Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 184
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Adv Healthc Mater ; : e2402373, 2024 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-39109957

RESUMO

Enabling minimally invasive and precise control of liquid release in dental implants is crucial for therapeutic functions such as delivering antibiotics to prevent biofilm formation, infusing stem cells to promote osseointegration, and administering other biomedicines. However, achieving controllable liquid cargo release in dental implants remains challenging due to the lack of wireless and miniaturized fluidic control mechanisms. Here wireless miniature pumps and valves that allow remote activation of liquid cargo delivery in dental implants, actuated and controlled by external magnetic fields (<65 mT), are reported. A magnet-screw mechanism in a fluidic channel to function as a piston pump, alongside a flexible magnetic valve designed to open and close the fluidic channel, is proposed. The mechanisms are showcased by storing and releasing of liquid up to 52 µL in a dental implant. The liquid cargos are delivered directly to the implant-bone interface, a region traditionally difficult to access. On-demand liquid delivery is further showed by a metal implant inside both dental phantoms and porcine jawbones. The mechanisms are promising for controllable liquid release after implant placement with minimal invasion, paving the way for implantable devices that enable long-term and targeted delivery of therapeutic agents in various bioengineering applications.

2.
ACS Appl Mater Interfaces ; 16(33): 44105-44113, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39105731

RESUMO

Magnetically controllable soft robots are of great interest because they have unique properties compared with conventional rigid counterparts and can be used in diverse applications such as intelligent electronics, bionics, personalized medicine, and cargo grasping. However, the fabrication of such multifunctional soft robots has been challenging because of the integration of dissimilar materials into the robot body. Herein, we designed and fabricated a soft robotic multifunctional system using conventional papers and elastomeric polymers for the colorimetric detection of heavy metal ions (Hg2+ and Fe3+) in water samples. The magnetic actuation of the platforms was shown to correlate with the type of underlying paper and magnetic particle content in the mixtures. Moreover, it was observed that actuation can also be manipulated by controlling the magnetic field strength. A proof-of-concept robotic paper-based Hg2+, Zn2+, and Fe3+ ion detection was demonstrated by combining colorimetric paper sensors and magneto-papers. Our study highlights the significant potential of paper as a material for the fabrication of effective and multifunctional untethered soft robots.

3.
Nanomicro Lett ; 16(1): 251, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39037551

RESUMO

Disorders of the musculoskeletal system are the major contributors to the global burden of disease and current treatments show limited efficacy. Patients often suffer chronic pain and might eventually have to undergo end-stage surgery. Therefore, future treatments should focus on early detection and intervention of regional lesions. Microrobots have been gradually used in organisms due to their advantages of intelligent, precise and minimally invasive targeted delivery. Through the combination of control and imaging systems, microrobots with good biosafety can be delivered to the desired area for treatment. In the musculoskeletal system, microrobots are mainly utilized to transport stem cells/drugs or to remove hazardous substances from the body. Compared to traditional biomaterial and tissue engineering strategies, active motion improves the efficiency and penetration of local targeting of cells/drugs. This review discusses the frontier applications of microrobotic systems in different tissues of the musculoskeletal system. We summarize the challenges and barriers that hinder clinical translation by evaluating the characteristics of different microrobots and finally point out the future direction of microrobots in the musculoskeletal system.

4.
Adv Sci (Weinh) ; 11(36): e2405021, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39073727

RESUMO

Untethered magnetic soft robots capable of performing adaptive locomotion and shape reconfiguration open up possibilities for various applications owing to their flexibility. However, magnetic soft robots are typically composed of soft materials with fixed modulus, making them unable to exert or withstand substantial forces, which limits the exploration of their new functionalities. Here, water-induced, shape-locking magnetic robots with magnetically controlled shape change and water-induced shape-locking are introduced. The water-induced phase separation enables these robots to undergo a modulus transition from 1.78 MPa in the dry state to 410 MPa after hydration. Moreover, the body material's inherent self-healing property enables the direct assembly of morphing structures and magnetic soft robots with complicated structures and magnetization profiles. These robots can be delivered through magnetic actuation and perform programmed tasks including supporting, blocking, and grasping by on-demand deformation and subsequent water-induced stiffening. Moreover, a water-stiffening magnetic stent is developed, and its precise delivery and water-induced shape-locking are demonstrated in a vascular phantom. The combination of untethered delivery, on-demand shape change, and water-induced stiffening properties makes the proposed magnetic robots promising for biomedical applications.

5.
Adv Sci (Weinh) ; : e2308382, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38946679

RESUMO

Small-scale robots offer significant potential in minimally invasive medical procedures. Due to the nature of soft biological tissues, however, robots are exposed to complex environments with various challenges in locomotion, which is essential to overcome for useful medical tasks. A single mini-robot often provides insufficient force on slippery biological surfaces to carry medical instruments, such as a fluid catheter or an electrical wire. Here, for the first time, a team of millirobots (TrainBot) is reported to generate around two times higher actuating force than a TrainBot unit by forming a convoy to collaboratively carry long and heavy cargos. The feet of each unit are optimized to increase the propulsive force around three times so that it can effectively crawl on slippery biological surfaces. A human-scale permanent magnetic set-up is developed to wirelessly actuate and control the TrainBot to transport heavy and lengthy loads through narrow biological lumens, such as the intestine and the bile duct. The first electrocauterization performed by the TrainBot is demonstrated to relieve a biliary obstruction and open a tunnel for fluid drainage and drug delivery. The developed technology sheds light on the collaborative strategy of small-scale robots for future minimally invasive surgical procedures.

6.
Small ; : e2402292, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38864236

RESUMO

Tailoring the microstructure of magnetic microparticles is of vital importance for their applications. Spiky magnetic particles, such as those made from sunflower pollens, have shown promise in single cell treatment and biofilm removal. Synthetic methods that can replicate or extend the functionality of such spiky particles would be advantageous for their widespread utilization. In this work, a wet-chemical method is introduced for spiky magnetic particles that are templated from microrod-stabilized Pickering emulsions. The spiky morphology is generated by the upright attachment of silica microrods at the oil-water interface of oil droplets. Spiky magnetic microparticles with control over the length of the spikes are obtained by dispersing hydrophobic magnetic nanoparticles in the oil phase and photopolymerizing the monomer. The spiky morphology dramatically enhances colloidal stability of these particles in high ionic strength solutions and physiologic media such as human saliva and saline-based biofilm suspension. To demonstrate their utility, the spiky magnetic particles are applied for magnetically controlled removal of oral biofilms and retrieval of bacteria for diagnostic sampling. This method expands the toolbox for engineering microparticle morphology and could promote the fabrication of functional magnetic microrobots.

7.
Biomimetics (Basel) ; 9(6)2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38921220

RESUMO

Octopus tentacles are equipped with numerous suckers, wherein the muscles contract and expel air, creating a pressure difference. Subsequently, when the muscular tension is released, objects can be securely adhered to. This mechanism has been widely employed in the development of adhesive systems. However, most existing octopus-inspired structures are passive and static, lacking dynamic and controllable adhesive switching capabilities and excellent locomotion performance. Here, we present an octopus-inspired soft robot (OISR). Attracted by the magnetic gradient field, the suction cup structure inside the OISR can generate a strong adsorption force, producing dynamically controllable adsorption and separation in the gastrointestinal (GI) tract. The experimental results show that the OISR has a variety of controllable locomotion behaviors, including quick scrolling and rolling motions, generating fast locomotion responses, rolling over gastric folds, and tumbling and swimming inside liquids. By carrying drugs that are absorbable by GI epithelial cells to target areas, the OISR enables continuous drug delivery at lesions or inflamed regions of the GI tract. This research may be a potential approach for achieving localized slow drug release within the GI tract.

8.
Micromachines (Basel) ; 15(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930701

RESUMO

Magnetic soft microrobots have a wide range of applications in targeted drug therapy, cell manipulation, and other aspects. Currently, the research on magnetic soft microrobots is still in the exploratory stage, and most of the research focuses on a single helical structure, which has limited space to perform drug-carrying tasks efficiently and cannot satisfy specific medical goals in terms of propulsion speed. Therefore, balancing the motion speed and drug-carrying performance is a current challenge to overcome. In this paper, a magnetically controlled cone-helix soft microrobot structure with a drug-carrying function is proposed, its helical propulsion mechanism is deduced, a dynamical model is constructed, and the microrobot structure is prepared using femtosecond laser two-photon polymerization three-dimensional printing technology for magnetic drive control experiments. The results show that under the premise of ensuring sufficient drug-carrying space, the microrobot structure proposed in this paper can realize helical propulsion quickly and stably, and the speed of motion increases with increases in the frequency of the rotating magnetic field. The microrobot with a larger cavity diameter and a larger helical pitch exhibits faster rotary advancement speed, while the microrobot with a smaller helical height and a smaller helical cone angle outperforms other structures with the same feature sizes. The microrobot with a cone angle of 0.2 rad, a helical pitch of 100 µm, a helical height of 220 µm, and a cavity diameter of 80 µm achieves a maximum longitudinal motion speed of 390 µm/s.

9.
Micromachines (Basel) ; 15(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38930768

RESUMO

Magnetic microgrippers, with their miniaturized size, flexible movement, untethered actuation, and programmable deformation, can perform tasks such as cell manipulation, targeted drug delivery, biopsy, and minimally invasive surgery in hard-to-reach regions. However, common external magnetic-field-driving devices suffer from low efficiency and utilization due to the significant size disparity with magnetic microgrippers. Here, we introduce a microgripper robot (MGR) driven by end electromagnetic and permanent magnet collaboration. The magnetic field generated by the microcoils can be amplified by the permanent magnets and the direction can be controlled by changing the current, allowing for precise control over the opening and closing of the magnetic microgripper and enhancing its operational range. Experimental results demonstrate that the MGR can be flexibly controlled in complex constrained environments and is highly adaptable for manipulating objects. Furthermore, the MGR can achieve planar and antigravity object grasping and transportation within complex simulated human cavity pathways. The MGR's grasping capabilities can also be extended to specialized tasks, such as circuit connection in confined spaces. The MGR combines the required safety and controllability for in vivo operations, making it suitable for potential clinical applications such as tumor or abnormal tissue sampling and surgical assistance.

10.
Adv Mater ; 36(31): e2402309, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38780003

RESUMO

Soft materials play a crucial role in small-scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small-scale soft devices. In this study, microfluidics is leveraged to precisely control reaction-diffusion (RD) processes to generate multifunctional and compartmentalized calcium-cross-linkable alginate-based microfibers. Under RD conditions, sophisticated alginate-based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross-linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll-up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small-scale devices.

11.
Adv Healthc Mater ; 13(22): e2400419, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38748937

RESUMO

Many cardiac diseases, such as arrhythmia or cardiogenic shock, cause irregular beating patterns that must be regulated to prevent disease progression toward heart failure. Treatments can include invasive surgery or high systemic drug dosages, which lack precision, localization, and control. Drug delivery systems (DDSs) that can deliver cargo to the cardiac injury site could address these unmet clinical challenges. Here, a microrobotic DDS that can be mobilized to specific sites via magnetic control is presented. This DDS incorporates an internal chamber that can protect drug cargo. Furthermore, the DDS contains a tunable thermosensitive sealing layer that gradually degrades upon exposure to body temperature, enabling prolonged drug release. Once loaded with the small molecule drug norepinephrine, this microrobotic DDS modulated beating frequency in induced pluripotent stem-cell derived cardiomyocytes (iPSC-CMs) in a dose-dependent manner, thus simulating drug delivery to cardiac cells in vitro. The DDS also navigates several maze-like structures seeded with cardiomyocytes to demonstrate precise locomotion under a rotating low-intensity magnetic field and on-site drug delivery. This work demonstrates the utility of a magnetically actuating DDS for precise, localized, and controlled drug delivery which is of interest for a myriad of future opportunities such as in treating cardiac diseases.


Assuntos
Sistemas de Liberação de Medicamentos , Células-Tronco Pluripotentes Induzidas , Miócitos Cardíacos , Robótica , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/citologia , Sistemas de Liberação de Medicamentos/métodos , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Norepinefrina/farmacologia , Norepinefrina/química , Campos Magnéticos
12.
Micromachines (Basel) ; 15(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38675279

RESUMO

Magnetically actuated microrobots have become a research hotspot in recent years due to their tiny size, untethered control, and rapid response capability. Moreover, an increasing number of researchers are applying them for micro-/nano-manipulation in the biomedical field. This survey provides a comprehensive overview of the recent developments in magnetic microrobots, focusing on materials, propulsion mechanisms, design strategies, fabrication techniques, and diverse micro-/nano-manipulation applications. The exploration of magnetic materials, biosafety considerations, and propulsion methods serves as a foundation for the diverse designs discussed in this review. The paper delves into the design categories, encompassing helical, surface, ciliary, scaffold, and biohybrid microrobots, with each demonstrating unique capabilities. Furthermore, various fabrication techniques, including direct laser writing, glancing angle deposition, biotemplating synthesis, template-assisted electrochemical deposition, and magnetic self-assembly, are examined owing to their contributions to the realization of magnetic microrobots. The potential impact of magnetic microrobots across multidisciplinary domains is presented through various application areas, such as drug delivery, minimally invasive surgery, cell manipulation, and environmental remediation. This review highlights a comprehensive summary of the current challenges, hurdles to overcome, and future directions in magnetic microrobot research across different fields.

13.
ACS Appl Mater Interfaces ; 16(19): 24341-24350, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38687629

RESUMO

Magnetic micro/nanorobots are promising platforms for targeted drug delivery, and their construction with soft and flexible features has received extensive attention for practical applications. Despite significant efforts in this field, facile fabrication of magnetic microrobots with flexible structures and versatility in targeted therapy remains a big challenge. Herein, we proposed a novel universal strategy to fabricate a biohybrid flexible sperm-like microrobot (BFSM) based on a Chlorella (Ch.) cell and artificial flagella, which showed great potential for targeted chemo-photothermal therapy for the first time. In this approach, microspherical Ch. cells were utilized to construct the microrobotic heads, which were intracellularly deposited with core-shell Pd@Au, extracellularly magnetized with Fe3O4, and further loaded with anticancer drug. The magnetic heads with excellent photothermal and chemotherapeutic capability were further assembled with flexible polypyrrole nanowires via biotin-streptavidin bonding to construct the BFSMs. Based on the exquisite head-to-tail structures, the BFSMs could be effectively propelled under precessing magnetic fields and move back and forth without a U-turn. Moreover, in vitro chemo-photothermal tests were conducted to verify their performance of targeted drug delivery toward localized HeLa cells. Due to this superior versatility and facile fabrication, the BFSMs demonstrated great potential for targeted anticancer therapy.


Assuntos
Terapia Fototérmica , Humanos , Células HeLa , Robótica , Sistemas de Liberação de Medicamentos , Antineoplásicos/química , Antineoplásicos/farmacologia , Doxorrubicina/química , Doxorrubicina/farmacologia , Polímeros/química , Nanofios/química , Ouro/química
14.
Adv Healthc Mater ; 13(15): e2400414, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38412402

RESUMO

Recently, magnetically actuated micro/nanorobots hold extensive promises in biomedical applications due to their advantages of noninvasiveness, fuel-free operation, and programmable nature. While effectively promised in various fields such as targeted delivery, most past investigations are mainly displayed in magnetic control of individual micro/nanorobots. Facing practical medical use, the micro/nanorobots are required for the development of swarm control in a closed-loop control manner. This review outlines the recent developments in magnetic micro/nanorobot swarms, including their actuating fundamentals, designs, controls, and biomedical applications. The fundamental principles and interactions involved in the formation of magnetic micro/nanorobot swarms are discussed first. The recent advances in the design of artificial and biohybrid micro/nanorobot swarms, along with the control devices and methods used for swarm manipulation, are presented. Furthermore, biomedical applications that have the potential to achieve clinical application are introduced, such as imaging-guided therapy, targeted delivery, embolization, and biofilm eradication. By addressing the potential challenges discussed toward the end of this review, magnetic micro/nanorobot swarms hold promise for clinical treatments in the future.


Assuntos
Robótica , Humanos , Robótica/instrumentação , Magnetismo , Desenho de Equipamento , Animais , Nanotecnologia/métodos
15.
J Hazard Mater ; 467: 133654, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38341894

RESUMO

Self-propelled micro/nanomotors have attracted great attention for environmental remediation, however, their use for radioactive waste detection and removal has not been addressed. Engineered micromotors that are able to combine fast detection and highly adsorptive capability are promising tools for radioactive waste management but remain challenging. Herein, we design self-propelled micromotors based on zeolite imidazolate framework (ZIF-8)-hydrogel composites via inverse emulsion polymerization and show their potential for efficient uranium detection and removal. The incorporation of magnetic ferroferric oxide nanoparticles enables the magnetic recycling and actuation of the single micromotors as well as formation of swarms of worm-like or tank-treading structure. Benefited from the enhanced motion, the micromotors show fast and high-capacity uranium adsorption (747.3 mg g-1), as well as fast uranium detection based on fluorescence quenching. DFT calculation confirms the strong binding between carboxyl groups and uranyl ions. The combination of poly(acrylic acid-co-acrylamide) with ZIF-8 greatly enhances the fluorescence of the micromotor, facilitating the high-resolution fluorescence detection. A low detection limit of 250 ppb is reached by the micromotors. Such self-propelled micromotors provide a new strategy for the design of smart materials in remediation of radioactive wastewater.

16.
Small ; 20(26): e2306943, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38239086

RESUMO

The growing consumption of drugs of abuse together with the inefficiency of the current wastewater treatment plants toward their presence has resulted in an emergent class of pollutants. Thus, the development of alternative approaches to remediate this environmental threat is urgently needed. Microrobots, combining autonomous motion with great tunability for the development of specific tasks, have turned into promising candidates to take on the challenge. Here, hybrid urchin-like hematite (α-Fe2O3) microparticles carrying magnetite (Fe3O4) nanoparticles and surface functionalization with organic ß-cyclodextrin (CD) molecules are prepared with the aim of on-the-fly encapsulation of illicit drugs into the linked CD cavities of moving microrobots. The resulting mag-CD microrobots are tested against methamphetamine (MA), proving their ability for the removal of this psychoactive substance. A dramatically enhanced capture of MA from water with active magnetically powered microrobots when compared with static passive CD-modified particles is demonstrated. This work shows the advantages of enhanced mass transfer provided by the externally controlled magnetic navigation in microrobots that together with the versatility of their design is an efficient strategy to clean polluted waters.


Assuntos
Ciclodextrinas , Metanfetamina , Poluentes Químicos da Água , Metanfetamina/química , Ciclodextrinas/química , Poluentes Químicos da Água/química , Poluentes Químicos da Água/isolamento & purificação , Magnetismo , Robótica , Purificação da Água/métodos , Compostos Férricos/química
17.
Small ; 20(15): e2307006, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-37992252

RESUMO

Ferronematics that are generally based on nematic liquid crystals (LCs) doped with magnetic nanoparticles, synergistically taking advantage of the anisotropic and flow characteristics of the nematic host and the magnetic susceptibility of the dopant, have powerful applications as magnetically actuated soft materials. In this work, a Co(II) complex, which alone presents both characteristics, is built with a salen-type ligand 3,5-dichlorosubstituted at the aromatic nuclei and has a tetramethyldisiloxane spacer, which makes it one of the few metallomesogens containing this structural motif. Paramagnetic crystals, through heat treatment above 110 °C, change into magnetic nematic LCs. Applying a perpendicular magnetic field of 50 mT, the nematic droplets align two by two through dipole-dipole interactions. By incorporating it into a silicone matrix consisting mainly of polydimethylsiloxane, a 3D printable ink is formulated and crosslinked under various shapes. In this environment, the cobalt complex is stabilized in an LC state at room temperature and, due to its anisotropy, facilitates the mechanical response to magnetic stimuli. The resulting objects can be easily manipulated on fluid or rough surfaces using external magnetic fields, behave like magnets by themselves, and show reversible locomotion.

18.
Small ; 20(12): e2307178, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37950402

RESUMO

This work reports the rational design and fabrication of magneto-active microfiber meshes with controlled hexagonal microstructures via melt electrowriting (MEW) of a magnetized polycaprolactone-based composite. In situ iron oxide nanoparticle deposition on oxidized graphene yields homogeneously dispersed magnetic particles with sizes above 0.5 µm and low aspect ratio, preventing cellular internalization and toxicity. With these fillers, homogeneous magnetic composites with high magnetic content (up to 20 weight %) are obtained and processed in a solvent-free manner for the first time. MEW of magnetic composites enabled the creation of skeletal muscle-inspired design of hexagonal scaffolds with tunable fiber diameter, reconfigurable modularity, and zonal distribution of magneto-active and nonactive material, with elastic tensile deformability. External magnetic fields below 300 mT are sufficient to trigger out-of-plane reversible deformation. In vitro culture of C2C12 myoblasts on three-dimensional (3D) Matrigel/collagen/MEW scaffolds showed that microfibers guided the formation of 3D myotube architectures, and the presence of magnetic particles does not significantly affect viability or differentiation rates after 8 days. Centimeter-sized skeletal muscle constructs allowed for reversible, continued, and dynamic magneto-mechanical stimulation. Overall, these innovative microfiber scaffolds provide magnetically deformable platforms suitable for dynamic culture of skeletal muscle, offering potential for in vitro disease modeling.


Assuntos
Engenharia Tecidual , Alicerces Teciduais , Alicerces Teciduais/química , Engenharia Tecidual/métodos , Músculo Esquelético , Impressão Tridimensional
19.
J Control Release ; 364: 576-588, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37951475

RESUMO

Many implantable drug delivery systems (IDDS) have been developed for long-term, pulsatile drug release. However, they are often limited by bulky size, complex electronic components, unpredictable drug delivery, as well as the need for battery replacement and consequent replacement surgery. Here, we develop an implantable magnetically-actuated capsule (IMAC) and its portable magnetic actuator (MA) for on-demand and robust drug delivery in a tether-free and battery-free manner. IMAC utilizes the bistable mechanism of two magnetic balls inside IMAC to trigger drug delivery under a strong magnetic field (|Ba| > 90 mT), ensuring precise and reproducible drug delivery (9.9 ± 0.17 µg per actuation, maximum actuation number: 180) and excellent anti-magnetic capability (critical trigger field intensity: ∼90 mT). IMAC as a tetherless robot can navigate to and anchor at the lesion sites driven by a gradient magnetic field (∇ Bg = 3 T/m, |Bg| < 60 mT), and on-demand release drug actuated by a uniform magnetic field (|Ba| = âˆ¼100 mT) within the gastrointestinal tract. During a 15-day insulin administration in vivo, the diabetic rats treated with IMAC exhibited highly similar pharmacokinetic and pharmacodynamic profiles to those administrated via subcutaneous injection, demonstrating its robust and on-demand drug release performance. Moreover, IMAC is biocompatible, batter-free, refillable, miniature (only Φ 6.3 × 12.3 mm3), and lightweight (just 0.8 g), making it an ideal alternative for precise implantable drug delivery and friendly patient-centered drug administration.


Assuntos
Diabetes Mellitus Experimental , Humanos , Ratos , Animais , Diabetes Mellitus Experimental/tratamento farmacológico , Sistemas de Liberação de Medicamentos , Bombas de Infusão Implantáveis , Magnetismo , Campos Magnéticos , Preparações Farmacêuticas
20.
ACS Nano ; 17(23): 23702-23713, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-37856876

RESUMO

Droplet manipulation has garnered significant attention in various fields due to its wide range of applications. Among many different methods, magnetic actuation has emerged as a promising approach for remote and instantaneous droplet manipulation. In this study, we present the bidirectional droplet manipulation on a magnetically actuated superhydrophobic ratchet surface. The surface consists of silicon strips anchored on elastomer ridges with superhydrophobic black silicon structures on the top side and magnetic layers on the bottom side. The soft magnetic properties of the strips enable their bidirectional tilting to form a ratchet surface and thus bidirectional droplet manipulation upon varying external magnetic field location and strength. Computational multiphysics models were developed to predict the tilting of the strips, demonstrating the concept of bidirectional tilting along with a tilting angle hysteresis theory. Experimental results confirmed the soft magnetic hysteresis and consequential bidirectional tilting of the strips. The superhydrophobic ratchet surface formed by the tilting strips induced the bidirectional self-propulsion of dispensed droplets through the Laplace pressure gradient, and the horizontal acceleration of the droplets was found to be positively correlated with the tilting angle of the strips. Additionally, a finite element analysis was conducted to identify the critical conditions for dispensed droplet penetration through the gaps between the strips, which hinder the droplet's self-propulsion. The models and findings here provide substantial insights into the design and optimization of magnetically actuated superhydrophobic ratchet surfaces to manipulate droplets in the context of digital microfluidic applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA