Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Immunobiology ; 229(4): 152823, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38861873

RESUMO

Acute lung injury caused by severe malaria (SM) is triggered by a dysregulated immune response towards the infection with Plasmodium parasites. Postmortem analysis of human lungs shows diffuse alveolar damage (DAD), the presence of CD8 lymphocytes, neutrophils, and increased expression of Intercellular Adhesion Molecule 1 (ICAM-1). P. berghei ANKA (PbA) infection in C57BL/6 mice reproduces many SM features, including acute lung injury characterized by DAD, CD8+ T lymphocytes and neutrophils in the lung parenchyma, and tissular expression of proinflammatory cytokines and adhesion molecules, such as IFNγ, TNFα, ICAM, and VCAM. Since this is related to a dysregulated immune response, immunomodulatory agents are proposed to reduce the complications of SM. The monocyte locomotion inhibitory factor (MLIF) is an immunomodulatory pentapeptide isolated from axenic cultures of Entamoeba hystolitica. Thus, we evaluated if the MLIF intraperitoneal (i.p.) treatment prevented SM-induced acute lung injury. The peptide prevented SM without a parasiticidal effect, indicating that its protective effect was related to modifications in the immune response. Furthermore, peripheral CD8+ leukocytes and neutrophil proportions were higher in infected treated mice. However, the treatment prevented DAD, CD8+ cell infiltration into the pulmonary tissue and downregulated IFNγ. Moreover, VCAM-1 expression was abrogated. These results indicate that the MLIF treatment downregulated adhesion molecule expression, impeding cell migration and proinflammatory cytokine tissular production, preventing acute lung injury induced by SM. Our findings represent a potential novel strategy to avoid this complication in various events where a dysregulated immune response triggers lung injury.


Assuntos
Lesão Pulmonar Aguda , Modelos Animais de Doenças , Malária , Plasmodium berghei , Animais , Lesão Pulmonar Aguda/imunologia , Lesão Pulmonar Aguda/etiologia , Camundongos , Malária/imunologia , Plasmodium berghei/imunologia , Camundongos Endogâmicos C57BL , Neutrófilos/imunologia , Linfócitos T CD8-Positivos/imunologia , Citocinas/metabolismo , Pulmão/imunologia , Pulmão/patologia , Humanos , Feminino , Oligopeptídeos
2.
Front Cardiovasc Med ; 9: 1071533, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36465453

RESUMO

Objective: This study aimed to evaluate the potential mechanism by which Monocyte locomotion inhibitory factor (MLIF) improves the outcome of ischemic stroke (IS) inflammatory injury. Methods: Potential MLIF-related targets were predicted using Swiss TargetPrediction and PharmMapper, while IS-related targets were found from GeneCards, PharmGKB, and Therapeutic Target Database (TTD). After obtaining the intersection from these two datasets, the Search Tool for Retrieval of Interacting Genes/Protein (STRING11.0) database was used to analyze the protein-protein interaction (PPI) network of the intersection and candidate genes for MLIF treatment of IS. The candidate genes were imported into the Metascape database for Gene Ontology (GO) functional analysis and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The top 20 core genes and the "MLIF-target-pathway" network were mapped using the Cytoscape3.9.1. Using AutoDock Vina1.1.2, the molecular docking validation of the hub targets and MLIF was carried out. In the experimental part, transient middle cerebral artery occlusion (tMCAO) and oxygen and glucose deprivation (OGD) models were used to evaluate the protective efficacy of MLIF and the expression of inflammatory cytokines and the putative targets. Results: MLIF was expected to have an effect on 370 targets. When these targets were intersected with 1,289 targets for ischemic stroke, 119 candidate therapeutic targets were found. The key enriched pathways were PI3K-Akt signaling pathway and MAPK signaling pathway, etc. The GO analysis yielded 1,677 GO entries (P < 0.01), such as hormone stimulation, inflammatory response, etc. The top 20 core genes included AKT1, EGFR, IGF1, MAPK1, MAPK10, MAPK14, etc. The result of molecular docking demonstrated that MLIF had the strong binding capability to JNK (MAPK10). The in vitro and in vivo studies also confirmed that MLIF protected against IS by lowering JNK (MAPK10) and AP-1 levels and decreasing pro-inflammatory cytokines (IL-1, IL-6). Conclusion: MLIF may exert a cerebral protective effect by inhibiting the inflammatory response through suppressing the JNK/AP-1 signaling pathway.

3.
Front Neurosci ; 16: 853010, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35464318

RESUMO

The leaky integrate-and-fire (LIF) spiking model can successively mimic the firing patterns and information propagation of a biological neuron. It has been applied in neural networks, cognitive computing, and brain-inspired computing. Due to the resistance variability and the natural storage capacity of the memristor, the LIF spiking model with a memristor (MLIF) is presented in this article to simulate the function and working mode of neurons in biological systems. First, the comparison between the MLIF spiking model and the LIF spiking model is conducted. Second, it is experimentally shown that a single memristor could mimic the function of the integration and filtering of the dendrite and emulate the function of the integration and firing of the soma. Finally, the feasibility of the proposed MLIF spiking model is verified by the generation and recognition of Morse code. The experimental results indicate that the presented MLIF model efficiently performs good biological frequency adaptation, high firing frequency, and rich spiking patterns. A memristor can be used as the dendrite and the soma, and the MLIF spiking model can emulate the axon. The constructed single neuron can efficiently complete the generation and propagation of firing patterns.

4.
Front Pharmacol ; 12: 725268, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557098

RESUMO

Monocyte locomotion inhibitory factor (MLIF) is a heat-stable pentapeptide from Entamoeba histolytica. Our previous study found that MLIF protects against ischemic stroke in rats and mice and exerts a neuroprotection effect in human neuroblastoma SH-SY5Y cells. Microglia/macrophage polarization has been proven to be vital in the pathology of ischemic stroke. Nevertheless, whether MLIF is able to modulate microglia/macrophage polarization remains unclear. We performed middle cerebral artery occlusion (MCAO) on C57BL/6J male mice and induced cultured BV2 microglia by oxygen-glucose deprivation (OGD), respectively. Immunfluorescence was utilized to detect the M1/2 markers, such as CD206 and CD16/32. qPCR and ELISA were used to detect the signature gene change of M1/2. The MAPK and NF-κB pathway associated proteins were measured by Western blot. To identify the protein target of MLIF, a pull-down assay was performed. We found that MLIF promoted microglia transferring from a "sick" M1 phenotype to a "healthy" M2 phenotype in vivo or in vitro. Furthermore, we proved that eukaryotic elongation factor 1A1 (eEF1A1) was involved in the modulation of microglia/macrophage polarization. Knocking down eEF1A1 by siRNA exhibited the M1 promotion effect and M2 inhibition effect. Taken together, our results demonstrated MLIF modulated microglia/macrophage polarization by targeting eEF1A1 in ischemic stroke.

5.
Int Immunopharmacol ; 97: 107674, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34044183

RESUMO

Cerebral malaria (CM) is a neurological complication derived from the Plasmodium falciparum infection in humans. The mechanisms involved in the disease progression are still not fully understood, but both the sequestration of infected red blood cells (iRBC) and leukocytes and an exacerbated host inflammatory immune response are significant factors. In this study, we investigated the effect of Monocyte Locomotion Inhibitory Factor (MLIF), an anti-inflammatory peptide, in a well-characterized murine model of CM. Our data showed that the administration of MLIF increased the survival and avoided the neurological signs of CM in Plasmodium berghei ANKA (PbA) infected C57BL/6 mice. MLIF administration down-regulated systemic inflammatory mediators such as IFN-γ, TNF-α, IL-6, CXCL2, and CCL2, as well as the in situ expression of TNF-α in the brain. In the same way, MLIF reduced the expression of CD31, CD36, CD54, and CD106 in the cerebral endothelium of infected animals and prevented the sequestration of iRBC and leucocytes in the brain microvasculature. Furthermore, MLIF inhibited the activation of astrocytes and microglia and preserved the integrity of the blood-brain barrier (BBB). In conclusion, our results demonstrated that the administration of MLIF increased survival and conferred neuroprotection by decreasing neuroinflammation in murine CM.


Assuntos
Anti-Inflamatórios/administração & dosagem , Malária Cerebral/prevenção & controle , Fármacos Neuroprotetores/administração & dosagem , Oligopeptídeos/administração & dosagem , Animais , Astrócitos/efeitos dos fármacos , Astrócitos/imunologia , Encéfalo/efeitos dos fármacos , Encéfalo/imunologia , Encéfalo/patologia , Modelos Animais de Doenças , Regulação para Baixo/efeitos dos fármacos , Regulação para Baixo/imunologia , Feminino , Humanos , Mediadores da Inflamação/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Malária Cerebral/imunologia , Malária Cerebral/parasitologia , Malária Cerebral/patologia , Camundongos , Microglia/efeitos dos fármacos , Microglia/imunologia , Plasmodium berghei/imunologia
6.
Toxicol Rep ; 6: 529-537, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31249786

RESUMO

We previously used a chemical genetics approach with the larval zebrafish to identify small molecule inhibitors of tissue regeneration. This led to the discovery that glucocorticoids (GC) block early stages of tissue regeneration by the inappropriate activation of the glucocorticoid receptor (GR). We performed a microarray analysis to identify the changes in gene expression associated with beclomethasone dipropionate (BDP) exposure during epimorphic fin regeneration. Oncofetal cripto-1 showed > eight-fold increased expression in BDP-treated regenerates. We hypothesized that the mis-expression of cripto-1 was essential for BDP to block regeneration. Expression of cripto-1 was not elevated in GR morphants in the presence of BDP indicating that cripto-1 induction was GR-dependent. Partial translational suppression of Cripto-1 in the presence of BDP restored tissue regeneration. Retinoic acid exposure prevented increased cripto-1 expression and permitted regeneration in the presence of BDP. We demonstrated that BDP exposure increased cripto-1 expression in mouse embryonic stem cells and that regulation of cripto-1 by GCs is conserved in mammals.

7.
J Pharm Biomed Anal ; 157: 75-83, 2018 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-29775810

RESUMO

Monocyte locomotion inhibitory factor (MLIF, Met-Gln-Cys-Asn-Ser), a pentapeptide with anti-inflammatory activity, was developed for neural protection in acute ischemic stroke. Determination of MLIF in human plasma samples is of great importance for pharmacokinetic evaluation in clinical studies. A reliable and sensitive method based on ultra-performance liquid chromatography coupled with tandem mass spectrometry (UPLC-MS/MS) was established for the measurement of MLIF in human plasma. Instability of peptide in matrix was the primary challenge in method development, which was properly resolved by addition of acidification reagents like sulfuric acid. Samples were prepared by protein precipitation and then analyzed using a gradient chromatographic separation over an ACQUITY UPLC HSS T3 column. The mobile phase consisted of acetonitrile containing 0.2% formic acid and water containing 0.2% formic acid and gradient elution was performed at a flow rate of 0.4 mL/min. Detection was carried out on a Xevo TQ-S tandem mass spectrometer and positive electrospray ionization was employed in the multiple reaction monitoring (MRM) mode. This method was fully validated over the concentration range of 0.5-40 ng/mL with a lower limit of quantification (LLOQ) of 0.5 ng/mL. The inter- and intra-batch precision was no more than 8.8% and the accuracy was between 88.7 and 104.2%. The mean extraction recovery was 43.3% and the detection was independent of matrix. Besides, the analyte proved to be stable under various handling processes and storage conditions after acidification. Finally, the method was applied to the first-in-human (FIH) study of MLIF in Chinese healthy subjects.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Oligopeptídeos/sangue , Peptídeos/sangue , Plasma/química , Espectrometria de Massas em Tandem/métodos , Anti-Inflamatórios/sangue , Humanos , Reprodutibilidade dos Testes
8.
Cell Cycle ; 14(13): 2044-57, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25942099

RESUMO

Biallelic mutations in the gene encoding centrosomal CDK5RAP2 lead to autosomal recessive primary microcephaly (MCPH), a disorder characterized by pronounced reduction in volume of otherwise architectonical normal brains and intellectual deficit. The current model for the microcephaly phenotype in MCPH invokes a premature shift from symmetric to asymmetric neural progenitor-cell divisions with a subsequent depletion of the progenitor pool. The isolated neural phenotype, despite the ubiquitous expression of CDK5RAP2, and reports of progressive microcephaly in individual MCPH cases prompted us to investigate neural and non-neural differentiation of Cdk5rap2-depleted and control murine embryonic stem cells (mESC). We demonstrate an accumulating proliferation defect of neurally differentiating Cdk5rap2-depleted mESC and cell death of proliferative and early postmitotic cells. A similar effect does not occur in non-neural differentiation into beating cardiomyocytes, which is in line with the lack of non-central nervous system features in MCPH patients. Our data suggest that MCPH is not only caused by premature differentiation of progenitors, but also by reduced propagation and survival of neural progenitors.


Assuntos
Proteínas de Ciclo Celular/deficiência , Diferenciação Celular/fisiologia , Células-Tronco Embrionárias/metabolismo , Miócitos Cardíacos/metabolismo , Células-Tronco Neurais/metabolismo , Animais , Linhagem Celular , Sobrevivência Celular/fisiologia , Camundongos
9.
Biol. Res ; 42(4): 415-425, 2009. graf, ilus
Artigo em Inglês | LILACS | ID: lil-537101

RESUMO

Entamoeba histolytica produces Monocyte Locomotion Inhibitory Factor (MLIF), which may contribute to the delayed inflammation observed in amoebic hepatic abscesses. Leukocytes are affected through the modulation of cytokine expression and/or production. We evaluated the effects of MLIF on the activation and production of intracellular cytokines in human CD4+ T lymphocytes by flow cytometry. Cells were stimulated for 24 h with PMA, MLIF, or PMA+MLIF. Cellular activation was measured using anti-CD69. Th1/Th2 production was studied by the expression of intracellular cytokines and cytokine/chemokine receptors. MLIF increased CD69 and induced the over-expression of the IL-l©¬, IFN-¥ã, IL-2, IL-4, and IL-10 intracellular cytokines; PMA+MLIF inhibited Th1 cytokine (IFN-¥ã) and increased Th2 cytokines (IL-4 and IL-10). The co-expression of the cytokine and chemokine receptors IFN-¥ã/CCR5 and IL-1©¬/CCR5 was inhibited by PMA+MLIF and Th2 co-expression was increased. MLIF effects varied depending on the conditions. MLIF alone activated the Th1 and Th2 cytokines and cytokine/receptor expression; however, PMA+MLIF increased the expression of Th2 but inhibited it in Th1.


Assuntos
Feminino , Humanos , Masculino , Citocinas/biossíntese , Oligopeptídeos/farmacologia , /efeitos dos fármacos , /efeitos dos fármacos , Células Th1/efeitos dos fármacos , /efeitos dos fármacos , Células Cultivadas , Entamoeba histolytica/imunologia , Citometria de Fluxo , Oligopeptídeos/biossíntese , /imunologia , /imunologia , Acetato de Tetradecanoilforbol/farmacologia , Células Th1/imunologia , /imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA