Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Gene ; 910: 148339, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38438057

RESUMO

Dominant missense variants in MYBPC1 encoding slow Myosin Binding Protein-C (sMyBP-C) have been increasingly linked to arthrogryposis syndromes and congenital myopathy with tremor. Herein, we describe novel compound heterozygous variants - NM_002465.4:[c.2486_2492del];[c.2663A > G] - present in fibronectin-III (Fn-III) C7 and immunoglobulin (Ig) C8 domains, respectively, manifesting as severe, early-onset distal arthrogryposis type-1, with the carrier requiring intensive care and several surgical interventions at an early age. Computational modeling predicts that the c.2486_2492del p.(Lys829IlefsTer7) variant destabilizes the structure of the Fn-III C7 domain, while the c.2663A > G p.(Asp888Gly) variant causes minimal structural alterations in the Ig C8 domain. Although the parents of the proband are heterozygous carriers for a single variant, they exhibit no musculoskeletal defects, suggesting a complex interplay between the two mutant alleles underlying this disorder. As emerging novel variants in MYBPC1 are shown to be causatively associated with musculoskeletal disease, it becomes clear that MYBPC1 should be included in relevant genetic screenings.


Assuntos
Artrogripose , Doenças Musculares , Humanos , Artrogripose/genética , Artrogripose/metabolismo , Mutação de Sentido Incorreto
2.
J Neurol Sci ; 457: 122864, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38185014

RESUMO

Congenital myopathy with tremor (MYOTREM) is a recently described disorder characterized by mild myopathy and a postural and intention tremor present since early infancy. MYOTREM is associated with pathogenic variants in MYBPC1 which encodes slow myosin-binding protein C, a sarcomere protein with regulatory and structural roles. Here, we describe a family with three generations of variably affected members exhibiting a novel variant in MYBPC1 (c.656 T > C, p.Leu219Pro). Among the unique features of affected family members is the persistence of tremor in sleep. We also present the first muscle magnetic resonance images for this disorder, and report muscle atrophy and fatty infiltration.


Assuntos
Doenças Musculares , Tremor , Humanos , Família , Mutação/genética , Tremor/diagnóstico por imagem , Tremor/genética
4.
Pediatr Neurol ; 146: 16-20, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37392669

RESUMO

Myosin-binding protein C1 (MYBPC1) encodes myosin-binding protein C, slow type (sMyBP-C), an accessory protein that regulates actomyosin cross-linking, stabilizes thick filaments, and modulates contractility in muscle sarcomeres and has recently been linked to myopathy with tremor. The clinical features of MYBPC1 mutations manifesting in early childhood bear some similarities to those of spinal muscular atrophy (SMA), such as hypotonia, involuntary movement of the tongue and limbs, and delayed motor development. The development of novel therapies for SMA has necessitated the importance of differentiating SMA from other diseases in the early infancy period. We report the characteristic tongue movements of MYBPC1 mutations, along with other clinical findings, such as positive deep tendon reflexes and normal peripheral nerve conduction velocity testing, which could help in considering other diseases as differential diagnoses.


Assuntos
Atrofia Muscular Espinal , Tremor , Pré-Escolar , Humanos , Mutação/genética , Língua/metabolismo
5.
Front Genet ; 13: 896117, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35832193

RESUMO

Myosin binding protein-C (MyBP-C) is a sarcomeric protein which regulates the force of contraction in striated muscles. Mutations in the MYBPC family of genes, including slow skeletal (MYBPC1), fast skeletal (MYBPC2) and cardiac (MYBPC3), can result in cardiac and skeletal myopathies. Nonetheless, their evolutionary pattern, pathogenicity and impact on MyBP-C protein structure remain to be elucidated. Therefore, the present study aimed to systematically assess the evolutionarily conserved and epigenetic patterns of MYBPC family mutations. Leveraging a machine learning (ML) approach, the Genome Aggregation Database (gnomAD) provided variants in MYBPC1, MYBPC2, and MYBPC3 genes. This was followed by an analysis with Ensembl's variant effect predictor (VEP), resulting in the identification of 8,618, 3,871, and 3,071 variants in MYBPC1, MYBPC2, and MYBPC3, respectively. Missense variants comprised 61%-66% of total variants in which the third nucleotide positions in the codons were highly altered. Arginine was the most mutated amino acid, important because most disease-causing mutations in MyBP-C proteins are arginine in origin. Domains C5 and C6 of MyBP-C were found to be hotspots for most mutations in the MyBP-C family of proteins. A high percentage of truncated mutations in cMyBP-C cause cardiomyopathies. Arginine and glutamate were the top hits in fMyBP-C and cMyBP-C, respectively, and tryptophan and tyrosine were the most common among the three paralogs changing to premature stop codons and causing protein truncations at the carboxyl terminus. A heterogeneous epigenetic pattern was identified among the three MYBP-C paralogs. Overall, it was shown that databases using computational approaches can facilitate diagnosis and drug discovery to treat muscle disorders caused by MYBPC mutations.

7.
Front Physiol ; 11: 689, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32670090

RESUMO

Distal arthrogryposis (DA) is a skeletal muscle disorder which can be classified under a broader term as Arthrogryposis multiplex contractures. DA is characterized by the presence of joint contractures at various parts of the body, particularly in distal extremities. It is identified as an autosomal dominant and a rare X-linked recessive disorder associated with increased connective tissue formation around joints in such way that immobilizes muscle movement causing deformities. DA is again classified into various types since it manifests as a range of conditions representing different etiologies. Myopathy is one of the most commonly listed etiologies of DA. The mutations in sarcomeric protein-encoding genes lead to decreased sarcomere integrity, which is often associated with this disorder. Also, skeletal disorders are often associated with cardiac disorders. Some studies mention the presence of cardiomyopathy in patients with skeletal dysfunction. Therefore, it is hypothesized that the congenitally mutated protein that causes DA can also lead to cardiomyopathy. In this review, we will summarize the different forms of DA and their clinical features, along with gene mutations responsible for causing DA in its different forms. We will also examine reports that list mutations also known to cause heart disorders in the presence of DA.

8.
Hum Mutat ; 40(8): 1115-1126, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31264822

RESUMO

Encoding the slow skeletal muscle isoform of myosin binding protein-C, MYBPC1 is associated with autosomal dominant and recessive forms of arthrogryposis. The authors describe a novel association for MYBPC1 in four patients from three independent families with skeletal muscle weakness, myogenic tremors, and hypotonia with gradual clinical improvement. The patients carried one of two de novo heterozygous variants in MYBPC1, with the p.Leu263Arg variant seen in three individuals and the p.Leu259Pro variant in one individual. Both variants are absent from controls, well conserved across vertebrate species, predicted to be damaging, and located in the M-motif. Protein modeling studies suggested that the p.Leu263Arg variant affects the stability of the M-motif, whereas the p.Leu259Pro variant alters its structure. In vitro biochemical and kinetic studies demonstrated that the p.Leu263Arg variant results in decreased binding of the M-motif to myosin, which likely impairs the formation of actomyosin cross-bridges during muscle contraction. Collectively, our data substantiate that damaging variants in MYBPC1 are associated with a new form of an early-onset myopathy with tremor, which is a defining and consistent characteristic in all affected individuals, with no contractures. Recognition of this expanded myopathic phenotype can enable identification of individuals with MYBPC1 variants without arthrogryposis.


Assuntos
Artrogripose/genética , Proteínas de Transporte/genética , Mutação , Doenças Neuromusculares/genética , Sequenciamento Completo do Genoma/métodos , Adulto , Proteínas de Transporte/química , Criança , Pai , Feminino , Humanos , Lactente , Masculino , Modelos Moleculares , Linhagem , Fenótipo , Conformação Proteica
9.
Front Physiol ; 7: 410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27683561

RESUMO

Myosin Binding Protein-C (MyBP-C) comprises a family of accessory proteins that includes the cardiac, slow skeletal, and fast skeletal isoforms. The three isoforms share structural and sequence homology, and localize at the C-zone of the sarcomeric A-band where they interact with thick and thin filaments to regulate the cycling of actomyosin crossbridges. The cardiac isoform, encoded by MYBPC3, has been extensively studied over the last several decades due to its high mutational rate in congenital hypertrophic and dilated cardiomyopathy. It is only recently, however, that the MYBPC1 gene encoding the slow skeletal isoform (sMyBP-C) has gained attention. Accordingly, during the last 5 years it has been shown that MYBPC1 undergoes extensive exon shuffling resulting in the generation of multiple slow variants, which are co-expressed in different combinations and amounts in both slow and fast skeletal muscles. The sMyBP-C variants are subjected to PKA- and PKC-mediated phosphorylation in constitutive and alternatively spliced sites. More importantly, missense, and nonsense mutations in MYBPC1 have been directly linked with the development of severe and lethal forms of distal arthrogryposis myopathy and muscle tremors. Currently, there is no mammalian animal model of sMyBP-C, but new technologies including CRISPR/Cas9 and xenografting of human biopsies into immunodeficient mice could provide unique ways to study the regulation and roles of sMyBP-C in health and disease.

10.
Clin Genet ; 90(1): 84-9, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26661508

RESUMO

Arthrogryposis multiplex congenita (AMC) is characterized by heterogeneous nonprogressive multiple joint contractures appearing at birth. We present a consanguineous Israeli-Druze family with several members presenting with AMC. A variable intra-familial phenotype and pected autosomal recessive inheritance prompted molecular diagnosis by whole-exome sequencing. Variant analysis focused on rare homozygous changes, revealed a missense variant in MYBPC1, NM_002465:c.556G>A (p.E286K), affecting the last nucleotide of Exon 8. This novel variant was not observed in the common variant databases and co-segregated as expected within the extended family. MYBPC1 encodes a slow skeletal muscle isoform, essential for muscle contraction. Heterozygous mutations in this gene are associated with distal arthrogryposis types 1b and 2, whereas a homozygous nonsense mutation is implicated in one family with lethal congenital contractural syndrome 4. We present a novel milder MYBPC1 homozygous phenotype.


Assuntos
Artrogripose/genética , Proteínas de Transporte/genética , Estudos de Associação Genética , Homozigoto , Mutação de Sentido Incorreto , Artrogripose/diagnóstico , Artrogripose/etnologia , Artrogripose/patologia , Sequência de Bases , Proteínas de Transporte/metabolismo , Pré-Escolar , Consanguinidade , Etnicidade , Exoma , Éxons , Feminino , Expressão Gênica , Genótipo , Humanos , Lactente , Israel , Masculino , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Linhagem , Fenótipo
11.
Gene ; 527(2): 630-5, 2013 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-23850728

RESUMO

Distal arthrogryposes (DAs), a clinically and genetically heterogeneous group of disorders characterized by congenital contractures with predominant involvement of the hands and feet, can be classified into at least 12 different forms. These autosomal dominant disorders are of variable expressivity and reduced penetrance. Mutations in sarcomeric protein genes, including troponin I2 (TNNI2), troponin T3 (TNNT3), tropomyosin 2 (TPM2), embryonic myosin heavy chain 3 (MYH3), and myosin binding protein C1 (MYBPC1), have been identified in distal arthrogryposis type 1 (DA1, MIM 108120), type 2B (DA2B, MIM 601680) and type 2A (DA2A)/Freeman-Sheldon syndrome (FSS, MIM 193700). However, mutations causing FSS have only been reported in MYH3. Herein we describe a Chinese DA family whose members meet classical strict criteria for FSS, as well as one member of the family who has isolated facial features consistent with FSS. No disease-causing mutation was found in MYH3. Segregation of microsatellite markers flanking the TNNI2 and TNNT3 genes at 11p15.5 was compatible with linkage. Subsequent sequencing of TNNI2 revealed a novel mutation, c.A493T (p.I165F), located in the C-terminal region, which is critical for proper protein function. This mutation was found to cosegregate with the FSS phenotype in this family, and assessment using SIFT and PolyPhen-2 predicted a damaging effect. To the best of our knowledge, we report the first TNNI2 mutation in classical FSS and describe an atypical adult FSS case with only facial contractures resulting from somatic mosaicism. We infer that DA1, DA2B and FSS represent a phenotypic continuum of the same disorder and provide further genetic evidence for this hypothesis.


Assuntos
Contratura/genética , Disostose Craniofacial/genética , Face , Mutação , Troponina I/genética , Adulto , China , Mapeamento Cromossômico , Feminino , Humanos , Masculino , Linhagem
12.
FASEB J ; 27(8): 3217-28, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23657818

RESUMO

Myosin binding protein C (MyBP-C) is expressed in striated muscles, where it plays key roles in the modulation of actomyosin cross-bridges. Slow MyBP-C (sMyBP-C) consists of multiple variants sharing common domains but also containing unique segments within the NH2 and COOH termini. Two missense mutations in the NH2 terminus (W236R) and COOH terminus (Y856H) of sMyBP-C have been causally linked to the development of distal arthrogryposis-1 (DA-1), a severe skeletal muscle disorder. Using a combination of in vitro binding and motility assays, we show that the COOH terminus mediates binding of sMyBP-C to thick filaments, while the NH2 terminus modulates the formation of actomyosin cross-bridges in a variant-specific manner. Consistent with this, a recombinant NH2-terminal peptide that excludes residues 34-59 reduces the sliding velocity of actin filaments past myosin heads from 9.0 ± 1.3 to 5.7 ± 1.0 µm/s at 0.1 µM, while a recombinant peptide that excludes residues 21-59 fails to do so. Notably, the actomyosin regulatory properties of sMyBP-C are completely abolished by the presence of the DA-1 mutations. In summary, our studies are the first to show that the NH2 and COOH termini of sMyBP-C have distinct functions, which are regulated by differential splicing, and are compromized by the presence of missense point mutations linked to muscle disease.


Assuntos
Actomiosina/metabolismo , Artrogripose/metabolismo , Proteínas de Transporte/metabolismo , Miopatias Distais/metabolismo , Actinas/química , Actinas/metabolismo , Actomiosina/química , Processamento Alternativo , Substituição de Aminoácidos , Animais , Artrogripose/genética , Sítios de Ligação/genética , Far-Western Blotting , Proteínas de Transporte/química , Proteínas de Transporte/genética , Miopatias Distais/genética , Humanos , Camundongos , Modelos Biológicos , Modelos Moleculares , Músculo Esquelético/metabolismo , Mutação , Miosinas/química , Miosinas/metabolismo , Ligação Proteica , Estrutura Terciária de Proteína
13.
Front Physiol ; 4: 391, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24399972

RESUMO

Myosin Binding Protein-C slow (sMyBP-C) comprises a complex family of proteins expressed in slow and fast type skeletal muscles. Similar to its fast and cardiac counterparts, sMyBP-C functions to modulate the formation of actomyosin cross-bridges, and to organize and stabilize sarcomeric A- and M-bands. The slow form of MyBP-C was originally classified as a single protein, however several variants encoded by the single MYBPC1 gene have been recently identified. Alternative splicing of the 5' and 3' ends of the MYBPC1 transcript has led to the differential expression of small unique segments interspersed between common domains. In addition, the NH2-terminus of sMyBP-C undergoes complex phosphorylation. Thus, alternative splicing and phosphorylation appear to regulate the functional activities of sMyBP-C. sMyBP-C proteins are not restricted to slow twitch muscles, but they are abundantly expressed in fast twitch muscles, too. Using bioinformatic tools, we herein perform a systematic comparison of the known human and mouse sMyBP-C variants. In addition, using single fiber westerns and antibodies to a common region of all known sMyBP-C variants, we present a detailed and comprehensive characterization of the expression profile of sMyBP-C proteins in the slow twitch soleus and the fast twitch flexor digitorum brevis (FDB) mouse muscles. Our studies demonstrate for the first time that distinct sMyBP-C variants are co-expressed in the same fiber, and that their expression profile differs among fibers. Given the differential expression of sMyBP-C variants in single fibers, it becomes apparent that each variant or combination thereof may play unique roles in the regulation of actomyosin cross-bridges formation and the stabilization of thick filaments.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA