Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.260
Filtrar
1.
J Environ Sci (China) ; 148: 602-613, 2025 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-39095193

RESUMO

Airborne microplastics (MPs) are important pollutants that have been present in the environment for many years and are characterized by their universality, persistence, and potential toxicity. This study investigated the effects of terrestrial and marine transport of MPs in the atmosphere of a coastal city and compared the difference between daytime and nighttime. Laser direct infrared imaging (LDIR) and polarized light microscopy were used to characterize the physical and chemical properties of MPs, including number concentration, chemical types, shape, and size. Backward trajectories were used to distinguish the air masses from marine and terrestrial transport. Twenty chemical types were detected by LDIR, with rubber (16.7%) and phenol-formaldehyde resin (PFR; 14.8%) being major components. Three main morphological types of MPs were identified, and fragments (78.1%) are the dominant type. MPs in the atmosphere were concentrated in the small particle size segment (20-50 µm). The concentration of MPs in the air mass from marine transport was 14.7 items/m3 - lower than that from terrestrial transport (32.0 items/m3). The number concentration of airborne MPs was negatively correlated with relative humidity. MPs from terrestrial transport were mainly rubber (20.2%), while those from marine transport were mainly PFR (18%). MPs in the marine transport air mass were more aged and had a lower number concentration than those in the terrestrial transport air mass. The number concentration of airborne MPs is higher during the day than at night. These findings could contribute to the development of targeted control measures and methods to reduce MP pollution.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Microplásticos , China , Microplásticos/análise , Poluentes Atmosféricos/análise , Cidades , Atmosfera/química , Tamanho da Partícula
2.
J Environ Sci (China) ; 147: 200-216, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39003040

RESUMO

Microplastics (MPs) are ubiquitous in the environment, continuously undergo aging processes and release toxic chemical substances. Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk. Generalized two-dimensional correlation spectroscopy (2D-COS) is a powerful tool for MPs studies, which can dig more comprehensive information hiding in the conventional one-dimensional spectra, such as infrared (IR) and Raman spectra. The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment, including their aging processes, and interactions with natural organic matter (NOM) or other chemical substances, were summarized systematically. The main requirements and limitations of current approaches for exploring these processes are discussed, and the corresponding strategies to address these limitations and drawbacks are proposed as well. Finally, new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.


Assuntos
Monitoramento Ambiental , Microplásticos , Microplásticos/análise , Monitoramento Ambiental/métodos , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Poluentes Químicos da Água/análise
3.
Front Pharmacol ; 15: 1454523, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39351092

RESUMO

Background: Overexpression of monopolar spindle 1 (MPS1) and histone deacetylase 8 (HDAC8) is associated with the proliferation of liver cancer cells, so simultaneous inhibition of both MPS1 and HDAC8 could offer a promising therapeutic approach for the treatment of liver cancer. Dual-targeted MPS1/HDAC8 inhibitors have not been reported. Methods: A combined approach of pharmacophore modeling and molecular docking was used to identify potent dual-target inhibitors of MPS1 and HDAC8. Enzyme inhibition assays were performed to evaluate the optimal compound with the strongest inhibitory activity against MPS1 and HDAC8. The selectivity of MPH-5 for MPS1 and HDAC8 was assessed on a panel of 68 kinases and other histone deacetylases. Subsequently, molecular dynamics (MD) simulation verified the binding stability of the optimal compound to MPS1 and HDAC8. Ultimately, in vitro cellular assays and in vivo antitumor assays evaluated the antitumor efficacy of the most promising compound for the treatment of hepatocellular carcinoma. Results: Six dual-target compounds (MPHs 1-6) of both MPS1 and HDAC8 were identified from the database using a combined virtual screening protocol. Notably, MPH-5 showed nanomolar inhibitory effect on both MPS1 (IC50 = 4.52 ± 0.21 nM) and HDAC8 (IC50 = 6.07 ± 0.37 nM). MD simulation indicated that MPH-5 stably binds to both MPS1 and HDAC8. Importantly, cellular assays revealed that MPH-5 exhibited significant antiproliferative activity against human liver cancer cells, especially HepG2 cells. Moreover, MPH-5 exhibited low toxicity and high efficacy against tumor cells, and it overcomes drug resistance to some extent. In addition, MPH-5 may exert its antitumor effects by downregulating MPS1-driven phosphorylation of histone H3 and upregulating HDAC8-mediated K62 acetylation of PKM2. Furthermore, MPH-5 showed potent inhibition of HepG2 xenograft tumor growth in mice with no apparent toxicity and presented favorable pharmacokinetics. Conclusion: The study suggests that MPH-5 is a potent, selective, high-efficacy, and low-toxicity antitumor candidate for the treatment of hepatocellular carcinoma.

5.
Genet Med ; : 101286, 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39375993

RESUMO

BACKGROUND: Mucopolysaccharidosis IVA (MPS IVA) is a rare lysosomal storage disorder arising from a deficiency in N-acetylgalactosamine-6-sulfatase (GALNS). METHODS: From September 2019 to October 2023, a total of 264,843 Taiwanese newborns underwent screening for MPS IVA using dried blood spots and tandem mass spectrometry. RESULTS: Among the 95 referred infants, nine (9%) were confirmed to have MPS IVA (Group 1), 18 (19%) were highly suspected to have MPS IVA (Group 2), 61 (64%) were identified as heterozygotes of MPS IVA (Group 3), and seven (7%) were determined not to have MPS IVA (Group 4). A total of 34 different GALNS (HGNC:4122) gene variants were identified through our MPS IVA newborn screening program. The most prevalent variant was c.857C>T p.(Thr286Met), found in 33 cases (29%), followed by c.953T>G p.(Met318Arg) in 22 cases (19%). Intravenous enzyme replacement therapy (ERT) was initiated in five patients at ages ranging from 0.3 to 1.7 years. The estimated incidence of MPS IVA in this screening program was 3.4 per 100,000 live births. CONCLUSIONS: Due to the progressive nature of MPS IVA, an early diagnosis facilitated by newborn screening and prompt initiation of ERT before irreversible organ damage occurs may result in improved clinical outcomes.

6.
J Hazard Mater ; 480: 135976, 2024 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-39369675

RESUMO

Microplastics (MPs) are pervasive contaminants that pose significant ecological and human health risks, emerging as one of the most widespread anthropogenic pollutants in natural environments. This study investigates the abundance, characteristics, and distribution of microplastics (MPs) in the Yamuna River, encompassing 29 sampling points across urban, rural, and industrial zones in and around Delhi, Mathura, Haryana, and Agra. Microplastics were identified and quantified using Nile red dye staining and Micro-Raman spectroscopy, with particle size distribution predominantly between 2 µm to 80 µm and the largest detected particle measuring 256.5 µm. The average MPs concentration was 14,717 ± 4444 L-1, with a significant abundance of hazardous polymers such as polyethylene terephthalate (PET), polypropylene (PP), and polystyrene (PS). The study found that MPs were predominantly fragments and films (65.6 %) and fibers (30.6 %), with transparent particles being the most prevalent. The Pollution Load Index (PLI) consistently indicated high-risk levels (PLI > 100) at all sampling sites, highlighting substantial MP contamination. These results underscore the urgent need for continuous monitoring and the development of robust management strategies to address microplastic pollution in the Yamuna River. This study provides valuable insights into MPs spatial distribution and persistence, contributing to an improved understanding of their environmental impacts and guiding future mitigation and regulatory efforts.

7.
Sci Total Environ ; 955: 176905, 2024 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-39401591

RESUMO

Microplastics (MPs) can be transported over long distances in the environment, hence, distinguishing between MPs generated locally and those introduced from external sources is necessary for regional MP pollution management. In this study, MPs pollution in the dust of Siziwang banner (Sizi), a sparsely populated area on the Mongolian Plateau, and Hohhot, a city with large populations, was observed. The high proportion of small MPs in Sizi (<25 µm), combined with the fact that most air masses reaching the area have undergone long-distance transport, supports the presence of external input through atmosphere. Based on the significantly different composition distributions and surface characteristics of the small sized MPs in Sizi and Hohhot, a composition-based Bray-Curtis similarity index (Comp-BCs) and a carbonyl index-based BCs index (CI-BCs) were established. Contributions of the external MPs input to small MPs in Sizi were estimated as 23-36 %, indicating that the role of atmospheric input on MPs pollution in sparsely populated areas should not be overlooked.

8.
J Hazard Mater ; 480: 136080, 2024 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-39393326

RESUMO

Recently, microplastics (MPs) have garnered significant attention as a challenging emerging pollutant to address. Here, a full-spectrum light-driven Fe-doping BiO2-x/BiOI (FBI) Z-scheme heterojunction was constructed for efficiently degrading MPs in waters. Compared with BiO2-x, Fe doping BiO2-x, and BiOI, the optimal photocatalyst (40-FBI) can cause deep cracks in the polyethylene terephthalate (PET) within 10 h under the irradiation of full-spectrum light. Meanwhile, FT-IR characterization revealed that the absorption peak intensities of the C-O group, CO group, -CH stretching vibration, and -OH group on the MPs surface gradually increased with degradation time. A series of experiments and theory calculations revealed that the introduction of Fe creates impurity levels, accelerating the separation of photo-generated carriers and reducing the work function of BiO2-x, thereby enhancing the transport of photo-generated carriers between Z-scheme heterojunctions. This study offers a valuable idea for designing an efficient photocatalyst by simultaneously introducing ion doping and constructing heterojunctions for enhancing MPs degradation.

9.
Int J Biol Macromol ; 280(Pt 3): 136014, 2024 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-39326610

RESUMO

Microplastics (MPs) in water environment are potential carriers for many substances. In this study, pristine degradable poly-L-lactic acid (PLLA) and non-degradable polyethylene terephthalate (PET) MPs and their UV-aged counterparts were exposed to the Yuhangtang River (Y-River). The results showed that the surface morphology and structure of all MPs markedly changed after exposure. Oxygen-containing functional groups and hydrophilicity of aged MPs were higher compared with their pristine counterparts, and further increased after river exposure. The content of extracellular polymers (EPS) of biofilms on MPs increased with the exposure time, and was higher on aged MPs than on pristine ones. Similar results were obtained for most antibiotic resistance genes (ARGs) between pristine and aged MPs, and ARGs were positively related to pathogens. Dominant bacteria on all MPs were Proteobacteria (51.3 %-81.1 %), Chloroflexi (5.2 %-20.9 %) and Firmicutes (0.4 %-15.9 %), which markedly differed from the Y-River community. Aged MPs could enrich more microbes but relatively fewer bacterial species than pristine MPs, and higher enrichment and species diversity were observed on PLLA compared with PET. This study demonstrates that MPs are highly effective carriers for microbes, and the results provide valuable insights for evaluating the potential impact of bio-MPs on aquatic ecological environment.

10.
Pharmaceutics ; 16(9)2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39339232

RESUMO

Head and neck cancer (HNC), the sixth most common cancer worldwide, is increasing in incidence, with oral squamous cell carcinoma (OSCC) as the predominant subtype. OSCC mainly affects middle-aged to elderly males, often occurring on the posterior lateral border of the tongue, leading to significant disfigurement and functional impairments, such as swallowing and speech difficulties. Despite advancements in understanding OSCC's genetic and epigenetic variations, survival rates for advanced stages remain low, highlighting the need for new treatment options. Primary treatment includes surgery, often combined with radiotherapy (RT) and chemotherapy (CT). Cetuximab-based chemotherapy, targeting the overexpressed epidermal growth factor receptor (EGFR) in 80-90% of HNCs, is commonly used but correlates with poor prognosis. Additionally, monopolar spindle 1 (MPS1), a spindle assembly checkpoint (SAC) component, is a significant target due to its role in genomic fidelity during mitosis and its overexpression in several cancers. This review explores EGFR and MPS1 as therapeutic targets in HNC, analyzing their molecular mechanisms and the effects of their inhibition on cancer cells. It also highlights the promise of combinatorial approaches, such as microtubule-targeting agents (MTAs) and antimitotic agents, in improving HNC therapies, patient outcomes, and survival rates.

11.
J Hazard Mater ; 480: 135763, 2024 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-39270589

RESUMO

The effects of endogenous mangrove litterfall (MF) inputs on organic matter transformation in sediment polluted by exogenous microplastics (MPs) were investigated in this work, and their linkage with microbial characteristics was also explored. MF inputs significantly affected organic carbon transformation in MPs-polluted sediment by improving humification, enzymatic activities and carbon utilisation capacity of microbes. Such effects were mainly linked with the enrichment of microbes responsible for organic substance decomposition induced by MF inputs. Indeed, MF addition increased the relative abundance of fermentation- and cellulysis-assoicated bacteria, together with Saprotrophic fungi. Moreover, dissolved matters derived from MF played a non-neglected role in regulating organic carbon transformation in MPs-polluted sediment. Besides, MF addition decreased the complexity of bacterial community network in MPs-polluted sediment but fungal community network became complicated. And the complexity of microbial network was MF amount-dependent. Even though stochastic process was dominated in sediment with or without MF, MF inputs enhanced the relative contribution of determinism and reduced the migration of microbial communities. A strong response of sediment microbes to MF affected sedimentary organic matters transformation driven by microbes. This work uncovered linkages between organic carbon transformation and microbes in sediment with endogenous litterfall and exogenous MPs inputs in mangroves.

12.
Sci Total Environ ; 954: 176194, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39270874

RESUMO

Since microplastics (MPs) were first detected in groundwater, an increasing number of studies have focused on groundwater pollution by MPs. However, knowledge of the global properties of groundwater MPs: distribution, concentration, composition, and morphology remains limited, while potential factors regulating their transport and distribution in groundwater, especially the hydrogeological background and climate warming conditions, have been omitted from most analyses. Furthermore, previous field investigations did not assess the risks posed by groundwater MPs to the environment and to human health, a necessary preliminary to remediation. In this work, to promote future MP pollution studies and remediation policies, we assimilated and synthesized the current knowledge on this topic. We reviewed current data on global groundwater pollution by MPs, analyzed the driving factors of their transport and distribution, and summarized the ecological and health hazards posed by MPs, before discussing current knowledge limits and suggesting perspectives for future work.

13.
J Hazard Mater ; 479: 135758, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39244981

RESUMO

The effects of microplastics (MPs) from agricultural plastic films on soil nitrogen transformation, especially denitrification, are still obscure. Here, using a robotized flow-through system, we incubated vegetable upland soil cores for 66 days with MPs from PE mulching film (F-PE) and PVC greenhouse film (F-PVC) and directly quantified the emissions of nitrogenous gases from denitrification under oxic conditions, as well as the denitrification potential under anoxic conditions. The impact of MPs on soil nitrogen transformation was largely determined by the concentration of the additive phthalate esters (PAEs) containing in the MPs. The F-PE MPs with low level of PAEs (about 0.006 %) had no significant effect on soil mineral nitrogen content and nitrogenous gas emissions under oxic conditions. In contrast, the F-PVC MPs with high levels of PAEs (about 11 %) reduced soil nitrate content under oxic conditions, probably owing to promoted microbial assimilation of nitrogen, as the emissions of denitrification products (N2, NO, and N2O) was not affected. However, the F-PVC MPs significantly enhanced the denitrification potential of the soil due to the increased abundance of denitrifiers under anoxic conditions. These findings highlight the disturbance of MPs from agricultural films, particularly the additive PAEs on nitrogen transformation in soil ecosystems.

14.
Environ Sci Pollut Res Int ; 31(44): 55974-55983, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39249613

RESUMO

Microplastics (MPs), tiny plastic particles less than 5 mm in size, have emerged as a common and worrying pollutant in marine, freshwater, and terrestrial environments worldwide. In this study, we revealed the microplastic exposure of two endemic newt species for Türkiye. We found that polyethylene terephthalate (PET) was the predominant microplastic polymer type in both species, with the blue fiber shape in particular. We also found that there was a negative correlation between microplastic size and gastrointestinal tract (GIT) weight, but there was no significant difference between body length and GIT weight of both species. Our findings might be surprising as the studied species live in natural spring waters in remote, high-altitude areas. However, the detection of water bottles in their habitats appears to be the reason for their exposure to microplastic pollution. Therefore, reducing the use of single-use plastics is predicted to contribute to the conservation of these endemic newts.


Assuntos
Monitoramento Ambiental , Microplásticos , Poluentes Químicos da Água , Poluentes Químicos da Água/análise , Animais , Plásticos
15.
Biofabrication ; 2024 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-39348859

RESUMO

Drug discovery for complex liver diseases faces alarming attrition rates. The lack of non-clinical models that recapitulate key aspects of liver (patho)-physiology is likely contributing to the inefficiency of developing effective treatments. Of particular notice is the common omission of an organized microvascular component despite its importance in maintaining liver function and its involvement in the development of several pathologies. Increasing the complexity of in vitro models is usually associated with a lack of scalability and robustness which hinders their implementation in drug development pipelines. Here, we describe a comprehensive liver microphysiological system model comprising stellates, liver-derived endothelial cells and hepatocytes conceived within a scalable and automated platform. We show that endothelial cells self-organize in a microvascular network when co-cultured with stellates in a hydrogel. In a tri-culture, hepatocytes polarize accordingly, with a basolateral side facing blood vessels and an apical side facing bile-canaliculi-like structures. Stellates interact and surround the hollow microvessels. Steatosis was induced by exogenous administration of fatty acids which could be prevented by co-administration of firsocostat. Administration of TGF-ß resulted in an activated stellate cells phenotype which could be prevented by the co-administration of SB-431542. The model was implemented on a microtiter plate format comprising 64 chips which enabled the development of a fully automated, multiplexed fibrosis assay with a robust Z' factor suitable for high-throughput applications.

16.
Biomed Mater ; 19(6)2024 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-39312951

RESUMO

Pharmacokinetics of nanomedicines can be improved by a temporal blockade of mononuclear phagocyte system (MPS) through the interaction with other biocompatible nanoparticles. Liposomes are excellent candidates as blocking agents, but the efficiency of the MPS blockade can greatly depend on the liposome properties. Here, we investigated the dependence of the efficiency of the induced MPS blockadein vitroandin vivoon the size of blocking liposomes in the 100-500 nm range. Saturation of RAW 264.7 macrophage uptake was observed for phosphatidylcholine/cholesterol liposomes larger than 200 nmin vitro. In mice, liposomes of all sizes exhibited a blocking effect on liver macrophages, prolonging the circulation of subsequently administrated magnetic nanoparticles in the bloodstream, reducing their liver uptake, and increasing accumulation in the spleen and lungs. Importantly, these effects became more pronounced with the increase of liposome size. Optimization of the size of the blocking liposomes holds the potential to enhance drug delivery and improve cancer therapy.


Assuntos
Lipossomos , Nanopartículas , Tamanho da Partícula , Animais , Lipossomos/química , Camundongos , Células RAW 264.7 , Nanopartículas/química , Sistema Fagocitário Mononuclear/metabolismo , Macrófagos/metabolismo , Distribuição Tecidual , Sistemas de Liberação de Medicamentos , Fígado/metabolismo , Colesterol/química , Baço/metabolismo , Fosfatidilcolinas/química
17.
Mol Genet Metab ; 143(1-2): 108576, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39303318

RESUMO

PURPOSE: This study investigated the relationship between mucopolysaccharidosis II (MPS II) iduronate-2-sulfatase gene (IDS) variants and phenotypic characteristics, particularly cognitive impairment, using data from the Hunter Outcome Survey (HOS) registry. METHODS: HOS data for male patients (n = 650) aged ≥5 years at latest cognitive assessment with available genetic data were analyzed. Predefined genotype categories were used to classify IDS variants and report phenotypic characteristics by genotype. RESULTS: At their latest cognitive assessment, 411 (63.2%) of 650 patients had cognitive impairment. Missense variants were the most common MPS II genotype, with about equal frequency for patients with and patients without cognitive impairment. Complete deletions/large rearrangements were associated with cognitive impairment. Cognitive impairment and behavioral issues were most common, and height and weight abnormalities most apparent, in patients with large IDS structural changes. Broadly, missense variants NM-000202.8:c.998C>T p.(Ser333Leu), NM-000202.8:c.1402C>T p.(Arg468Trp), NM-000202.8:c.1403G>A p.(Arg468Gln) and NM-000202.8:c.262C>T p.(Arg88Cys), and splice site variant NM-000202.8:c.257C>T p.(Pro86Leu), were associated with cognitive impairment, and variants NM-000202.8:c.253G>A p.(Ala85Thr), NM-000202.8:c.187 A>G p.(Asn63Asp), NM-000202.8:c.1037C>T p.(Ala346Val), NM-000202.8:c.182C>T p.(Ser61Phe) and NM-000202.8:c.1122C>T were not. CONCLUSION: This analysis contributes toward the understanding of MPS II genotype-phenotype relationships, confirming and expanding on existing findings in a large, geographically diverse population.


Assuntos
Disfunção Cognitiva , Estudos de Associação Genética , Genótipo , Mucopolissacaridose II , Fenótipo , Humanos , Mucopolissacaridose II/genética , Mucopolissacaridose II/patologia , Masculino , Criança , Adolescente , Pré-Escolar , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Mutação de Sentido Incorreto , Adulto , Adulto Jovem , Iduronato Sulfatase/genética , Sistema de Registros , Mutação , Glicoproteínas
18.
Heliyon ; 10(16): e36038, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39224339

RESUMO

Addressing the growing challenges of periodontal and peri-implant diseases, this study first reports a promising advancement in precision dentistry: an intricately formulated biopolymer spray designed for precise, localized drug delivery during tailored dental procedures. Poly (lactic-co-glycolic acid) (PLGA), recognized for its controlled release, biodegradability, and FDA-approved biocompatibility, forms the core of this formulation. Utilizing the double emulsion method, PLGA microparticles (PLGA-MPs) were loaded with dental antibiotics: sodium amoxicillin (AMX-Na), trihydrate amoxicillin (AMX-Tri), and metronidazole (Met). This antibiotic combination was thoughtfully selected to meet the distinctive requirements of the most impacting dental treatments. The newly developed biopolymer spray underwent thorough in-vitro analysis, revealing an optimized release curve for antibiotics over time, guaranteeing sustained therapeutic efficacy, and dose-dependent efficacy, accommodating personalized treatment approaches. The positive outcomes position the novel biopolymer spray formulation the leaders in advancing localized drug delivery during dental procedures. Moreover, the precise application and the tunable formulation meets the concept of precision medicine: in detail, this formulation represents a significant stride in dental therapeutics, significantly contributing to the predictability of dental implantology.

19.
Diagnostics (Basel) ; 14(16)2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39202222

RESUMO

Mucopolysaccharidoses (MPS) comprise a group of 12 metabolic disorders where defects in specific enzyme activities lead to the accumulation of glycosaminoglycans (GAGs) within lysosomes. This classification expands to 13 when considering MPS IIIE. This type of MPS, associated with pathogenic variants in the ARSG gene, has thus far been described only in the context of animal models. However, pathogenic variants in this gene also occur in humans, but are linked to a different disorder, Usher syndrome (USH) type IV, which is sparking increasing debate. This paper gathers, discusses, and summarizes arguments both for and against classifying dysfunctions of arylsulfatase G (due to pathogenic variants in the ARSG gene) in humans as another subtype of MPS, called MPS IIIE. Specific difficulties in diagnostics and the classification of some inherited metabolic diseases are also highlighted and discussed.

20.
J Hazard Mater ; 478: 135610, 2024 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-39178771

RESUMO

Microplastics (MPs) have unique toxicokinetic (TK) processes that differ from those of soluble pollutants. This study investigated the ingestion, migration, accumulation, and clearance of environmental aging MPs in the Japanese swamp shrimp (Macrobrachium nipponense). The concentrations of plastic additives and personal care products adsorbed onto MPs in natural river water were determined, and TK models for MPs and MPs-loaded pollutants were developed. Results showed that the formation of surface biofilms and alterations in the distribution of MPs in waters caused by environmental aging affect MPs bioavailability, which is mainly related to the feeding habits of shrimp. The decrease in MPs particle size caused by biological digestion and the increase in the number of oxygen-containing functional groups caused by environmental aging affect the TK process of MPs. The TK model of MPs-loaded pollutants revealed the cleaning effect of shrimp on pollutants adsorbed onto MPs during swallowing and spitting MPs. This cleaning effect significantly increases the bioavailability of MPs-associated pollutants in aquatic environments. This study provides a new perspective for understanding the interactions between environmental MPs and their associated pollutants in aquatic ecosystems.


Assuntos
Disponibilidade Biológica , Microplásticos , Palaemonidae , Poluentes Químicos da Água , Animais , Microplásticos/toxicidade , Microplásticos/farmacocinética , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/farmacocinética , Palaemonidae/efeitos dos fármacos , Toxicocinética , Adsorção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA