Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
G3 (Bethesda) ; 14(8)2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-38845594

RESUMO

We present a reference genome for the federally endangered Gaviota tarplant, Deinandra increscens subsp. villosa (Madiinae, Asteraceae), an annual herb endemic to the Central California coast. Generating PacBio HiFi, Oxford Nanopore Technologies, and Dovetail Omni-C data, we assembled a haploid consensus genome of 1.67 Gb as 28.7 K scaffolds with a scaffold N50 of 74.9 Mb. We annotated repeat content in 74.8% of the genome. Long terminal repeats (LTRs) covered 44.0% of the genome with Copia families predominant at 22.9% followed by Gypsy at 14.2%. Both Gypsy and Copia elements were common in ancestral peaks of LTRs, and the most abundant element was a Gypsy element containing nested Copia/Angela sequence similarity, reflecting a complex evolutionary history of repeat activity. Gene annotation produced 33,257 genes and 68,942 transcripts, of which 99% were functionally annotated. BUSCO scores for the annotated proteins were 96.0% complete of which 77.6% was single copy and 18.4% duplicates. Whole genome duplication synonymous mutation rates of Gaviota tarplant and sunflower (Helianthus annuus) shared peaks that correspond to the last Asteraceae polyploidization event and subsequent divergence from a common ancestor at ∼27 MYA. Regions of high-density tandem genes were identified, pointing to potentially important loci of environmental adaptation in this species.


Assuntos
Asteraceae , Espécies em Perigo de Extinção , Genoma de Planta , Anotação de Sequência Molecular , California , Asteraceae/genética , Filogenia
2.
Am J Bot ; 108(10): 2015-2037, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34694624

RESUMO

PREMISE: Expanded phylogenetic analyses of the Hawaiian silversword alliance (Argyroxiphium, Dubautia, Wilkesia; Compositae) were undertaken to assess evolutionary and biogeographic informativeness of cytonuclear discordance and any biases in evolutionary directionality of ecological transitions within this prominent example of adaptive radiation. METHODS: Samples spanning the geographic and ecological distributions of all recognized taxa were included in phylogenetic and biogeographic analyses of nuclear ribosomal DNA (nrDNA) and cpDNA sequences. Bayesian model testing approaches were used to model ecological evolution and the evolution of nuclear chromosomal arrangements while accounting for phylogenetic uncertainty. RESULTS: Cytonuclear discordance detected previously appears to reflect chloroplast capture, at least in part, with nrDNA trees being largely congruent with nuclear chromosomal structural data and fine-scale taxonomy. Comparison of biogeographic histories estimated from the posterior distributions of nrDNA and cpDNA trees, including inferred chloroplast-capture events, provides additional resolution of dispersal history, including a back-dispersal to Maui Nui from Hawai'i. A newly resolved major nrDNA clade of endemic Kaua'i taxa that mostly were described as new-to-science since the 1980s strengthens the earlier hypothesis that diversification on Kaua'i has not waned since the island began to decline in area through subsidence and erosion. Bias in habitat shifts was estimated, with transitions from dry-to-mesic or -wet and from wet-to-mesic or -bog habitats dominating diversification of the silversword alliance from a dry-adapted tarweed ancestor. CONCLUSIONS: The habitat-transition biases estimated here may indicate more limited pathways of ecological evolution than proposed previously for an adaptive radiation involving such major ecological shifts.


Assuntos
Asteraceae , Teorema de Bayes , Ecossistema , Evolução Molecular , Havaí , Filogenia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA