sensitivity analysis demonstrated that the five putative targets of LNCOG were also predictive of the sensitivities of multiple FDA-approved drugs. In summary, our bioinformatics framework facilitates the dissection of cancer subtype-specific lncRNA regulatory mechanisms, providing potential novel biomarkers for more optimized treatment of HNSC.

12.
Int J Mol Sci ; 23(23)2022 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-36499102

RESUMO

Melanoma is the most aggressive form of skin cancer, characterized by life-threatening and rapidly spreading progression. Traditional targeted therapy can alleviate tumors by inactivating hyperactive kinases such as BRAF or MEK but inevitably encounters drug resistance. The advent of immunotherapy has revolutionized melanoma treatment and significantly improved the prognosis of melanoma patients. MicroRNAs (miRNAs) are intricately involved in innate and adaptive immunity and are implicated in melanoma immunotherapy. This systematic review describes the roles of miRNAs in regulating the functions of immune cells in skin and melanoma, as well as the involvement of miRNAs in pharmacology including the effect, resistance and immune-related adverse events of checkpoint inhibitors such as PD-1 and CTLA-4 inhibitors, which are used for treating cutaneous, uveal and mucosal melanoma. The expressions and functions of miRNAs in immunotherapy employing tumor-infiltrating lymphocytes and Toll-like receptor 9 agonists are also discussed. The prospect of innovative therapeutic strategies such as the combined administration of miRNAs and immune checkpoint inhibitors and the nanotechnology-based delivery of miRNAs are also provided. A comprehensive understanding of the interplay between miRNAs and immunotherapy is crucial for the discovery of reliable biomarkers and for the development of novel miRNA-based therapeutics against melanoma.


Assuntos
Melanoma , MicroRNAs , Neoplasias Cutâneas , Humanos , MicroRNAs/genética , MicroRNAs/uso terapêutico , Melanoma/terapia , Melanoma/tratamento farmacológico , Imunoterapia/métodos , Neoplasias Cutâneas/terapia , Terapia Combinada
13.
J Clin Exp Hepatol ; 12(6): 1492-1513, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36340300

RESUMO

Excessive alcohol consumption is a global healthcare problem with enormous social, economic, and clinical consequences. While chronic, heavy alcohol consumption causes structural damage and/or disrupts normal organ function in virtually every tissue of the body, the liver sustains the greatest damage. This is primarily because the liver is the first to see alcohol absorbed from the gastrointestinal tract via the portal circulation and second, because the liver is the principal site of ethanol metabolism. Alcohol-induced damage remains one of the most prevalent disorders of the liver and a leading cause of death or transplantation from liver disease. Despite extensive research on the pathophysiology of this disease, there are still no targeted therapies available. Given the multifactorial mechanisms for alcohol-associated liver disease pathogenesis, it is conceivable that a multitherapeutic regimen is needed to treat different stages in the spectrum of this disease.

14.
JACC Basic Transl Sci ; 7(9): 956-969, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317129

RESUMO

Cardiovascular disease (CVD) remains the largest cause of mortality worldwide. The development of new effective therapeutics is a major unmet need. The current review focuses broadly on the concept of nucleic acid (NA)-based therapies, considering the use of various forms of NAs, including mRNAs, miRNAs, siRNA, and guide RNAs, the latter specifically for the purpose of CRISPR-Cas directed gene editing. We describe the current state-of-the-art of RNA target discovery and development, the status of RNA therapeutics in the context of CVD, and some of the challenges and hurdles to be overcome.

15.
JACC Basic Transl Sci ; 7(9): 859-875, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36317138

RESUMO

Induction of endogenous regenerative capacity has emerged as one promising approach to repair damaged hearts following myocardial infarction (MI). Re-expression of factors that are exclusively expressed during embryonic development may reactivate the ability of adult cardiomyocytes to regenerate. Here, we identified miR-411 as a potent inducer of cardiomyocyte proliferation. Overexpression of miR-411 in the heart significantly increased cardiomyocyte proliferation and survival in a model MI. We found that miR-411 enhances the activity of YAP, the main downstream effector of the Hippo pathway, in cardiomyocytes. In conclusion, miR-411 induces cardiomyocyte regeneration and improves cardiac function post-MI likely by modulating the Hippo/YAP pathway.

16.
JID Innov ; 2(5): 100139, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36090299

RESUMO

Skin pigmentation is imparted by melanin and is crucial for photoprotection against UVR. Melanin is synthesized and packaged into melanosomes within melanocytes and is then transferred to keratinocytes (KCs). Although the molecular players involved in melanogenesis have been extensively studied, those underlying melanin transfer remain unclear. Previously, our group proposed that coupled exocytosis/phagocytosis is the predominant mechanism of melanin transfer in human skin and showed an essential role for RAB11B and the exocyst tethering complex in this process. In this study, we show that soluble factors present in KC-conditioned medium stimulate melanin exocytosis from melanocytes and transfer to KCs. Moreover, we found that these factors are released by differentiated KCs but not by basal layer KCs. Furthermore, we found that RAB3A regulates melanin exocytosis and transfer stimulated by KC-conditioned medium. Indeed, KC-conditioned medium enhances the recruitment of RAB3A to melanosomes in melanocyte dendrites. Therefore, our results suggest the existence of two distinct routes of melanin exocytosis: a basal route controlled by RAB11B and a RAB3A-dependent route, stimulated by KC-conditioned medium. Thus, this study provides evidence that soluble factors released by differentiated KCs control skin pigmentation by promoting the accumulation of RAB3A-positive melanosomes in melanocyte dendrites and their release and subsequent transfer to KCs.

17.
Front Mol Biosci ; 9: 785314, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35795823

RESUMO

Intracranial aneurysms (IA) are abnormal expansions of the intracranial arteries. Once it ruptures, the mortality and disability rate are high. The cost of imaging examinations is high, and rupture risk cannot be predicted, making it difficult for high-risk groups to be screened and prevented. Thus, clinically effective biomarkers are required to screen high-risk groups, estimate the risk of rupture, and determine the appropriate early intervention step. This article introduces the current research and application of exosome-derived microRNA (miRNA) as biomarkers of intracranial aneurysms and their limitations, which can give researchers a general overview of the research in this field. It can also serve as a reference point for selecting related research directions.

18.
Acta Pharm Sin B ; 12(5): 2374-2390, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35646533

RESUMO

Pathological cardiac hypertrophy serves as a significant foundation for cardiac dysfunction and heart failure. Recently, growing evidence has revealed that microRNAs (miRNAs) play multiple roles in biological processes and participate in cardiovascular diseases. In the present research, we investigate the impact of miRNA-34c-5p on cardiac hypertrophy and the mechanism involved. The expression of miR-34c-5p was proved to be elevated in heart tissues from isoprenaline (ISO)-infused mice. ISO also promoted miR-34c-5p level in primary cultures of neonatal rat cardiomyocytes (NRCMs). Transfection with miR-34c-5p mimic enhanced cell surface area and expression levels of foetal-type genes atrial natriuretic factor (Anf) and ß-myosin heavy chain (ß-Mhc) in NRCMs. In contrast, treatment with miR-34c-5p inhibitor attenuated ISO-induced hypertrophic responses. Enforced expression of miR-34c-5p by tail intravenous injection of its agomir led to cardiac dysfunction and hypertrophy in mice, whereas inhibiting miR-34c-5p by specific antagomir could protect the animals against ISO-triggered hypertrophic abnormalities. Mechanistically, miR-34c-5p suppressed autophagic flux in cardiomyocytes, which contributed to the development of hypertrophy. Furthermore, the autophagy-related gene 4B (ATG4B) was identified as a direct target of miR-34c-5p, and miR-34c-5p was certified to interact with 3' untranslated region of Atg4b mRNA by dual-luciferase reporter assay. miR-34c-5p reduced the expression of ATG4B, thereby resulting in decreased autophagy activity and induction of hypertrophy. Inhibition of miR-34c-5p abolished the detrimental effects of ISO by restoring ATG4B and increasing autophagy. In conclusion, our findings illuminate that miR-34c-5p participates in ISO-induced cardiac hypertrophy, at least partly through suppressing ATG4B and autophagy. It suggests that regulation of miR-34c-5p may offer a new way for handling hypertrophy-related cardiac dysfunction.

19.
Comput Struct Biotechnol J ; 20: 2455-2463, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35664224

RESUMO

Besides the genetic factors having tremendous influences on the regulations of the epigenome, the microenvironmental factors have recently gained extensive attention for their roles in affecting the host epigenome. There are three major types of microenvironmental factors: microbiota-derived metabolites (MDM), microbiota-derived components (MDC) and microbiota-secreted proteins (MSP). These factors can regulate host physiology by modifying host gene expression through the three highly interconnected epigenetic mechanisms (e.g. histone modifications, DNA modifications, and non-coding RNAs). However, no database was available to provide the comprehensive factors of these types. Herein, a database entitled 'Human Microbiome Affect The Host Epigenome (MIAOME)' was constructed. Based on the types of epigenetic modifications confirmed in the literature review, the MIAOME database captures 1068 (63 genus, 281 species, 707 strains, etc.) human microbes, 91 unique microbiota-derived metabolites & components (16 fatty acids, 10 bile acids, 10 phenolic compounds, 10 vitamins, 9 tryptophan metabolites, etc.) derived from 967 microbes; 50 microbes that secreted 40 proteins; 98 microbes that directly influence the host epigenetic modification, and provides 3 classifications of the epigenome, including (1) 4 types of DNA modifications, (2) 20 histone modifications and (3) 490 ncRNAs regulations, involved in 160 human diseases. All in all, MIAOME has compiled the information on the microenvironmental factors influence host epigenome through the scientific literature and biochemical databases, and allows the collective considerations among the different types of factors. It can be freely assessed without login requirement by all users at: http://miaome.idrblab.net/ttd/.

20.
Biomolecules ; 12(6)2022 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-35740906

RESUMO

Over two decades of studies on small noncoding RNA molecules illustrate the significance of microRNAs (miRNAs/miRs) in controlling multiple physiological and pathological functions through post-transcriptional and spatiotemporal gene expression. Among the plethora of miRs that are essential during animal embryonic development, in this review, we elaborate the indispensable role of the miR-200 family (comprising miR-200a, -200b, 200c, -141, and -429) in governing the cellular functions associated with epithelial homeostasis, such as epithelial differentiation and neurogenesis. Additionally, in pathological contexts, miR-200 family members are primarily involved in tumor-suppressive roles, including the reversal of the cancer-associated epithelial-mesenchymal transition dedifferentiation process, and are dysregulated during organ fibrosis. Moreover, recent eminent studies have elucidated the crucial roles of miR-200s in the pathophysiology of multiple neurodegenerative diseases and tissue fibrosis. Lastly, we summarize the key studies that have recognized the potential use of miR-200 members as biomarkers for the diagnosis and prognosis of cancers, elaborating the application of these small biomolecules in aiding early cancer detection and intervention.


Assuntos
Desenvolvimento Embrionário , MicroRNAs , Neoplasias , Animais , Desenvolvimento Embrionário/genética , Fibrose , Regulação Neoplásica da Expressão Gênica , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Neoplasias/genética , Doenças Neurodegenerativas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA