Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.608
Filtrar
1.
Acta Neuropathol Commun ; 12(1): 148, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39256867

RESUMO

Malignant transformation (MT) is commonly seen in IDH-mutant gliomas. There has been a growing research interest in revealing its underlying mechanisms and intervening prior to MT at the early stages of the transforming process. Here we established a unique pair of matched 3D cell models: 403L, derived from a low-grade glioma (LGG), and 403H, derived from a high-grade glioma (HGG), by utilizing IDH-mutant astrocytoma samples from the same patient when the tumor was diagnosed as WHO grade 2 (tumor mutational burden (TMB) of 3.96/Mb) and later as grade 4 (TMB of 70.07/Mb), respectively. Both cell models were authenticated to a patient's sample retaining endogenous expression of IDH1 R132H. DNA methylation profiles of the parental tumors referred to LGG and HGG IDH-mutant glioma clusters. The immunopositivity of SOX2, NESTIN, GFAP, OLIG2, and beta 3-Tubulin suggested the multilineage potential of both models. 403H was more prompt to cell invasion and developed infiltrative HGG in vivo. The differentially expressed genes (DEGs) from the RNA sequencing analysis revealed the tumor invasion and aggressiveness related genes exclusively upregulated in the 403H model. Pathway analysis showcased an enrichment of genes associated with epithelial-mesenchymal transition (EMT) and Notch signaling pathways in 403H and 403L, respectively. Mass spectrometry-based targeted metabolomics and hyperpolarized (HP) 1-13C pyruvate in-cell NMR analyses demonstrated significant alterations in the TCA cycle and fatty acid metabolism. Citrate, glutamine, and 2-HG levels were significantly higher in 403H. To our knowledge, this is the first report describing the development of a matched pair of 3D patient-derived cell models representative of MT and temozolomide (TMZ)-induced hypermutator phenotype (HMP) in IDH-mutant glioma, providing insights into genetic and metabolic changes during MT/HMP. This novel in vitro model allows further investigation of the mechanisms of MT at the cellular level.


Assuntos
Neoplasias Encefálicas , Transformação Celular Neoplásica , Glioma , Isocitrato Desidrogenase , Mutação , Humanos , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Glioma/genética , Glioma/patologia , Glioma/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/metabolismo , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Transformação Celular Neoplásica/metabolismo , Animais
2.
Mol Neurobiol ; 2024 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-39243325

RESUMO

Pathogenic variants of mitochondrial DNA (mtDNA) are associated with a large number of heterogeneous diseases involving multiple systems with which patients may present with a wide range of clinical phenotypes. Clinical data of the proband and his family members were gathered in a retrospective study. Whole-exome sequencing and full-length sequencing of the mitochondrial genome that was performed on peripheral blood, urine, and oral mucosa cells were applied for genetic analysis. In this study, we describe a 2-year-old Chinese boy with global developmental delay, Charcot-Marie-Tooth (CMT) disease, progressive myoclonic epilepsy, paroxysmal arrhythmia, and brain atrophy with elevated blood lactate levels. The clinical manifestations of the patient were improved after metabolic therapy, but the development regressed after infection. The molecular finding of whole-exome sequencing is unremarkable, but the mtDNA genome sequencing of the proband and his monther revealed a de novo novel heteroplasmic variant, m.1636A > G, located next to the highly conserved anticodon loop of tRNA Val (MT-TV) gene. Moreover, the higher levels of mutational load in urinary epithelial cells (19.05%) and oral mucosa cells (20.8%) were detected than that in blood (17.4%). Combined with the phenotypic and molecular genetics analysis of this family, this novel variation was currently considered to be a likely pathogenic variant. Our results added evidence that the de novo m.1636A > G variation in the highly conserved sequence of MT-TV appears to suggest a childhood-onset mitochondrial phenotype of a 2-year-old patient, thus broaden the genotypic interpretation of mitochondrial DNA-related disease.

3.
Redox Biol ; 76: 103339, 2024 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-39243573

RESUMO

Friedreich ataxia (FA) is a rare neurodegenerative disease caused by decreased levels of the mitochondrial protein frataxin. Frataxin has been related in iron homeostasis, energy metabolism, and oxidative stress. Ferroptosis has recently been shown to be involved in FA cellular degeneration; however, its role in dorsal root ganglion (DRG) sensory neurons, the cells that are affected the most and the earliest, is mostly unknown. In this study, we used primary cultures of frataxin-deficient DRG neurons as well as DRG from the FXNI151F mouse model to study ferroptosis and its regulatory pathways. A lack of frataxin induced upregulation of transferrin receptor 1 and decreased ferritin and mitochondrial iron accumulation, a source of oxidative stress. However, there was impaired activation of NRF2, a key transcription factor involved in the antioxidant response pathway. Decreased total and nuclear NRF2 explains the downregulation of both SLC7A11 (a member of the system Xc, which transports cystine required for glutathione synthesis) and glutathione peroxidase 4, responsible for increased lipid peroxidation, the main markers of ferroptosis. Such dysregulation could be due to the increase in KEAP1 and the activation of GSK3ß, which promote cytosolic localization and degradation of NRF2. Moreover, there was a deficiency in the LKB1/AMPK pathway, which would also impair NRF2 activity. AMPK acts as a positive regulator of NRF2 and it is activated by the upstream kinase LKB1. The levels of LKB1 were reduced when frataxin decreased, in agreement with reduced pAMPK (Thr172), the active form of AMPK. SIRT1, a known activator of LKB1, was also reduced when frataxin decreased. MT-6378, an AMPK activator, restored NRF2 levels, increased GPX4 levels and reduced lipid peroxidation. In conclusion, this study demonstrated that frataxin deficiency in DRG neurons disrupts iron homeostasis and the intricate regulation of molecular pathways affecting NRF2 activation and the cellular response to oxidative stress, leading to ferroptosis.

4.
Mol Ther Nucleic Acids ; 35(3): 102291, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39233852

RESUMO

A hexanucleotide (G4C2) repeat expansion (HRE) within intron one of C9ORF72 is the leading genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). C9ORF72 haploinsufficiency, formation of RNA foci, and production of dipeptide repeat (DPR) proteins have been proposed as mechanisms of disease. Here, we report the first example of disease-modifying siRNAs for C9ORF72 driven ALS/FTD. Using a combination of reporter assay and primary cortical neurons derived from a C9-ALS/FTD mouse model, we screened a panel of more than 150 fully chemically stabilized siRNAs targeting different C9ORF72 transcriptional variants. We demonstrate the lack of correlation between siRNA efficacy in reporter assay versus native environment; repeat-containing C9ORF72 mRNA variants are found to preferentially localize to the nucleus, and thus C9ORF72 mRNA accessibility and intracellular localization have a dominant impact on functional RNAi. Using a C9-ALS/FTD mouse model, we demonstrate that divalent siRNAs targeting C9ORF72 mRNA variants specifically or non-selectively reduce the expression of C9ORF72 mRNA and significantly reduce DPR proteins. Interestingly, siRNA silencing all C9ORF72 mRNA transcripts was more effective in removing intranuclear mRNA aggregates than targeting only HRE-containing C9ORF72 mRNA transcripts. Combined, these data support RNAi-based degradation of C9ORF72 as a potential therapeutic paradigm.

5.
Mol Ther Nucleic Acids ; 35(3): 102290, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39233851

RESUMO

Delivery of antisense oligonucleotides (ASOs) to airway epithelial cells is arduous due to the physiological barriers that protect the lungs and the endosomal entrapment phenomenon, which prevents ASOs from reaching their intracellular targets. Various delivery strategies involving peptide-, lipid-, and polymer-based carriers are being investigated, yet the challenge remains. S10 is a peptide-based delivery agent that enables the intracellular delivery of biomolecules such as GFP, CRISPR-associated nuclease ribonucleoprotein (RNP), base editor RNP, and a fluorescent peptide into lung cells after intranasal or intratracheal administrations to mice, ferrets, and rhesus monkeys. Herein, we demonstrate that covalently attaching S10 to a fluorescently labeled peptide or a functional splice-switching phosphorodiamidate morpholino oligomer improves their intracellular delivery to airway epithelia in mice after a single intranasal instillation. Data reveal a homogeneous delivery from the trachea to the distal region of the lungs, specifically into the cells lining the airway. Quantitative measurements further highlight that conjugation via a disulfide bond through a pegylated (PEG) linker was the most beneficial strategy compared with direct conjugation (without the PEG linker) or conjugation via a permanent thiol-maleimide bond. We believe that S10-based conjugation provides a great strategy to achieve intracellular delivery of peptides and ASOs with therapeutic properties in lungs.

6.
Health Psychol Rep ; 12(3): 260-274, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39234024

RESUMO

BACKGROUND: Preterm birth contributes to adverse mental health outcomes of parents dealing with a premature neonate. The main objective of this study is to determine whether music therapy (MT) songwriting during the infants' stay in the neonatal intensive care unit (NICU) is superior to standard care in reducing the risk of postpartum depression in high-risk parents of preterm children throughout the hospital treatment. The secondary objectives include assessment of effectiveness of MT in other aspects of mental health (anxiety level, perceived stress, mental wellbeing, coping, resilience). Furthermore, this trial will evaluate the medical and social factors that may be associated with the effects of MT songwriting. PARTICIPANTS AND PROCEDURE: The study design is a sequential mixed method study with a dominant status QUAN to qual. The quantitative trial was designed as a parallel, multicenter, pragmatic, randomized controlled trial. The qualitative study is a descriptive phenomenological study that seeks to understand the lived experiences of participants exposed to songwriting. Participants are parents of premature infants hospitalized in NICU (106 families) in 5 hospitals, in Colombia and Poland. Intervention: 3 MT songwriting sessions per week across 3 weeks. Primary outcome: the risk of postnatal depression; secondary outcomes: anxiety level, mental wellbeing, resilience, stress, coping. RESULTS: The results will be analyzed quantitatively and qualitatively. CONCLUSIONS: This study will provide a report on the effectiveness of MT songwriting on mental health in at-risk parents of preterm infants.

7.
Mol Ther Nucleic Acids ; 35(3): 102289, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39252874

RESUMO

Antisense oligonucleotides (ASOs) are a therapeutic modality for incurable diseases. However, systemic injection of gapmer-type ASOs causes class-related toxicities, including prolongation of activated partial thromboplastin time (aPTT) and thrombocytopenia. We previously reported that cholesterol-conjugated DNA/RNA heteroduplex oligonucleotides (Chol-HDOs) exhibit significantly enhanced gene-silencing effects compared to ASOs, even in the central nervous system, by crossing the blood-brain barrier. In the present study, we initially evaluated the effect of the HDO structure on class-related toxicities. The HDO structure ameliorated the class-related toxicities associated with ASOs, but they remained to some extent. As a further antidote, we have developed artificial cationic oligopeptides, L-2,4-diaminobutanoic acid oligomers (DabOs), which bind to the phosphates in the major groove of the A-type double-helical structure of HDOs. The DabO/Chol-HDO complex showed significantly improved aPTT prolongation and thrombocytopenia in mice while maintaining gene-silencing efficacy. Moreover, the conjugation with DabOs effectively prevented cerebral infarction, a condition frequently observed in mice intravenously injected with high-dose Chol-HDO. These approaches, combining HDO technology with DabOs, offer distinct advantages over conventional strategies in reducing toxicities. Consequently, the DabO/HDO complex represents a promising platform for overcoming the class-related toxicities associated with therapeutic ASOs.

8.
Discov Oncol ; 15(1): 430, 2024 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-39259333

RESUMO

KIF18B is a key member of the kinesin-8 family, involved in regulating various physiological processes such as microtubule length, spindle assembly, and chromosome alignment. This article briefly introduces the structure and physiological functions of KIF18B, examines its role in malignant tumors, and the associated carcinogenic signaling pathways such as PI3K/AKT, Wnt/ß-catenin, and mTOR pathways. Research indicates that the upregulation of KIF18B enhances tumor malignancy and resistance to radiotherapy and chemotherapy. KIF18B could become a new target for anticancer drugs, offering significant potential for the treatment of malignant tumors and reducing chemotherapy resistance.

9.
Mol Ther Nucleic Acids ; 35(3): 102292, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39238805

RESUMO

Patients suffering from BRAF mutant melanoma have tumor recurrence within merely 7 months of treatment with a potent BRAF inhibitor (BRAFi) like vemurafenib. It has been proven that diverse molecular pathways driving BRAFi resistance converge to activation of c-Myc in melanoma. Therefore, we identified a novel combinatorial therapeutic strategy by targeting loss of phosphatase and tensin homolog deleted on chromosome 10 (PTEN) tumor suppressor gene and upregulated BRD4 oncoprotein as Myc-dependent vulnerabilities of drug-resistant melanoma. Being promising therapeutic targets, we decided to concomitantly deliver PTEN plasmid and BRD4 targeted PROteolysis-TArgeting Chimera (ARV) to drug the "undruggable" c-Myc in BRAFi-resistant melanoma. Since PTEN plasmid and ARV are distinct in their physicochemical properties, we fabricated PTEN-plasmid loaded lipid nanoparticles (PL-NANO) and ARV-825-loaded nanoliposomes (AL-NANO) to yield a mean particle size of less than 100 nm and greater than 99% encapsulation efficiency for each therapeutic payload. Combination of PL-NANO and AL-NANO displayed synergistic tumor growth inhibition and substantial apoptosis in in vitro two-dimensional and three-dimensional models. Importantly, simultaneous delivery of PL-NANO and AL-NANO achieved significant upregulation of PTEN expression levels and degradation of BRD4 protein to ultimately downregulate c-Myc levels in BRAFi-resistant melanoma cells. Altogether, lipid nanocarriers delivering this novel lethal cocktail stands as one-of-a-kind gene therapy to target undruggable c-Myc oncogene in BRAFi-resistant melanoma.

10.
Cell Rep ; 43(9): 114707, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39243374

RESUMO

Intrinsic cortical activity forms traveling waves that modulate sensory-evoked responses and perceptual sensitivity. These intrinsic traveling waves (iTWs) may arise from the coordination of synaptic activity through long-range feature-dependent horizontal connectivity within cortical areas. In a spiking network model that incorporates feature-selective patchy connections, we observe iTW motifs that result from shifts in excitatory/inhibitory balance as action potentials traverse these patchy connections. To test whether feature-selective motifs occur in vivo, we examined data recorded in the middle temporal visual area (Area MT) of marmosets performing a visual detection task. We find that some iTWs form motifs that are feature selective, exhibiting direction-selective modulations in spiking activity. Further, motifs modulate the gain of target-evoked responses and perceptual sensitivity if the target matches the preference of the motif. These results suggest that iTWs are shaped by the patchy horizontal fiber projections in the cortex and can regulate neural and perceptual sensitivity in a feature-selective manner.

11.
Mol Ther Nucleic Acids ; 35(3): 102285, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39220268

RESUMO

Chronic obstructive pulmonary disease (COPD) is the most prevalent lung disease, and macrophages play a central role in the inflammatory response in COPD. We here report a comprehensive characterization of circulating short non-coding RNAs (sncRNAs) in plasma from patients with COPD. While circulating sncRNAs are increasingly recognized for their regulatory roles and biomarker potential in various diseases, the conventional RNA sequencing (RNA-seq) method cannot fully capture these circulating sncRNAs due to their heterogeneous terminal structures. By pre-treating the plasma RNAs with T4 polynucleotide kinase, which converts all RNAs to those with RNA-seq susceptible ends (5'-phosphate and 3'-hydroxyl), we comprehensively sequenced a wide variety of non-microRNA sncRNAs, such as 5'-tRNA halves containing a 2',3'-cyclic phosphate. We discovered a remarkable accumulation of the 5'-half derived from tRNAValCAC in plasma from COPD patients, whereas the 5'-tRNAGlyGCC half is predominant in healthy donors. Further, the 5'-tRNAValCAC half activates human macrophages via Toll-like receptor 7 and induces cytokine production. Additionally, we identified circulating rRNA-derived fragments that were upregulated in COPD patients and demonstrated their ability to induce cytokine production in macrophages. Our findings provide evidence of circulating, immune-active sncRNAs in patients with COPD, suggesting that they serve as inflammatory mediators in the pathogenesis of COPD.

12.
Mol Ther Nucleic Acids ; 35(3): 102295, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39257717

RESUMO

Due to the transformation of artificial intelligence (AI) tools and technologies, AI-driven drug discovery has come to the forefront. It reduces the time and expenditure. Due to these advantages, pharmaceutical industries are concentrating on AI-driven drug discovery. Several drug molecules have been discovered using AI-based techniques and tools, and several newly AI-discovered drug molecules have already entered clinical trials. In this review, we first present the data and their resources in the pharmaceutical sector for AI-driven drug discovery and illustrated some significant algorithms or techniques used for AI and ML which are used in this field. We gave an overview of the deep neural network (NN) models and compared them with artificial NNs. Then, we illustrate the recent advancement of the landscape of drug discovery using AI to deep learning, such as the identification of drug targets, prediction of their structure, estimation of drug-target interaction, estimation of drug-target binding affinity, design of de novo drug, prediction of drug toxicity, estimation of absorption, distribution, metabolism, excretion, toxicity; and estimation of drug-drug interaction. Moreover, we highlighted the success stories of AI-driven drug discovery and discussed several collaboration and the challenges in this area. The discussions in the article will enrich the pharmaceutical industry.

13.
Front Psychiatry ; 15: 1323794, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39224478

RESUMO

Background: Music therapy is a rapidly evolving multidisciplinary field. But there has been no research analyzing the latest research status and development trends in this research field from a macro perspective. We aim to identify hotspots, knowledge base, and frontiers in the field of music therapy through bibliometric analysis. Methods: All data were retrieved from the Web of Science core database from January 1, 2013 to December 31, 2022.CiteSpace and Bibliometrix software were employed for bibliometric analysis and visualization analysis. Results: A total of 2,397 articles were included. In the past decade, there has been a consistent increase in the number of publications. The countries and institutions with the largest production in this field are the USA and the University of London. Based on the analysis of the total number of citations, centrality, and production, the results show that the most influential journals are PLoS One and Cochrane Database Syst Rev. Keyword co-occurrence analysis and highly cited study analysis are mainly used to analyze research hotspots in the field of music therapy, while the keyword burst analysis is employed to explore frontiers and potential developmental trends. Hot keywords include "interventions", "anxiety" and "randomized controlled trial". The burst keywords include "validity", "preterm infants", and "mild cognitive impairment". In the ranking of highly cited study, the top ranked studies are "Music-based interventions in neurological rehabilitation" and "Music interventions for improving psychological and physical outcomes in cancer patients". Conclusion: In the past decade, the research focus in music therapy was the effect of music therapy on neurological diseases and the improvement of psychological symptoms such as pain and anxiety. The neurophysiological mechanisms that bring about these therapeutic effects need to be future researched.

14.
Mol Ther Oncol ; 32(3): 200854, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39224504

RESUMO

Current CD33-targeted immunotherapies typically recognize the membrane-distal V-set domain of CD33. Here, we show that decreasing the distance between T cell and leukemia cell membrane increases the efficacy of CD33 chimeric antigen receptor (CAR) T cells. We therefore generated and optimized second-generation CAR constructs containing single-chain variable fragments from antibodies raised against the membrane-proximal C2-set domain, which bind CD33 regardless of whether the V-set domain is present (CD33PAN antibodies). CD33PAN CAR T cells resulted in efficient tumor clearance and improved survival of immunodeficient mice bearing human AML cell xenografts and, in an AML model with limited CD33 expression, forced escape of CD33neg leukemia. Compared to CD33V-set CAR T cells, CD33PAN CAR T cells showed greater in vitro and in vivo efficacy against several human AML cell lines with differing levels of CD33 without increased expression of exhaustion markers. CD33PAN moieties were detected at a higher frequency on human leukemic stem cells, and CD33PAN CAR T cells had greater in vitro efficacy against primary human AML cells. Together, our studies demonstrate improved efficacy with CAR T cells binding CD33 close to the cell membrane, providing the rationale to investigate CD33PAN CAR T cells further toward possible clinical application.

15.
Mol Ther Oncol ; 32(3): 200852, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39220111

RESUMO

Chimeric antigen receptor (CAR) T cells have had limited success against solid tumors. Here, we used an oncolytic foamy virus (oFV) to display a model CAR target antigen (CD19) on tumors in combination with anti-CD19 CAR T cells. We generated oFV-Δbel2 and oFV-bel2 vectors to test the efficiency and stability of viral/CD19 spread. While both viruses conferred equal CAR T killing in vitro, the oFV-Δbel2 virus acquired G-to-A mutations, whereas oFV-bel2 virus had genome deletions. In subcutaneous tumor models in vivo, CAR T cells led to a significant decrease in oFV-specific bioluminescence, confirming clearance of oFV-infected tumor cells. However, the most effective therapy was with high-dose oFV in the absence of CAR T cells, indicating that CAR T clearance of oFV was detrimental. Moreover, in tumors that escaped CAR T cell treatment, resurgent virus contained deletions within the oFV-CD19 transgene, allowing the virus to escape CAR T elimination. Therefore, oFV represents a slow smoldering type of oncolytic virus, whose chronic spread through tumors generates anti-tumor therapy, which is abolished by CAR T therapy. These results suggest that further development of this oncolytic platform, with additional immunotherapeutic arming, may allow for an effective combination of chronic oncolysis.

16.
Mol Ther Nucleic Acids ; 35(3): 102278, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39220269

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)-Cas13d system was adapted as a powerful tool for targeting viral RNA sequences, making it a promising approach for antiviral strategies. Understanding the influence of template RNA structure on Cas13d binding and cleavage efficiency is crucial for optimizing its therapeutic potential. In this study, we investigated the effect of local RNA secondary structure on Cas13d activity. To do so, we varied the stability of a hairpin structure containing the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) target sequence, allowing us to determine the threshold RNA stability at which Cas13d activity is affected. Our results demonstrate that Cas13d possesses the ability to effectively bind and cleave highly stable RNA structures. Notably, we only observed a decrease in Cas13d activity in the case of exceptionally stable RNA hairpins with completely base-paired stems, which are rarely encountered in natural RNA molecules. A comparison of Cas13d and RNA interference (RNAi)-mediated cleavage of the same RNA targets demonstrated that RNAi is more sensitive for local target RNA structures than Cas13d. These results underscore the suitability of the CRISPR-Cas13d system for targeting viruses with highly structured RNA genomes.

17.
Gene ; 930: 148853, 2024 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-39147111

RESUMO

Leber's hereditary optic neuropathy (LHON) is a maternal inherited disorder, primarily due to mitochondrial DNA (mtDNA) mutations. This investigation aimed to assess the pathogenicity of m.3635G>A alteration known to confer susceptibility to LHON. The disruption of electrostatic interactions among S110 of the MT-ND1 and the side chain of E4, along with the carbonyl backbone of M1 in the NDUFA1, was observed in complex I of cybrids with m.3635G>A. This disturbance affected the complex I assembly activity by changing the mitochondrial respiratory chain composition and function. In addition, the affected cybrids exhibited notable deficiencies in complex I activities, including impaired mitochondrial respiration and depolarization of its membrane potential. Apoptosis was also stimulated in the mutant group, as witnessed by the secretion of cytochrome c and activation of PARP, caspase 3, 7, and 9 compared to the control. Furthermore, the mutant group exhibited decreased levels of autophagy protein light chain 3, accumulation of autophagic substrate P62, and impaired PINK1/Parkin-dependent mitophagy. Overall, the current study has confirmed the crucial involvement of the alteration of the m.3635G>A gene in the development of LHON. These findings contribute to a deeper comprehension of the pathophysiological mechanisms underlying LHON, providing a fundamental basis for further research.


Assuntos
Apoptose , Mitocôndrias , Mitofagia , NADH Desidrogenase , Atrofia Óptica Hereditária de Leber , Atrofia Óptica Hereditária de Leber/genética , Atrofia Óptica Hereditária de Leber/metabolismo , Atrofia Óptica Hereditária de Leber/patologia , Humanos , Mitofagia/genética , Apoptose/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , NADH Desidrogenase/genética , NADH Desidrogenase/metabolismo , Mutação , DNA Mitocondrial/genética , Potencial da Membrana Mitocondrial/genética , Proteínas Quinases
18.
Front Cell Infect Microbiol ; 14: 1413103, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39113822

RESUMO

Background: Sepsis represents a severe manifestation of infection often accompanied by metabolic disorders and mitochondrial dysfunction. Notably, mitochondrial DNA copy number (mtDNA-CN) and the expression of specific mitochondrial genes have emerged as sensitive indicators of mitochondrial function. To investigate the utility of mitochondrial gene expression in peripheral blood cells for distinguishing severe infections and predicting associated outcomes, we conducted a prospective cohort study. Methods: We established a prospective cohort comprising 74 patients with non-sepsis pneumonia and 67 cases of sepsis induced by respiratory infections, aging from 2 to 6 years old. We documented corresponding clinical data and laboratory information and collected blood samples upon initial hospital admission. Peripheral blood cells were promptly isolated, and both total DNA and RNA were extracted. We utilized absolute quantification PCR to assess mtDNA-CN, as well as the expression levels of mt-CO1, mt-ND1, and mt-ATP6. Subsequently, we extended these comparisons to include survivors and non-survivors among patients with sepsis using univariate and multivariate analyses. Receiver operating characteristic (ROC) curves were constructed to assess the diagnostic potential. Results: The mtDNA-CN in peripheral blood cells was significantly lower in the sepsis group. Univariate analysis revealed a significant reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 in patients with sepsis. However, multivariate analysis did not support the use of mitochondrial function in peripheral blood cells for sepsis diagnosis. In the comparison between pediatric sepsis survivors and non-survivors, univariate analysis indicated a substantial reduction in the expression of mt-CO1, mt-ND1, and mt-ATP6 among non-survivors. Notably, total bilirubin (TB), mt-CO1, mt-ND1, and mt-ATP6 levels were identified as independent risk factors for sepsis-induced mortality. ROC curves were then established for these independent risk factors, revealing areas under the curve (AUCs) of 0.753 for TB (95% CI 0.596-0.910), 0.870 for mt-CO1 (95% CI 0.775-0.965), 0.987 for mt-ND1 (95% CI 0.964-1.000), and 0.877 for mt-ATP6 (95% CI 0.793-0.962). Conclusion: MtDNA-CN and mitochondrial gene expression are closely linked to the severity and clinical outcomes of infectious diseases. Severe infections lead to impaired mitochondrial function in peripheral blood cells. Notably, when compared to other laboratory parameters, the expression levels of mt-CO1, mt-ND1, and mt-ATP6 demonstrate promising potential for assessing the prognosis of pediatric sepsis.


Assuntos
DNA Mitocondrial , Curva ROC , Sepse , Humanos , Sepse/sangue , Sepse/diagnóstico , Sepse/mortalidade , Pré-Escolar , Feminino , Masculino , DNA Mitocondrial/genética , Estudos Prospectivos , Prognóstico , Criança , Mitocôndrias/genética , Mitocôndrias/metabolismo , NADH Desidrogenase/genética , ATPases Mitocondriais Próton-Translocadoras/genética , Células Sanguíneas/metabolismo , Genes Mitocondriais , Expressão Gênica , Pneumonia/diagnóstico , Pneumonia/sangue , Valor Preditivo dos Testes
19.
Mol Ther Oncol ; 32(3): 200845, 2024 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-39108499

RESUMO

Osteosarcoma (OS), the most frequent primary malignant tumor of bone in children and adolescents, is refractory to immune checkpoint inhibitors due to its poor antitumor immune response. Chemotherapy and virotherapy induce immunogenic cell death (ICD) and antitumor immune responses, leading to the abscopal effect in untreated tumors. We previously demonstrated the antitumor activity of the telomerase-specific replication-competent oncolytic adenoviruses OBP-301 and p53-armed OBP-702 in human OS cells. Here, we show the therapeutic potential of chemotherapeutic drugs (doxorubicin, cisplatin) and telomerase-specific oncolytic adenoviruses (OBP-301, p53-armed OBP-702) to induce ICD in human OS cells (U2OS, MNNG/HOS, SaOS-2) and murine OS cells (NHOS). OBP-702 induced more profound ICD via the secretion of adenosine triphosphate (ATP) and high-mobility group box protein B1 (HMGB1) compared with chemotherapy and OBP-301 in human OS cells. Murine NHOS cells were also more sensitive to OBP-702 than OBP-301. Subcutaneous NHOS tumor models demonstrated that intratumoral injection of OBP-702 significantly increased the tumor infiltration of cytotoxic CD8+ T cells and induced the abscopal effect against non-treated tumors compared with OBP-301. Our results suggest that OBP-702 is a promising antitumor reagent to induce ICD with secretion of ATP and HMGB1 and the abscopal effect against OS.

20.
Mol Ther Nucleic Acids ; 35(3): 102264, 2024 Sep 10.
Artigo em Inglês | MEDLINE | ID: mdl-39108635

RESUMO

Viral vectors based on recombinant adeno-associated virus (rAAV) have become the most widely used system for therapeutic gene delivery in the central nervous system (CNS). Despite clinical safety and efficacy in neurological applications, a barrier to adoption of the current generation of vectors lies in their limited efficiency, resulting in limited transduction of CNS target cells. To address this limitation, researchers have bioengineered fit-for-purpose AAVs with improved CNS tropism and tissue penetration. While the preclinical assessment of these novel AAVs is primarily conducted in animal models, human induced pluripotent stem cell (hiPSC)-derived organoids offer a unique opportunity to functionally evaluate novel AAV variants in a human context. In this study, we performed a comprehensive and unbiased evaluation of a large number of wild-type and bioengineered AAV capsids for their transduction efficiency in hiPSC-derived brain organoids. We demonstrate that efficient AAV transduction observed in organoids was recapitulated in vivo in both mouse and non-human primate models after cerebrospinal fluid (CSF) delivery. In summary, our study showcases the use of brain organoid systems for the pre-screening of novel AAV vectors. Additionally, we report data for novel AAV variants that exhibit improved CNS transduction efficiency when delivered via the CSF in in vivo preclinical models.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA