Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Math Biosci ; 376: 109287, 2024 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-39218211

RESUMO

BACKGROUND: The increased application of immune checkpoint inhibitors (ICIs) targeting PD-1/PD-L1 in lung cancer treatment generates clinical need to reliably predict individual patients' treatment outcomes. METHODS: To bridge the prediction gap, we examine four different mathematical models in the form of ordinary differential equations, including a novel delayed response model. We rigorously evaluate their individual and combined predictive capabilities with regard to the patients' progressive disease (PD) status through equal weighting of model-derived outcome probabilities. RESULTS: Fitting the complete treatment course, the novel delayed response model (R2=0.938) outperformed the simplest model (R2=0.865). The model combination was able to reliably predict patient PD outcome with an overall accuracy of 77% (sensitivity = 70%, specificity = 81%), solely through calibration with primary tumor longest diameter measurements. It autonomously identified a subset of 51% of patients where predictions with an overall accuracy of 81% (sensitivity = 81%, specificity = 81%) can be achieved. All models significantly outperformed a fully data-driven machine learning-based approach. IMPLICATIONS: These modeling approaches provide a dynamic baseline framework to support clinicians in treatment decisions by identifying different treatment outcome trajectories with already clinically available measurement data. LIMITATIONS AND FUTURE DIRECTIONS: Conjoint application of the presented approach with other predictive tools and biomarkers, as well as further disease information (e.g. metastatic stage), could further enhance treatment outcome prediction. We believe the simple model formulations allow widespread adoption of the developed models to other cancer types. Similar models can easily be formulated for other treatment modalities.

2.
Bull Math Biol ; 86(10): 119, 2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39136811

RESUMO

Virtual clinical trials (VCTs) are growing in popularity as a tool for quantitatively predicting heterogeneous treatment responses across a population. In the context of a VCT, a plausible patient is an instance of a mathematical model with parameter (or attribute) values chosen to reflect features of the disease and response to treatment for that particular patient. A number of techniques have been introduced to determine the set of model parametrizations to include in a virtual patient cohort. These methodologies generally start with a prior distribution for each model parameter and utilize some criteria to determine whether a parameter set sampled from the priors should be included or excluded from the plausible population. No standard technique exists, however, for generating these prior distributions and choosing the inclusion/exclusion criteria. In this work, we rigorously quantify the impact that VCT design choices have on VCT predictions. Rather than use real data and a complex mathematical model, a spatial model of radiotherapy is used to generate simulated patient data and the mathematical model used to describe the patient data is a two-parameter ordinary differential equations model. This controlled setup allows us to isolate the impact of both the prior distribution and the inclusion/exclusion criteria on both the heterogeneity of plausible populations and on predicted treatment response. We find that the prior distribution, rather than the inclusion/exclusion criteria, has a larger impact on the heterogeneity of the plausible population. Yet, the percent of treatment responders in the plausible population was more sensitive to the inclusion/exclusion criteria utilized. This foundational understanding of the role of virtual clinical trial design should help inform the development of future VCTs that use more complex models and real data.


Assuntos
Ensaios Clínicos como Assunto , Simulação por Computador , Conceitos Matemáticos , Humanos , Ensaios Clínicos como Assunto/estatística & dados numéricos , Ensaios Clínicos como Assunto/métodos , Resultado do Tratamento , Seleção de Pacientes , Teorema de Bayes
3.
bioRxiv ; 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39185154

RESUMO

The immune checkpoint inhibitor anti-PD-1, commonly used in cancer immunotherapy, has not been successful as a monotherapy for the highly aggressive brain cancer glioblastoma. However, when used in conjunction with a CC-chemokine receptor-2 (CCR2) antagonist, anti-PD-1 has shown efficacy in preclinical studies. In this paper, we aim to optimize treatment regimens for this combination immunotherapy using optimal control theory. We extend a treatment-free glioblastoma-immune dynamics ODE model to include interventions with anti-PD-1 and the CCR2 antagonist. An optimized regimen increases the survival of an average mouse from 32 days post-tumor implantation without treatment to 111 days with treatment. We scale this approach to a virtual murine cohort to evaluate mortality and quality of life concerns during treatment, and predict survival, tumor recurrence, or death after treatment. A parameter identifiability analysis identifies five parameters suitable for personalizing treatment within the virtual cohort. Sampling from these five practically identifiable parameters for the virtual murine cohort reveals that personalized, optimized regimens enhance survival: 84% of the virtual mice survive to day 100, compared to 60% survival in a previously studied experimental regimen. Subjects with high tumor growth rates and low T cell kill rates are identified as more likely to die during and after treatment due to their compromised immune systems and more aggressive tumors. Notably, the MDSC death rate emerges as a long-term predictor of either disease-free survival or death.

4.
J R Soc Interface ; 21(216): 20240099, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-39013418

RESUMO

Cancer incidence increases rapidly with age, typically as a polynomial. The somatic mutation theory explains this increase through the waiting time for enough mutations to build up to generate cells with the full set of traits needed to grow without control. However, lines of evidence ranging from tumour reversion and dormancy to the prevalence of presumed cancer mutations in non-cancerous tissues argue that this is not the whole story, and that cancer is also an ecological process, and that mutations only lead to cancer when the systems of control within and across cells have broken down. Aging thus has two effects: the build-up of mutations and the breakdown of control. This paper presents a mathematical modelling framework to unify these theories with novel approaches to model the mutation and diversification of cell lineages and of the breakdown of the layers of control both within and between cells. These models correctly predict the polynomial increase of cancer with age, show how germline defects in control accelerate cancer initiation, and compute how the positive feedback between cell replication, ecology and layers of control leads to a doubly exponential growth of cell populations.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Neoplasias/metabolismo , Modelos Biológicos , Mutação , Modelos Genéticos
5.
Front Oncol ; 14: 1352065, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38884094

RESUMO

Mitomycin-C (MMC) chemotherapy is a well-established anti-cancer treatment for non-muscle-invasive bladder cancer (NMIBC). However, despite comprehensive biological research, the complete mechanism of action and an ideal regimen of MMC have not been elucidated. In this study, we present a theoretical investigation of NMIBC growth and its treatment by continuous administration of MMC chemotherapy. Using temporal ordinary differential equations (ODEs) to describe cell populations and drug molecules, we formulated the first mathematical model of tumor-immune interactions in the treatment of MMC for NMIBC, based on biological sources. Several hypothetical scenarios for NMIBC under the assumption that tumor size correlates with cell count are presented, depicting the evolution of tumors classified as small, medium, and large. These scenarios align qualitatively with clinical observations of lower recurrence rates for tumor size ≤ 30[mm] with MMC treatment, demonstrating that cure appears up to a theoretical x[mm] tumor size threshold, given specific parameters within a feasible biological range. The unique use of mole units allows to introduce a new method for theoretical pre-treatment assessments by determining MMC drug doses required for a cure. In this way, our approach provides initial steps toward personalized MMC chemotherapy for NMIBC patients, offering the possibility of new insights and potentially holding the key to unlocking some of its mysteries.

6.
Math Biosci ; 373: 109207, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38759950

RESUMO

Brain metastases (BMs) are the most common intracranial tumor type and a significant health concern, affecting approximately 10% to 30% of all oncological patients. Although significant progress is being made, many aspects of the metastatic process to the brain and the growth of the resulting lesions are still not well understood. There is a need for an improved understanding of the growth dynamics and the response to treatment of these tumors. Mathematical models have been proven valuable for drawing inferences and making predictions in different fields of cancer research, but few mathematical works have considered BMs. This comprehensive review aims to establish a unified platform and contribute to fostering emerging efforts dedicated to enhancing our mathematical understanding of this intricate and challenging disease. We focus on the progress made in the initial stages of mathematical modeling research regarding BMs and the significant insights gained from such studies. We also explore the vital role of mathematical modeling in predicting treatment outcomes and enhancing the quality of clinical decision-making for patients facing BMs.


Assuntos
Neoplasias Encefálicas , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/terapia , Modelos Teóricos , Modelos Biológicos , Conceitos Matemáticos
7.
Cell Syst ; 15(6): 510-525.e6, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38772367

RESUMO

Toxicity and emerging drug resistance pose important challenges in poly-adenosine ribose polymerase inhibitor (PARPi) maintenance therapy of ovarian cancer. We propose that adaptive therapy, which dynamically reduces treatment based on the tumor dynamics, might alleviate both issues. Utilizing in vitro time-lapse microscopy and stepwise model selection, we calibrate and validate a differential equation mathematical model, which we leverage to test different plausible adaptive treatment schedules. Our model indicates that adjusting the dosage, rather than skipping treatments, is more effective at reducing drug use while maintaining efficacy due to a delay in cell kill and a diminishing dose-response relationship. In vivo pilot experiments confirm this conclusion. Although our focus is toxicity mitigation, reducing drug use may also delay resistance. This study enhances our understanding of PARPi treatment scheduling and illustrates the first steps in developing adaptive therapies for new treatment settings. A record of this paper's transparent peer review process is included in the supplemental information.


Assuntos
Neoplasias Ovarianas , Inibidores de Poli(ADP-Ribose) Polimerases , Feminino , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias Ovarianas/tratamento farmacológico , Humanos , Linhagem Celular Tumoral , Animais , Resistencia a Medicamentos Antineoplásicos , Camundongos
8.
Adv Neurobiol ; 36: 545-555, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38468052

RESUMO

Morphometrics have been able to distinguish important features of glioblastoma from magnetic resonance imaging (MRI). Using morphometrics computed on segmentations of various imaging abnormalities, we show that the average and range of lacunarity and fractal dimension values across MRI slices can be prognostic for survival. We look at the repeatability of these metrics to multiple segmentations and how they are impacted by image resolution. We speak to the challenges to overcome before these metrics are included in clinical care, and the insight that they may provide.


Assuntos
Glioblastoma , Humanos , Glioblastoma/diagnóstico por imagem , Glioblastoma/patologia , Fractais , Prognóstico , Imageamento por Ressonância Magnética/métodos
9.
J Math Biol ; 88(4): 41, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38446165

RESUMO

Clinical and pre-clinical data suggest that treating some tumors at a mild, patient-specific dose might delay resistance to treatment and increase survival time. A recent mathematical model with sensitive and resistant tumor cells identified conditions under which a treatment aiming at tumor containment rather than eradication is indeed optimal. This model however neglected mutations from sensitive to resistant cells, and assumed that the growth-rate of sensitive cells is non-increasing in the size of the resistant population. The latter is not true in standard models of chemotherapy. This article shows how to dispense with this assumption and allow for mutations from sensitive to resistant cells. This is achieved by a novel mathematical analysis comparing tumor sizes across treatments not as a function of time, but as a function of the resistant population size.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Mutação , Densidade Demográfica
10.
Cancer Biol Ther ; 25(1): 2321769, 2024 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-38411436

RESUMO

Tumor heterogeneity contributes significantly to chemoresistance, a leading cause of treatment failure. To better personalize therapies, it is essential to develop tools capable of identifying and predicting intra- and inter-tumor heterogeneities. Biology-inspired mathematical models are capable of attacking this problem, but tumor heterogeneity is often overlooked in in-vivo modeling studies, while phenotypic considerations capturing spatial dynamics are not typically included in in-vitro modeling studies. We present a data assimilation-prediction pipeline with a two-phenotype model that includes a spatiotemporal component to characterize and predict the evolution of in-vitro breast cancer cells and their heterogeneous response to chemotherapy. Our model assumes that the cells can be divided into two subpopulations: surviving cells unaffected by the treatment, and irreversibly damaged cells undergoing treatment-induced death. MCF7 breast cancer cells were previously cultivated in wells for up to 1000 hours, treated with various concentrations of doxorubicin and imaged with time-resolved microscopy to record spatiotemporally-resolved cell count data. Images were used to generate cell density maps. Treatment response predictions were initialized by a training set and updated by weekly measurements. Our mathematical model successfully calibrated the spatiotemporal cell growth dynamics, achieving median [range] concordance correlation coefficients of > .99 [.88, >.99] and .73 [.58, .85] across the whole well and individual pixels, respectively. Our proposed data assimilation-prediction approach achieved values of .97 [.44, >.99] and .69 [.35, .79] for the whole well and individual pixels, respectively. Thus, our model can capture and predict the spatiotemporal dynamics of MCF7 cells treated with doxorubicin in an in-vitro setting.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/tratamento farmacológico , Doxorrubicina/farmacologia , Ciclo Celular , Proliferação de Células , Células MCF-7
11.
Math Biosci Eng ; 20(10): 17986-18017, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-38052545

RESUMO

The use of mathematical models to make predictions about tumor growth and response to treatment has become increasingly prevalent in the clinical setting. The level of complexity within these models ranges broadly, and the calibration of more complex models requires detailed clinical data. This raises questions about the type and quantity of data that should be collected and when, in order to maximize the information gain about the model behavior while still minimizing the total amount of data used and the time until a model can be calibrated accurately. To address these questions, we propose a Bayesian information-theoretic procedure, using an adaptive score function to determine the optimal data collection times and measurement types. The novel score function introduced in this work eliminates the need for a penalization parameter used in a previous study, while yielding model predictions that are superior to those obtained using two potential pre-determined data collection protocols for two different prostate cancer model scenarios: one in which we fit a simple ODE system to synthetic data generated from a cellular automaton model using radiotherapy as the imposed treatment, and a second scenario in which a more complex ODE system is fit to clinical patient data for patients undergoing intermittent androgen suppression therapy. We also conduct a robust analysis of the calibration results, using both error and uncertainty metrics in combination to determine when additional data acquisition may be terminated.


Assuntos
Neoplasias da Próstata , Projetos de Pesquisa , Masculino , Humanos , Calibragem , Teorema de Bayes , Neoplasias da Próstata/tratamento farmacológico , Modelos Teóricos
12.
bioRxiv ; 2023 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-38045391

RESUMO

Extinction therapy aims to eradicate tumours by optimally scheduling multiple treatment strikes to exploit the vulnerability of small cell populations to stochastic extinction. This concept was recently shown to be theoretically sound but has not been subjected to thorough mathematical analysis. Here we obtain quantitative estimates of tumour extinction probabilities using a deterministic analytical model and a stochastic simulation model of two-strike extinction therapy, based on evolutionary rescue theory. We find that the optimal time for the second strike is when the tumour is close to its minimum size before relapse. Given that this exact time point may be difficult to determine in practice, we show that striking slightly after the relapse has begun is typically better than switching too early. We further reveal and explain how demographic and environmental parameters influence the treatment outcome. Surprisingly, a low dose in the first strike paired with a high dose in the second is shown to be optimal. As one of the first investigations of extinction therapy, our work establishes a foundation for further theoretical and experimental studies of this promising evolutionarily-informed cancer treatment strategy.

13.
J Math Biol ; 88(1): 10, 2023 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-38099947

RESUMO

Glioblastoma (GBM) is an aggressive primary brain cancer that currently has minimally effective treatments. Like other cancers, immunosuppression by the PD-L1-PD-1 immune checkpoint complex is a prominent axis by which glioma cells evade the immune system. Myeloid-derived suppressor cells (MDSCs), which are recruited to the glioma microenviroment, also contribute to the immunosuppressed GBM microenvironment by suppressing T cell functions. In this paper, we propose a GBM-specific tumor-immune ordinary differential equations model of glioma cells, T cells, and MDSCs to provide theoretical insights into the interactions between these cells. Equilibrium and stability analysis indicates that there are unique tumorous and tumor-free equilibria which are locally stable under certain conditions. Further, the tumor-free equilibrium is globally stable when T cell activation and the tumor kill rate by T cells overcome tumor growth, T cell inhibition by PD-L1-PD-1 and MDSCs, and the T cell death rate. Bifurcation analysis suggests that a treatment plan that includes surgical resection and therapeutics targeting immune suppression caused by the PD-L1-PD1 complex and MDSCs results in the system tending to the tumor-free equilibrium. Using a set of preclinical experimental data, we implement the approximate Bayesian computation (ABC) rejection method to construct probability density distributions that estimate model parameters. These distributions inform an appropriate search curve for global sensitivity analysis using the extended fourier amplitude sensitivity test. Sensitivity results combined with the ABC method suggest that parameter interaction is occurring between the drivers of tumor burden, which are the tumor growth rate and carrying capacity as well as the tumor kill rate by T cells, and the two modeled forms of immunosuppression, PD-L1-PD-1 immune checkpoint and MDSC suppression of T cells. Thus, treatment with an immune checkpoint inhibitor in combination with a therapeutic targeting the inhibitory mechanisms of MDSCs should be explored.


Assuntos
Glioblastoma , Glioma , Células Supressoras Mieloides , Humanos , Glioblastoma/terapia , Receptor de Morte Celular Programada 1 , Antígeno B7-H1 , Teorema de Bayes , Microambiente Tumoral
14.
J Math Biol ; 88(1): 4, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38015257

RESUMO

Malignant gliomas are notoriously invasive, a major impediment against their successful treatment. This invasive growth has motivated the use of predictive partial differential equation models, formulated at varying levels of detail, and including (i) "proliferation-infiltration" models, (ii) "go-or-grow" models, and (iii) anisotropic diffusion models. Often, these models use macroscopic observations of a diffuse tumour interface to motivate a phenomenological description of invasion, rather than performing a detailed and mechanistic modelling of glioma cell invasion processes. Here we close this gap. Based on experiments that support an important role played by long cellular protrusions, termed tumour microtubes, we formulate a new model for microtube-driven glioma invasion. In particular, we model a population of tumour cells that extend tissue-infiltrating microtubes. Mitosis leads to new nuclei that migrate along the microtubes and settle elsewhere. A combination of steady state analysis and numerical simulation is employed to show that the model can predict an expanding tumour, with travelling wave solutions led by microtube dynamics. A sequence of scaling arguments allows us reduce the detailed model into simpler formulations, including models falling into each of the general classes (i), (ii), and (iii) above. This analysis allows us to clearly identify the assumptions under which these various models can be a posteriori justified in the context of microtube-driven glioma invasion. Numerical simulations are used to compare the various model classes and we discuss their advantages and disadvantages.


Assuntos
Glioma , Humanos , Anisotropia , Simulação por Computador , Difusão , Viagem
15.
Front Artif Intell ; 6: 1222612, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37886348

RESUMO

We develop a methodology to create data-driven predictive digital twins for optimal risk-aware clinical decision-making. We illustrate the methodology as an enabler for an anticipatory personalized treatment that accounts for uncertainties in the underlying tumor biology in high-grade gliomas, where heterogeneity in the response to standard-of-care (SOC) radiotherapy contributes to sub-optimal patient outcomes. The digital twin is initialized through prior distributions derived from population-level clinical data in the literature for a mechanistic model's parameters. Then the digital twin is personalized using Bayesian model calibration for assimilating patient-specific magnetic resonance imaging data. The calibrated digital twin is used to propose optimal radiotherapy treatment regimens by solving a multi-objective risk-based optimization under uncertainty problem. The solution leads to a suite of patient-specific optimal radiotherapy treatment regimens exhibiting varying levels of trade-off between the two competing clinical objectives: (i) maximizing tumor control (characterized by minimizing the risk of tumor volume growth) and (ii) minimizing the toxicity from radiotherapy. The proposed digital twin framework is illustrated by generating an in silico cohort of 100 patients with high-grade glioma growth and response properties typically observed in the literature. For the same total radiation dose as the SOC, the personalized treatment regimens lead to median increase in tumor time to progression of around six days. Alternatively, for the same level of tumor control as the SOC, the digital twin provides optimal treatment options that lead to a median reduction in radiation dose by 16.7% (10 Gy) compared to SOC total dose of 60 Gy. The range of optimal solutions also provide options with increased doses for patients with aggressive cancer, where SOC does not lead to sufficient tumor control.

17.
Int J Mol Sci ; 24(14)2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37511566

RESUMO

The efficacy of antitumor radiotherapy can be enhanced by utilizing nonradioactive nanoparticles that emit secondary radiation when activated by a primary beam. They consist of small volumes of a radiosensitizing substance embedded within a polymer layer, which is coated with tumor-specific antibodies. The efficiency of nanosensitizers relies on their successful delivery to the tumor, which depends on their size. Increasing their size leads to a higher concentration of active substance; however, it hinders the penetration of nanosensitizers through tumor capillaries, slows down their movement through the tissue, and accelerates their clearance. In this study, we present a mathematical model of tumor growth and radiotherapy with the use of intravenously administered tumor-specific nanosensitizers. Our findings indicate that their optimal size for achieving maximum tumor radiosensitization following a single injection of their fixed total volume depends on the permeability of the tumor capillaries. Considering physiologically plausible spectra of capillary pore radii, with a nanoparticle polymer layer width of 7 nm, the optimal radius of nanoparticles falls within the range of 13-17 nm. The upper value is attained when considering an extreme spectrum of capillary pores.


Assuntos
Nanopartículas , Neoplasias , Humanos , Modelos Teóricos , Neoplasias/radioterapia , Neoplasias/irrigação sanguínea , Polímeros
18.
Cells ; 12(14)2023 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-37508513

RESUMO

Many cancer cell lines are aneuploid and heterogeneous, with multiple karyotypes co-existing within the same cell line. Karyotype heterogeneity has been shown to manifest phenotypically, thus affecting how cells respond to drugs or to minor differences in culture media. Knowing how to interpret karyotype heterogeneity phenotypically would give insights into cellular phenotypes before they unfold temporally. Here, we re-analyzed single cell RNA (scRNA) and scDNA sequencing data from eight stomach cancer cell lines by placing gene expression programs into a phenotypic context. Using live cell imaging, we quantified differences in the growth rate and contact inhibition between the eight cell lines and used these differences to prioritize the transcriptomic biomarkers of the growth rate and carrying capacity. Using these biomarkers, we found significant differences in the predicted growth rate or carrying capacity between multiple karyotypes detected within the same cell line. We used these predictions to simulate how the clonal composition of a cell line would change depending on density conditions during in-vitro experiments. Once validated, these models can aid in the design of experiments that steer evolution with density-dependent selection.


Assuntos
Neoplasias , Humanos , Neoplasias/genética , Linhagem Celular , Cariotipagem , Células Clonais , Cariótipo
19.
Bull Math Biol ; 85(6): 47, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37186175

RESUMO

Fractional calculus has recently been applied to the mathematical modelling of tumour growth, but its use introduces complexities that may not be warranted. Mathematical modelling with differential equations is a standard approach to study and predict treatment outcomes for population-level and patient-specific responses. Here, we use patient data of radiation-treated tumours to discuss the benefits and limitations of introducing fractional derivatives into three standard models of tumour growth. The fractional derivative introduces a history-dependence into the growth function, which requires a continuous death-rate term for radiation treatment. This newly proposed radiation-induced death-rate term improves computational efficiency in both ordinary and fractional derivative models. This computational speed-up will benefit common simulation tasks such as model parameterization and the construction and running of virtual clinical trials.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Conceitos Matemáticos , Neoplasias/radioterapia , Modelos Teóricos , Simulação por Computador
20.
Bull Math Biol ; 85(6): 44, 2023 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-37081144

RESUMO

In this survey article, a variety of systems modeling tumor growth are discussed. In accordance with the hallmarks of cancer, the described models incorporate the primary characteristics of cancer evolution. Specifically, we focus on diffusive interface models and follow the phase-field approach that describes the tumor as a collection of cells. Such systems are based on a multiphase approach that employs constitutive laws and balance laws for individual constituents. In mathematical oncology, numerous biological phenomena are involved, including temporal and spatial nonlocal effects, complex nonlinearities, stochasticity, and mixed-dimensional couplings. Using the models, for instance, we can express angiogenesis and cell-to-matrix adhesion effects. Finally, we offer some methods for numerically approximating the models and show simulations of the tumor's evolution in response to various biological effects.


Assuntos
Modelos Biológicos , Neoplasias , Humanos , Conceitos Matemáticos , Neoplasias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA