Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 54
Filtrar
Mais filtros








Intervalo de ano de publicação
1.
Sci Total Environ ; 951: 175443, 2024 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-39134273

RESUMO

To reveal the outstanding high-emission problems that occur when heavy-duty diesel vehicles (HDDV) pass uphill and downhill, this study proposes a method to depict the nitrogen oxides (NOx) and carbon dioxide (CO2) high-emission driving behaviors caused by slopes from the perspective of engine principles. By calculating emission and grade data of HDDV based on on-board diagnostic (OBD) data and digital elevation model (DEM) data, the 262 short trips including uphill, flat-road and downhill are firstly obtained through the rule-based short trip segmentation method, and the significant correlation between the road grade and emissions of the short trips is verified by Kendall's Tau and K-means clustering. Secondly, by comparing the distribution changes of three speed categories (acceleration state, constant speed state and deceleration state), the differences in HDDV operating states under different grade levels are discussed. Finally, the machine learning models (Random Forest, XGBoost and Elastic Net), are used to develop the NOx and CO2 emission estimation model, identifying high-emission driving behaviors, particularly during uphill driving, which showed the highest proportion of high-emission. Explained by the feature importance and SHapley Additive exPlanations (SHAP) model that large accelerator pedal opening, frequent aggressive acceleration, and high engine load have positive effects both on NOx and CO2 emissions. The difference is in the air-fuel ratio that the engine in the rich or slightly lean burning state will increase CO2 emissions and the lean burning state will increase NOx emissions. In addition, due to the uncertainty of the actual uphill, drivers often undergo a rapid "deceleration-uniform-acceleration" process, which significantly contributes to high NOx and CO2 emissions from the engine perspective. The findings provide insights for designing driving strategies in slope scenarios and offer a novel perspective on depicting driving behaviors.

2.
Chemosphere ; 364: 143084, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39142394

RESUMO

BACKGROUND: There are a few reports on the associations between fine particulate matter (PM2.5)-bound heavy metals and lung function. OBJECTIVES: To evaluate the associations of single and mixed PM2.5-bound heavy metals with lung function. METHODS: This study included 316 observations of 224 Chinese adults from the Wuhan-Zhuhai cohort over two study periods, and measured participants' personal PM2.5-bound heavy metals and lung function. Three linear mixed models, including the single constituent model, the PM2.5-adjusted constituent model, and the constituent residual model were used to evaluate the association between single metal and lung function. Mixed exposure models including Bayesian kernel machine regression (BKMR) model, weighted quantile sum (WQS) model, and Explainable Machine Learning model were used to assess the relationship between PM2.5-bound heavy metal mixtures and lung function. RESULTS: In the single exposure analyses, significant negative associations of PM2.5-bound lead, antimony, and cadmium with peak expiratory flow (PEF) were observed. In the mixed exposure analyses, significant decreases in forced expiratory volume in 1 s (FEV1)/forced vital capacity (FVC), maximal mid-expiratory flow (MMF), and forced expiratory flow at 75% of the pulmonary volume (FEF75) were associated with the increased PM2.5-bound heavy metal mixture. The BKMR models suggested negative associations of PM2.5-bound lead and antimony with lung function. In addition, PM2.5-bound copper was positively associated with FEV1/FVC, MMF, and FEF75. The Explainable Machine Learning models suggested that FEV1/FVC, MMF, and FEF75 decreased with the elevated PM2.5-bound lead, manganese, and vanadium, and increased with the elevated PM2.5-bound copper. CONCLUSIONS: The negative relationships were detected between PM2.5-bound heavy metal mixture and FEV1/FVC, MMF, as well as FEF75. Among the PM2.5-bound heavy metal mixture, PM2.5-bound lead, antimony, manganese, and vanadium were negatively associated with FEV1/FVC, MMF, and FEF75, while PM2.5-bound copper was positively associated with FEV1/FVC, MMF, and FEF75.

3.
JMIR Ment Health ; 11: e52045, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38963925

RESUMO

BACKGROUND: Identifying individuals with depressive symptomatology (DS) promptly and effectively is of paramount importance for providing timely treatment. Machine learning models have shown promise in this area; however, studies often fall short in demonstrating the practical benefits of using these models and fail to provide tangible real-world applications. OBJECTIVE: This study aims to establish a novel methodology for identifying individuals likely to exhibit DS, identify the most influential features in a more explainable way via probabilistic measures, and propose tools that can be used in real-world applications. METHODS: The study used 3 data sets: PROACTIVE, the Brazilian National Health Survey (Pesquisa Nacional de Saúde [PNS]) 2013, and PNS 2019, comprising sociodemographic and health-related features. A Bayesian network was used for feature selection. Selected features were then used to train machine learning models to predict DS, operationalized as a score of ≥10 on the 9-item Patient Health Questionnaire. The study also analyzed the impact of varying sensitivity rates on the reduction of screening interviews compared to a random approach. RESULTS: The methodology allows the users to make an informed trade-off among sensitivity, specificity, and a reduction in the number of interviews. At the thresholds of 0.444, 0.412, and 0.472, determined by maximizing the Youden index, the models achieved sensitivities of 0.717, 0.741, and 0.718, and specificities of 0.644, 0.737, and 0.766 for PROACTIVE, PNS 2013, and PNS 2019, respectively. The area under the receiver operating characteristic curve was 0.736, 0.801, and 0.809 for these 3 data sets, respectively. For the PROACTIVE data set, the most influential features identified were postural balance, shortness of breath, and how old people feel they are. In the PNS 2013 data set, the features were the ability to do usual activities, chest pain, sleep problems, and chronic back problems. The PNS 2019 data set shared 3 of the most influential features with the PNS 2013 data set. However, the difference was the replacement of chronic back problems with verbal abuse. It is important to note that the features contained in the PNS data sets differ from those found in the PROACTIVE data set. An empirical analysis demonstrated that using the proposed model led to a potential reduction in screening interviews of up to 52% while maintaining a sensitivity of 0.80. CONCLUSIONS: This study developed a novel methodology for identifying individuals with DS, demonstrating the utility of using Bayesian networks to identify the most significant features. Moreover, this approach has the potential to substantially reduce the number of screening interviews while maintaining high sensitivity, thereby facilitating improved early identification and intervention strategies for individuals experiencing DS.


Assuntos
Algoritmos , Teorema de Bayes , Depressão , Humanos , Depressão/diagnóstico , Adulto , Feminino , Masculino , Brasil/epidemiologia , Pessoa de Meia-Idade , Aprendizado de Máquina , Programas de Rastreamento/métodos , Sensibilidade e Especificidade , Inquéritos Epidemiológicos
4.
Environ Sci Pollut Res Int ; 31(32): 45441-45451, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38951392

RESUMO

Bisphenol A diglycidyl ether (BADGE), a derivative of the well-known endocrine disruptor Bisphenol A (BPA), is a potential threat to long-term environmental health due to its prevalence as a micropollutant. This study addresses the previously unexplored area of BADGE toxicity and removal. We investigated, for the first time, the biodegradation potential of laccase isolated from Geobacillus thermophilic bacteria against BADGE. The laccase-mediated degradation process was optimized using a combination of response surface methodology (RSM) and machine learning models. Degradation of BADGE was analyzed by various techniques, including UV-Vis spectrophotometry, high-performance liquid chromatography (HPLC), Fourier transform infrared (FTIR) spectroscopy, and gas chromatography-mass spectrometry (GC-MS). Laccase from Geobacillus stearothermophilus strain MB600 achieved a degradation rate of 93.28% within 30 min, while laccase from Geobacillus thermoparafinivorans strain MB606 reached 94% degradation within 90 min. RSM analysis predicted the optimal degradation conditions to be 60 min reaction time, 80°C temperature, and pH 4.5. Furthermore, CB-Dock simulations revealed good binding interactions between laccase enzymes and BADGE, with an initial binding mode selected for a cavity size of 263 and a Vina score of -5.5, which confirmed the observed biodegradation potential of laccase. These findings highlight the biocatalytic potential of laccases derived from thermophilic Geobacillus strains, notably MB600, for enzymatic decontamination of BADGE-contaminated environments.


Assuntos
Compostos Benzidrílicos , Biodegradação Ambiental , Geobacillus stearothermophilus , Geobacillus , Lacase , Lacase/metabolismo , Geobacillus stearothermophilus/enzimologia , Geobacillus/enzimologia , Compostos Benzidrílicos/metabolismo , Fenóis/metabolismo , Compostos de Epóxi/metabolismo
5.
Mol Med Rep ; 30(3)2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38963039

RESUMO

The incidence of Alzheimer's disease (AD) is rising globally, yet its treatment and prediction of this condition remain challenging due to the complex pathophysiological mechanisms associated with it. Consequently, the objective of the present study was to analyze and characterize the molecular mechanisms underlying ferroptosis­related genes (FEGs) in the pathogenesis of AD, as well as to construct a prognostic model. The findings will provide new insights for the future diagnosis and treatment of AD. First, the AD dataset GSE33000 from the Gene Expression Omnibus database and the FEGs from FerrDB were obtained. Next, unsupervised cluster analysis was used to obtain the FEGs that were most relevant to AD. Subsequently, enrichment analyses were performed on the FEGs to explore biological functions. Subsequently, the role of these genes in the immune microenvironment was elucidated through CIBERSORT. Then, the optimal machine learning was selected by comparing the performance of different machine learning models. To validate the prediction efficiency, the models were validated using nomograms, calibration curves, decision curve analysis and external datasets. Furthermore, the expression of FEGs between different groups was verified using reverse transcription quantitative PCR and western blot analysis. In AD, alterations in the expression of FEGs affect the aggregation and infiltration of certain immune cells. This indicated that the occurrence of AD is strongly associated with immune infiltration. Finally, the most appropriate machine learning models were selected, and AD diagnostic models and nomograms were built. The present study provided novel insights that enhance understanding with regard to the molecular mechanism of action of FEGs in AD. Moreover, the present study provided biomarkers that may facilitate the diagnosis of AD.


Assuntos
Doença de Alzheimer , Ferroptose , Doença de Alzheimer/genética , Doença de Alzheimer/imunologia , Ferroptose/genética , Humanos , Aprendizado de Máquina , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Biomarcadores , Prognóstico , Regulação da Expressão Gênica , Biologia Computacional/métodos
6.
JMIR Form Res ; 8: e54097, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-38991090

RESUMO

BACKGROUND: Preoperative evaluation is important, and this study explored the application of machine learning methods for anesthetic risk classification and the evaluation of the contributions of various factors. To minimize the effects of confounding variables during model training, we used a homogenous group with similar physiological states and ages undergoing similar pelvic organ-related procedures not involving malignancies. OBJECTIVE: Data on women of reproductive age (age 20-50 years) who underwent gestational or gynecological surgery between January 1, 2017, and December 31, 2021, were obtained from the National Taiwan University Hospital Integrated Medical Database. METHODS: We first performed an exploratory analysis and selected key features. We then performed data preprocessing to acquire relevant features related to preoperative examination. To further enhance predictive performance, we used the log-likelihood ratio algorithm to generate comorbidity patterns. Finally, we input the processed features into the light gradient boosting machine (LightGBM) model for training and subsequent prediction. RESULTS: A total of 10,892 patients were included. Within this data set, 9893 patients were classified as having low anesthetic risk (American Society of Anesthesiologists physical status score of 1-2), and 999 patients were classified as having high anesthetic risk (American Society of Anesthesiologists physical status score of >2). The area under the receiver operating characteristic curve of the proposed model was 0.6831. CONCLUSIONS: By combining comorbidity information and clinical laboratory data, our methodology based on the LightGBM model provides more accurate predictions for anesthetic risk classification. TRIAL REGISTRATION: Research Ethics Committee of the National Taiwan University Hospital 202204010RINB; https://www.ntuh.gov.tw/RECO/Index.action.

7.
J Hazard Mater ; 477: 135368, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39079296

RESUMO

Tungsten (W) contamination presents emerging environmental challenges, necessitating the need to establish soil screening levels (SSLs), especially for residential soils. This study assessed the health exposure risk and derived national and regional residential SSLs for W in Chinese residential soils, incorporating machine-learning prediction of in-vitro soil W bioaccessibility. We analyzed 204 residential soil samples collected across 24 provinces, recording a wide range of W concentrations (0.01-3063.2 mg/kg). Synchrotron-based X-ray fluorescence spectroscopy, chemical extractions, and random forest modeling indicated that the key determinants of soil W bioaccessibility were soil pH, cation exchange capacity, organic matter, and clay contents. Monte Carlo simulations demonstrated that soil W contamination predominantly results in noncarcinogenic health risks to residents via oral exposure, especially in mining-affected regions. A national residential SSL (NRSSL) of 35.5 mg/kg and regional residential SSLs (RRSSLs) of 34.5-49.2 mg/kg were established. Incorporating predicted bioaccessibility increased the NRSSL to 73.8 mg/kg and the RRSSLs to 69.8-112.5 mg/kg. Southern China, which is rich in W ore, exhibited lower RRSSLs, underscoring a need for enhanced safety management. Our framework and findings provide a robust scientific foundation for future soil contamination risk assessment studies, and we present customized SSLs that can guide targeted W risk control strategies.


Assuntos
Poluentes do Solo , Tungstênio , Disponibilidade Biológica , China , Exposição Ambiental/análise , Método de Monte Carlo , Medição de Risco , Solo/química , Poluentes do Solo/análise , Tungstênio/análise
8.
Biomedicines ; 12(7)2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-39061984

RESUMO

The histological grade of oral squamous cell carcinoma affects the prognosis. In the present study, we performed a radiomics analysis to extract features from 18F-FDG PET image data, created machine learning models from the features, and verified the accuracy of the prediction of the histological grade of oral squamous cell carcinoma. The subjects were 191 patients in whom an 18F-FDG-PET examination was performed preoperatively and a histopathological grade was confirmed after surgery, and their tumor sizes were sufficient for a radiomics analysis. These patients were split in a 70%/30% ratio for use as training data and testing data, respectively. We extracted 2993 radiomics features from the PET images of each patient. Logistic Regression (LR), Support Vector Machine (SVM), Random Forest (RF), Naïve Bayes (NB), and K-Nearest Neighbor (KNN) machine learning models were created. The areas under the curve obtained from receiver operating characteristic curves for the prediction of the histological grade of oral squamous cell carcinoma were 0.72, 0.71, 0.84, 0.74, and 0.73 for LR, SVM, RF, NB, and KNN, respectively. We confirmed that a PET radiomics analysis is useful for the preoperative prediction of the histological grade of oral squamous cell carcinoma.

10.
Waste Manag ; 187: 235-243, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39068824

RESUMO

Chemical pretreatment is a common method to enhance the cumulative methane yield (CMY) of lignocellulosic waste (LW) but its effectiveness is subject to various factors, and accurate estimation of methane production of pretreated LW remains a challenge. Here, based on 254 LW samples, a machine learning (ML) model to predict the methane production performance of pretreated feedstock was constructed using two automated ML platforms (tree-based pipeline optimization tool and neural network intelligence). Furthermore, the interactive effects of pretreatment conditions, feedstock properties, and digestion conditions on methane production of pretreated LW were studied through model interpretability analysis. The optimal ML model performed well on the validation set, and the digestion time, pretreatment agent, and lignin content (LC) were found to be key factors affecting the methane production of pretreated LW. If the LC in the raw LW was lower than 15%, the maximum CMY might be achieved using the NaOH, KOH, and alkaline hydrogen peroxide (AHP) with concentrations of 3.8%, 4.4%, and 4.5%, respectively. On the other hand, if LC was higher than 15%, only high concentrations of AHP exceeding 4% could significantly increase methane production. This study provides valuable guidance for optimizing pretreatment process, comparing different chemical pretreatment approaches, and regulating the operation of large-scale biogas plants.


Assuntos
Lignina , Aprendizado de Máquina , Metano , Metano/análise , Biocombustíveis/análise , Eliminação de Resíduos/métodos
11.
EJNMMI Res ; 14(1): 67, 2024 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-39033243

RESUMO

BACKGROUND: 123I-meta-iodobenzylguanidine (mIBG) has been applied to patients with chronic heart failure (CHF). However, the relationship between 123I-mIBG activity and lethal arrhythmic events (ArE) is not well defined. This study aimed to determine this relationship in Japanese and European cohorts. RESULTS: We calculated heart-to-mediastinum (H/M) count ratios and washout rates (WRs) of 827 patients using planar 123I-mIBG imaging. We defined ArEs as sudden cardiac death, arrhythmic death, and potentially lethal events such as sustained ventricular tachycardia, cardiac arrest with resuscitation, and appropriate implantable cardioverter defibrillator (ICD) discharge, either from a single ICD or as part of a cardiac resynchronization therapy device (CRTD). We analyzed the incidence of ArE with respect to H/M ratios, WRs and New York Heart Association (NYHA) functional classes among Japanese (J; n = 581) and European (E; n = 246) cohorts. We also simulated ArE rates versus H/M ratios under specific conditions using a machine-learning model incorporating 13 clinical variables. Consecutive patients with CHF were selected in group J, whereas group E comprised candidates for cardiac electronic devices. Groups J and E mostly comprised patients with NYHA functional classes I/II (95%) and II/III (91%), respectively, and 21% and 72% were respectively implanted with ICD/CRTD devices. The ArE rate increased with lower H/M ratios in group J, but the relationship was bell-shaped, with a high ArE rate within the intermediate H/M range, in group E. This bell-shaped curve was also evident in patients with NYHA classes II/III in the combined J and E groups, particularly in those with a high (> 15%) mIBG WR and with ischemic, but not in those with non-ischemic etiologies. Machine learning-based prediction of ArE risk aligned with these findings, indicating a bell-shaped curve in NYHA class II/III but not in class I. CONCLUSIONS: The relationship between cardiac 123I-mIBG activity and lethal arrhythmic events is influenced by the background of patients. The bell-shaped relationship in NYHA classes II/III, high WR, and ischemic etiology likely aids in identifying patients at high risk for ArEs.

12.
Sci Rep ; 14(1): 16776, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039187

RESUMO

There is a complex high-dimensional nonlinear mapping relationship between the compressive strength of High-Performance Concrete (HPC) and its components, which has great influence on the accurate prediction of compressive strength. In this paper, an efficient robust software calculation strategy combining BP Neural Network (BPNN), Support Vector Machine (SVM) and Genetic Algorithm (GA) is proposed for the prediction of compressive strength of HPC. 8 features were extracted from the previous literature, and a compressive strength database containing 454 sets of data was constructed. The model was trained and tested, and the performance of 4 Machine Learning (ML) models, namely BPNN, SVM, GA-BPNN and GA-SVM, was compared. The results show that the coupled model is superior to the single model. Moreover, because GA-SVM has better generalization ability and theoretical basis, its convergence speed and prediction accuracy are better than GA-BPNN. Then Grey Relational Analysis (GRA) and Shapley analysis were used to verify the interpretability of the GA-SVM model, which showed that the water-binder ratio had the most significant influence on the compressive strength. Finally, the combination of multiple input variables to evaluate the compressive strength supplemented this research, and again verified the significant influence of water-binder ratio, providing reference value for subsequent research.

13.
PeerJ ; 12: e17437, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38832031

RESUMO

Reference evapotranspiration (ET0 ) is a significant parameter for efficient irrigation scheduling and groundwater conservation. Different machine learning models have been designed for ET0 estimation for specific combinations of available meteorological parameters. However, no single model has been suggested so far that can handle diverse combinations of available meteorological parameters for the estimation of ET0. This article suggests a novel architecture of an improved hybrid quasi-fuzzy artificial neural network (ANN) model (EvatCrop) for this purpose. EvatCrop yielded superior results when compared with the other three popular models, decision trees, artificial neural networks, and adaptive neuro-fuzzy inference systems, irrespective of study locations and the combinations of input parameters. For real-field case studies, it was applied in the groundwater-stressed area of the Terai agro-climatic region of North Bengal, India, and trained and tested with the daily meteorological data available from the National Centres for Environmental Prediction from 2000 to 2014. The precision of the model was compared with the standard Penman-Monteith model (FAO56PM). Empirical results depicted that the model performances remarkably varied under different data-limited situations. When the complete set of input parameters was available, EvatCrop resulted in the best values of coefficient of determination (R2 = 0.988), degree of agreement (d = 0.997), root mean square error (RMSE = 0.183), and root mean square relative error (RMSRE = 0.034).


Assuntos
Lógica Fuzzy , Redes Neurais de Computação , Índia , Água Subterrânea , Transpiração Vegetal
14.
Adv Sci (Weinh) ; : e2402608, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38934905

RESUMO

Achieving precise estimates of battery cycle life is a formidable challenge due to the nonlinear nature of battery degradation. This study explores an approach using machine learning (ML) methods to predict the cycle life of lithium-metal-based rechargeable batteries with high mass loading LiNi0.8Mn0.1Co0.1O2 electrode, which exhibits more complicated and electrochemical profile during battery operating conditions than typically studied LiFePO4/graphite based rechargeable batteries. Extracting diverse features from discharge, charge, and relaxation processes, the intricacies of cell behavior without relying on specific degradation mechanisms are navigated. The best-performing ML model, after feature selection, achieves an R2 of 0.89, showcasing the application of ML in accurately forecasting cycle life. Feature importance analysis unveils the logarithm of the minimum value of discharge capacity difference between 100 and 10 cycle (Log(|min(ΔDQ 100-10(V))|)) as the most important feature. Despite the inherent challenges, this model demonstrates a remarkable 6.6% test error on unseen data, underscoring its robustness and potential for transformative advancements in battery management systems. This study contributes to the successful application of ML in the realm of cycle life prediction for lithium-metal-based rechargeable batteries with practically high energy density design.

15.
Sci Rep ; 14(1): 13715, 2024 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-38877118

RESUMO

The risk of cholangitis after ERCP implantation in malignant obstructive jaundice patients remains unknown. To develop models based on artificial intelligence methods to predict cholangitis risk more accurately, according to patients after stent implantation in patients' MOJ clinical data. This retrospective study included 218 patients with MOJ undergoing ERCP surgery. A total of 27 clinical variables were collected as input variables. Seven models (including univariate analysis and six machine learning models) were trained and tested for classified prediction. The model' performance was measured by AUROC. The RFT model demonstrated excellent performances with accuracies up to 0.86 and AUROC up to 0.87. Feature selection in RF and SHAP was similar, and the choice of the best variable subset produced a high performance with an AUROC up to 0.89. We have developed a hybrid machine learning model with better predictive performance than traditional LR prediction models, as well as other machine learning models for cholangitis based on simple clinical data. The model can assist doctors in clinical diagnosis, adopt reasonable treatment plans, and improve the survival rate of patients.


Assuntos
Colangite , Aprendizado de Máquina , Stents , Humanos , Colangite/etiologia , Masculino , Feminino , Idoso , Stents/efeitos adversos , Estudos Retrospectivos , Pessoa de Meia-Idade , Colangiopancreatografia Retrógrada Endoscópica/efeitos adversos , Icterícia Obstrutiva/etiologia , Icterícia Obstrutiva/cirurgia , Fatores de Risco , Idoso de 80 Anos ou mais , Medição de Risco/métodos
16.
Environ Int ; 190: 108793, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38878652

RESUMO

Under international advocacy for a low-carbon and healthy lifestyle, ambient PM2.5 pollution poses a dilemma for urban residents who wish to engage in outdoor exercise and adopt active low-carbon commuting. In this study, an Urban Air Health Navigation System (UAHNS) was designed and proposed to assist users by recommending routes with the least PM2.5 exposure and dynamically issuing early risk warnings based on topologized digital maps, an application programming interface (API), an eXtreme Gradient Boosting (XGBoost) model, and two-step spatial interpolation. A test of the UAHNS's functions and applications was carried out in Wuhan city. The results showed that, compared with trained random forest (RF), LightGBM, Adaboost models, etc., the XGBoost model performed better, with an R2 exceeding 0.90 and an RMSE of approximately 15.74 µg/m3, based on data from national air and meteorological monitoring stations. Further, the two-step spatial interpolation model was adopted to dynamically generate pollution distribution at a spatial resolution of 300 m*300 m. Then, an exposure comparison was performed under randomly selected commuting routes and times in Wuhan, showing the recommended routes for lower PM2.5 exposure made effectively help. And the route difference ratios of about 14.9 % and 16.9 % for riding and walking, respectively. Finally, the UAHNS platform was integrally realized for Wuhan, consisting of a real-time PM2.5 query, a one-hour PM2.5 prediction function at any location, health navigation on city map, and a personalized health information query.

17.
Anal Bioanal Chem ; 416(19): 4315-4324, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38879687

RESUMO

Pollen collected by pollinators can be used as a marker of the foraging behavior as well as indicate the botanical species present in each environment. Pollen intake is essential for pollinators' health and survival. During the foraging activity, some pollinators, such as honeybees, manipulate the collected pollen mixing it with salivary secretions and nectar (corbicular pollen) changing the pollen chemical profile. Different tools have been developed for the identification of the botanical origin of pollen, based on microscopy, spectrometry, or molecular markers. However, up to date, corbicular pollen has never been investigated. In our work, corbicular pollen from 5 regions with different climate conditions was collected during spring. Pollens were identified with microscopy-based techniques, and then analyzed in MALDI-MS. Four different chemical extraction solutions and two physical disruption methods were tested to achieve a MALDI-MS effective protocol. The best performance was obtained using a sonication disruption method after extraction with acetic acid or trifluoroacetic acid. Therefore, we propose a new rapid and reliable methodology for the identification of the botanical origin of the corbicular pollens using MALDI-MS. This new approach opens to a wide range of environmental studies spanning from plant biodiversity to ecosystem trophic interactions.


Assuntos
Pólen , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Pólen/química , Abelhas/fisiologia , Animais
18.
Clin Rheumatol ; 43(8): 2573-2584, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937388

RESUMO

OBJECTIVE: The clinical manifestations of systemic sclerosis (SSc) are highly variable, resulting in varied outcomes and complications. Diverse fibrosis of the skin and internal organs, vasculopathy, and dysregulated immune system lead to poor and varied prognoses in patients with SSc subtypes. Therefore, this study aimed to develop a personalized tool for predicting the prognosis of patients with SSc. METHODS: A cohort of 517 patients with SSc were recruited between January 2009 and November 2021 at Xijing Hospital in China, and 266 patients completed the follow-up and performed in the survival analysis. Risk factors for death were identified using Cox survival analysis and random survival forest-based machine-learning methods separately. The consistency index, area under the curve (AUC), and integrated Brier scores were used to compare the predictive performance of the different prognostic models. RESULTS: The results of Cox-based multivariate regression analysis suggested that pulmonary arterial hypertension, digital ulcer, and Modified Rodnan Skin Score (mRSS) were independent risk factors for poor prognosis in patients with SSc and significant risk factors in random survival forest (RSF) surveys. A nomogram was plotted to evaluate the prognostic risk to facilitate clinical assessment; the RSF model had better predictive performance than the Cox model, with 3- and 5-year AUCs of 0.74 and 0.78, respectively. CONCLUSION: Machine-learning models can help us better understand the prognosis of patients with SSc and comprehensively evaluate the clinical characteristics of each individual. The early identification of the characteristics of high-risk patients can improve the prognosis of those with SSc. Key Points • Regarding predictive performance, the random survival forest model was more effective than the Cox model and had unique advantages in analyzing nonlinear effects and variable importance. • Machine learning using the simple clinical features of patients with systemic sclerosis (SSc) to predict mortality can guide attending physicians, and the early identification of high-risk patients with SSc and referral to experts will assist rheumatologists in monitoring and management planning.


Assuntos
Aprendizado de Máquina , Escleroderma Sistêmico , Escleroderma Sistêmico/mortalidade , Humanos , Feminino , Pessoa de Meia-Idade , Masculino , Prognóstico , Adulto , Fatores de Risco , Modelos de Riscos Proporcionais , Nomogramas , China/epidemiologia , Análise de Sobrevida , Idoso
19.
Environ Pollut ; 356: 124309, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38838809

RESUMO

Biochar application emerges as a promising and sustainable solution for the remediation of soils contaminated with potentially toxic metal (loid)s (PTMs), yet its potential to reduce PTM accumulation in crops remains to be fully elucidated. In our study, a hierarchical meta-analysis based on 276 research articles was conducted to quantify the effects of biochar application on crop growth and PTM accumulation. Meanwhile, a machine learning approach was developed to identify the major contributing features. Our findings revealed that biochar application significantly enhanced crop growth, and reduced PTM concentrations in crop tissues, showing a decrease trend of grains (36.1%, 33.6-38.6%) > shoots (31.1%, 29.3-32.8%) > roots (27.5%, 25.7-29.2%). Furthermore, biochar modifications were found to amplify its remediation potential in PTM-contaminated soils. Biochar application was observed to provide favorable conditions for reducing PTM uptake by crops, primarily through decreasing available PTM concentrations and improving overall soil quality. Employing machine learning techniques, we identified biochar properties, such as surface area and C content as a key factor in decreasing PTM bioavailability in soil-crop systems. Furthermore, our study indicated that biochar application could reduce probabilistic health risks associated with of the presence of PTMs in crop grains, thereby contributing to human health protection. These findings highlighted the essential role of biochar in remediating PTM-contaminated lands and offered guidelines for enhancing safe crop production.


Assuntos
Carvão Vegetal , Produtos Agrícolas , Poluentes do Solo , Solo , Carvão Vegetal/química , Produtos Agrícolas/metabolismo , Produtos Agrícolas/crescimento & desenvolvimento , Solo/química , Recuperação e Remediação Ambiental/métodos , Produção Agrícola/métodos
20.
J Inflamm Res ; 17: 2657-2668, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38707960

RESUMO

Objective: This study aimed to understand predictors of inadequate response (IR) to low-dose febuxostat treatment based on clinical variables. Methods: We pooled data from 340 patients of an observational cohort and two clinical trials who received febuxostat 20 mg/day for at least 3 months. IR was defined as failure to reach the target serum urate level (sUA<6 mg/dL) at any time point during 3 months treatment. The potential predictors associated with short- or mid-term febuxostat IR after pooling the three cohorts were explored using mixed-effect logistic analysis. Machine learning models were performed to evaluate the predictors for IR using the pooled data as the discovery set and validated in an external test set. Results: Of the 340 patients, 68.9% and 51.8% were non-responders to low-dose febuxostat during short- and mid-term follow-up, respectively. Serum urate and triglyceride (TG) levels were significantly associated with febuxostat IR, but were also selected as significant features by LASSO analysis combined with age, BMI, and C-reactive protein (CRP). These five features in combination, using the best-performing stochastic gradient descent classifier, achieved an area under the receiver operating characteristic curve of 0.873 (95% CI [0.763, 0.942]) and 0.706 (95% CI [0.636, 0.727]) in the internal and external test sets, respectively, to predict febuxostat IR. Conclusion: Response to low-dose febuxostat is associated with early sUA improvement in individual patients, as well as patient age, BMI, and levels of TG and CRP.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA