Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 434
Filtrar
1.
Plant Dis ; 2024 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-39172527

RESUMO

Plenodomus biglobosus (Pb), a causal agent of blackleg of rapeseed, is composed of several subspecies, including 'australensis' (Pba), 'brassicae' (Pbb) and 'canadensis' (Pbc). Besides rapeseed, Pb can infect many wild cruciferous plants (WCPs), such as flixweed (Descurainia sophia) and pennycress (Thlaspi arvense), which may become the infection source for blackleg of rapeseed. However, Pb on WCPs has not been well investigated in China. This study identified the blackleg fungi on two WCPs in Sayram Lake and Zhaosu County in Xinjiang of China: flixweed (15 isolates) and pennycress (1 isolate) as well as on rapeseed (971 isolates). They belonged to Pba (11), Pbb (18) and Pbc (958). Pba occurred on flixweed (10) and pennycress (1) only in Sayram Lake, whereas Pbb and Pbc occurred on flixweed (1 and 4 isolates, respectively) and rapeseed (17 and 954 isolates, respectively) in Zhaosu County. Then, virulence of 16 isolates from flixweed and pennycress was determined on rapeseed. Their genomes were sequenced and used to identify the mating-type idiomorphs and to analyze population genetic structure. Results showed that all of the 16 isolates were virulent to rapeseed. Only MAT1-1 was detected in 11 Pba isolates, implying that Pba may lack sexual reproduction. The 16 isolates from two WCPs were divided into four genetic groups: Group I for Pbc (4 isolates), Group II for Pbb (1 isolate), and Group III (3 isolates) and IV (8 isolates) for Pba. The findings about the single mating-type in Pba and its limited geographic distribution provided a case showing the importance of sexual reproduction in epidemics of Pb. To the best of our knowledge, this is the first report of Pba, Pbb and Pbc on flixweed, and Pba on pennycress in China.

2.
J Fungi (Basel) ; 10(7)2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-39057363

RESUMO

Colletotrichum fructicola shows morphological and genetic differences in plus and minus strains. However, the mechanism of the differentiation between two types of strains is still largely unclear. Our early transcriptome analysis revealed that CfHMG expression differed in plus and minus strains. To define the functions of the CfHMG gene, we constructed gene deletion mutants by homologous recombination. We found that a CfHMG deletion mutant of the minus strain, CfHMG-M, could lead to a reduction in perithecium sizes and densities on media and sterile perithecium formation compared with the minus wild type (WT), whereas there was no effect for the plus mutant CfHMG-P. In co-cultures between CfHMG-P and minus WT, CfHMG-M and plus WT, or CfHMG-P and CfHMG-M, the quantities of perithecia were all reduced significantly. When conidial suspensions were inoculated on non-wounded apple fruit, it was found that the virulence of the minus mutant decreased significantly but not for the plus one. Further, we found that the virulence decrease in minus mutants was caused by a decrease in the conidium germination rate. Our results indicate that CfHMG of C. fructicola plays an important role in the mating line formation between the plus and minus strain for both strains and differentially regulates the perithecium size, density, fertilization, and virulence of the minus strain. The results are significant for further detecting the differentiated mechanisms between the plus and minus strains in Colletotrichum fungi.

3.
PeerJ ; 12: e17648, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006009

RESUMO

The rapid degeneration of Cordyceps militaris strains during subculture represents a bottleneck problem that affects production stability. This study explored the mechanism underlying this degeneration in three production and three wild-type strains of Cordyceps militaris, isolating single-conidium strains from each. The effects of subculturing on fructification in both original and single mating-type strains were compared. Changes in the ratio of the two mating types were analyzed in both original and degenerated strains. Based on these findings, the two mating strains were paired in different ratios to determine their effects on fruiting. The resulting five strains were heterokaryotic strains with both MAT1-1 and MAT1-2 mating-type genes. Strain jb-2 was a single mating type (MAT1-1) mutant strain that produced stable fruiting bodies but failed to produce ascospores. It was found that the loss of or imbalance in mating types was the main reason for the rapid degeneration of fruiting traits during subculture and that this occurred randomly in the MAT1-1 and MAT1-2 types. The strains differed significantly in their stability during subculture. Fruiting was stable in the single mating-type Jb-2 strain, and the eleventh-generation fruited normally. There were differences in yield between the production and wild strains after inoculation with spawn containing different proportions of mating types. The production strain was more stable when inoculated with strains with mating-type ratios of 1:9 to 9:1 without affecting the yield. However, the yield of the wild-type strain xf-1 was positively correlated with the proportion of the MAT1-2 type, while the other two strains showed no correlations. Subculturing single mating-type mycelia separately and mixing them before production effectively mitigated degeneration during subculture. For Cordyceps militaris breeding, selecting strains containing both mating types, which are insensitive to the proportion of mating-type genes, enhanced stability in subculture and reduced the risk of mating-type loss. Direct breeding of specific single-mating type strains to induce fruiting is thus an effective breeding strategy.


Assuntos
Cordyceps , Genes Fúngicos Tipo Acasalamento , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento/genética , Carpóforos
4.
Int J Food Microbiol ; 421: 110801, 2024 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-38924974

RESUMO

Blue cheeses, including renowned mold-ripened varieties such as Roquefort (France), Gorgonzola (Italy), Stilton (UK), Danablue (Denmark), and Cabrales (Spain), owe their distinct blue-green color and unique flavor to the fungal species Penicillium roqueforti. In Turkey, traditional cheeses similar to blue cheeses, namely mold-ripened Tulum and Civil, employ production techniques distinct from their European counterparts. Notably, mold-ripening in Turkish cheeses is spontaneous and does not involve starter cultures. Despite P. roqueforti being recognized for its distinct genetic populations sourced from various blue cheeses and non-cheese origins globally, the characteristics of the P. roqueforti population within Turkish cheeses remain unexplored. This study aimed to unravel the genetic characteristics and population structure of P. roqueforti from Turkish mold-ripened cheeses. Analysis of mold-ripened Civil (n = 22) and Tulum (n = 8) samples revealed 66 P. roqueforti isolates (76.6 % of total fungal isolates). Subsequently, these isolates (n = 66) and those from previous studies (Tulum n = 53, Golot n = 1) were used to assess genetic characteristics and mating genotypes. All 120 isolates harbored horizontal transfer regions (Wallaby and CheesyTer) and predominantly possessed the MAT1-2 mating genotype, similar to global blue cheese populations. However, most lacked the mpaC deletion associated with such populations. Analysis of the population with three polymorphic microsatellite markers revealed 36 haplotypes (HTs). Some cheeses contained isolates with different HTs or opposite mating genotypes, aligning with spontaneous fungal growth. Tulum and Civil isolates exhibited similar population diversity without forming distinct subgroups. Phylogenetic analysis of 20 selected isolates showed 75 % aligning with global blue cheese isolates, while 25 % formed unique clades. Overall, Turkish P. roqueforti isolates share genetic similarities with global populations but exhibit unique characteristics, suggesting potential new clades deserving further investigation. This research illuminates the characteristics of P. roqueforti isolates from Turkish cheeses, contributing to the knowledge of the global intraspecific diversity of the P. roqueforti species.


Assuntos
Queijo , Variação Genética , Penicillium , Queijo/microbiologia , Penicillium/genética , Penicillium/isolamento & purificação , Penicillium/classificação , Turquia , Microbiologia de Alimentos , Genótipo , Filogenia
5.
BMC Biol ; 22(1): 108, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714997

RESUMO

BACKGROUND: Populations of the plant pathogenic fungus Verticillium dahliae display a complex and rich genetic diversity, yet the existence of sexual reproduction in the fungus remains contested. As pivotal genes, MAT genes play a crucial role in regulating cell differentiation, morphological development, and mating of compatible cells. However, the functions of the two mating type genes in V. dahliae, VdMAT1-1-1, and VdMAT1-2-1, remain poorly understood. RESULTS: In this study, we confirmed that the MAT loci in V. dahliae are highly conserved, including both VdMAT1-1-1 and VdMAT1-2-1 which share high collinearity. The conserved core transcription factor encoded by the two MAT loci may facilitate the regulation of pheromone precursor and pheromone receptor genes by directly binding to their promoter regions. Additionally, peptide activity assays demonstrated that the signal peptide of the pheromone VdPpg1 possessed secretory activity, while VdPpg2, lacked a predicted signal peptide. Chemotactic growth assays revealed that V. dahliae senses and grows towards the pheromones FO-a and FO-α of Fusarium oxysporum, as well as towards VdPpg2 of V. dahliae, but not in response to VdPpg1. The findings herein also revealed that VdMAT1-1-1 and VdMAT1-2-1 regulate vegetative growth, carbon source utilization, and resistance to stressors in V. dahliae, while negatively regulating virulence. CONCLUSIONS: These findings underscore the potential roles of VdMAT1-1-1 and VdMAT1-2-1 in sexual reproduction and confirm their involvement in various asexual processes of V. dahliae, offering novel insights into the functions of mating type genes in this species.


Assuntos
Genes Fúngicos Tipo Acasalamento , Genes Fúngicos Tipo Acasalamento/genética , Ascomicetos/genética , Ascomicetos/fisiologia , Feromônios/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Verticillium
6.
Microorganisms ; 12(5)2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38792811

RESUMO

Phytophthora infestans is the causal agent of late blight in potato. The occurrence of P. infestans with both A1 and A2 mating types in the field may result in sexual reproduction and the generation of recombinant strains. Such strains with new combinations of traits can be highly aggressive, resistant to fungicides, and can make the disease difficult to control in the field. Metalaxyl-resistant isolates are now more prevalent in potato fields. Understanding the genetic structure and rapid identification of mating types and metalaxyl response of P. infestans in the field is a prerequisite for effective late blight disease monitoring and management. Molecular and phenotypic assays involving molecular and phenotypic markers such as mating types and metalaxyl response are typically conducted separately in the studies of the genotypic and phenotypic diversity of P. infestans. As a result, there is a pressing need to reduce the experimental workload and more efficiently assess the aggressiveness of different strains. We think that employing genetic markers to not only estimate genotypic diversity but also to identify the mating type and fungicide response using machine learning techniques can guide and speed up the decision-making process in late blight disease management, especially when the mating type and metalaxyl resistance data are not available. This technique can also be applied to determine these phenotypic traits for dead isolates. In this study, over 600 P. infestans isolates from different populations-Estonia, Pskov region, and Poland-were classified for mating types and metalaxyl response using machine learning techniques based on simple sequence repeat (SSR) markers. For both traits, random forest and the support vector machine demonstrated good accuracy of over 70%, compared to the decision tree and artificial neural network models whose accuracy was lower. There were also associations (p < 0.05) between the traits and some of the alleles detected, but machine learning prediction techniques based on multilocus SSR genotypes offered better prediction accuracy.

7.
J Fungi (Basel) ; 10(5)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38786666

RESUMO

Functional genes encode various biological functions required for the life activities of organisms. By analyzing the functional genes of edible and medicinal fungi, varieties of edible and medicinal fungi can be improved to enhance their agronomic traits, growth rates, and ability to withstand adversity, thereby increasing yield and quality and promoting industrial development. With the rapid development of functional gene research technology and the publication of many whole-genome sequences of edible and medicinal fungi, genes related to important biological traits have been mined, located, and functionally analyzed. This paper summarizes the advantages and disadvantages of different functional gene research techniques and application examples for edible and medicinal fungi; systematically reviews the research progress of functional genes of edible and medicinal fungi in biological processes such as mating type, mycelium and fruit growth and development, substrate utilization and nutrient transport, environmental response, and the synthesis and regulation of important active substances; and proposes future research directions for functional gene research for edible and medicinal fungi. The overall aim of this study was to provide a valuable reference for further promoting the molecular breeding of edible and medicinal fungi with high yield and quality and to promote the wide application of edible and medicinal fungi products in food, medicine, and industry.

8.
J Fungi (Basel) ; 10(4)2024 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-38667911

RESUMO

In China, Fusarium pseudograminearum has emerged as a major pathogen causing Fusarium crown rot (FCR) and caused significant losses. Studies on the pathogen's properties, especially its mating type and trichothecene chemotypes, are critical with respect to disease epidemiology and food/feed safety. There are currently few available reports on these issues. This study investigated the species composition, mating type idiomorphs, and trichothecene genotypes of Fusarium spp. causing FCR in Henan, China. A significant shift in F. pseudograminearum-induced FCR was found in the present study. Of the 144 purified strains, 143 were F. pseudograminearum, whereas only 1 Fusarium graminearum was identified. Moreover, a significant trichothecene-producing capability of F. pseudograminearum strains from Henan was observed in this work. Among the 143 F. pseudograminearum strains identified, F. pseudograminearum with a 15ADON genotype was found to be predominant (133 isolates), accounting for 92.36% of all strains, followed by F. pseudograminearum with a 3ADON genotype, whereas only one NIV genotype strain was detected. Overall, a relatively well-balanced 1:1 ratio of the F. pseudograminearum population was found in Henan. To the best of our knowledge, this is the first study that has examined the Fusarium populations responsible for FCR across the Henan wheat-growing region.

9.
J Fungi (Basel) ; 10(4)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38667918

RESUMO

Thielaviopsis paradoxa sensu lato is a soilborne fungal pathogen that causes Thielaviopsis trunk rot and heart rot in palms. The loss of structural integrity resulting from trunk rot can cause the palm trunk to collapse suddenly and poses a serious threat to life and property. Even though rudimentary knowledge about the Thielaviopsis infection process in palms is available, nothing is known about the T. paradoxa species complex in the US. The aim of this study was to characterize T. paradoxa s. lat. isolates collected from diseased palms grown in Florida. Multi-locus phylogeny using three genes, ITS, ß-tubulin, and tef1-α, revealed that the isolates separate into two distinct clades with high bootstrap support. The majority of the isolates clustered with the species T. ethacetica, while two isolates formed a separate clade, distinct from T. musarum, and might represent an undescribed Thielaviopsis species. One representative isolate from each clade, when grown on three distinct media and at four different temperatures, showed differences in gross colony morphology, as well as growth rates. The T. ethacetica isolate TP5448 and the Thielaviopsis sp. isolate PLM300 grew better at opposite ends of the temperature spectrum tested in this study, i.e., 35 °C and 10 °C, respectively. In pathogenicity assays on whole plants, the T. ethacetica isolate proved to be more aggressive than Thielaviopsis sp. isolate PLM300, as it produced larger lesions when inoculated on wounded leaflets. An unequal distribution was observed for the mating-type locus of T. ethacetica, as 12 isolates carried the MAT1-1-1 allele, while the status for four isolates remained undefined. Variation in mycelial growth in response to different fungicides was also observed between the two clades. These results demonstrate the existence of two Thielaviopsis clades that can infect palms in Florida and underscore the need for targeted sampling to help uncover the diversity of Thielaviopsis species across palm-growing regions in the US.

10.
J Fungi (Basel) ; 10(4)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38667932

RESUMO

Pyrenophora teres f. teres (Ptt) is a severe pathogen to spring barley in Northern Europe. Ptt with relevant mutations in fungicide target proteins, sterol 14α-demethylase (CYP51A), cytochrome b (Cyt b), and succinate dehydrogenase (SDH) would put efficient disease control at risk. In the growing seasons of 2021 and 2022, 193 Ptt isolates from Estonia were analysed. In this study, mutation detection and in vitro fungicide sensitivity assays of single-spore isolates were carried out. Reduced sensitivity phenotype to mefentrifluconazole was evident in Ptt isolates with a F489L mutation in CYP51A or with 129 bp insert in the Cyp51A gene-promoter region. However, sensitivity to a prothioconazole-desthio remained high regardless of these molecular changes. The Ptt population was mostly sensitive to bixafen, fluxapyroxad, pyraclostrobin, and azoxystrobin. The sensitivity of fluxapyroxad and bixafen has been affected by two mutations, C-S135R and D-H134R, found in SDH subunits. The F129L mutation in Cyt b influenced azoxystrobin but not pyraclostrobin sensitivity. In total, 30 isolates from five fields had relevant mutations in three target protein genes simultaneously. Most of these isolates had a reduced sensitivity phenotype to mefentrifluconazole, fluxapyroxad, and azoxystrobin, while sensitivity to other tested fungicides remained high. Furthermore, possible sexual reproduction may enhance the pathogen's fitness and help it adapt to fungicides.

11.
BMC Genomics ; 25(1): 347, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38580927

RESUMO

BACKGROUND: The ascomycete fungus Anisogramma anomala causes Eastern Filbert Blight (EFB) on hazelnut (Corylus spp.) trees. It is a minor disease on its native host, the American hazelnut (C. americana), but is highly destructive on the commercially important European hazelnut (C. avellana). In North America, EFB has historically limited commercial production of hazelnut to west of the Rocky Mountains. A. anomala is an obligately biotrophic fungus that has not been grown in continuous culture, rendering its study challenging. There is a 15-month latency before symptoms appear on infected hazelnut trees, and only a sexual reproductive stage has been observed. Here we report the sequencing, annotation, and characterization of its genome. RESULTS: The genome of A. anomala was assembled into 108 scaffolds totaling 342,498,352 nt with a GC content of 34.46%. Scaffold N50 was 33.3 Mb and L50 was 5. Nineteen scaffolds with lengths over 1 Mb constituted 99% of the assembly. Telomere sequences were identified on both ends of two scaffolds and on one end of another 10 scaffolds. Flow cytometry estimated the genome size of A. anomala at 370 Mb. The genome exhibits two-speed evolution, with 93% of the assembly as AT-rich regions (32.9% GC) and the other 7% as GC-rich (57.1% GC). The AT-rich regions consist predominantly of repeats with low gene content, while 90% of predicted protein coding genes were identified in GC-rich regions. Copia-like retrotransposons accounted for more than half of the genome. Evidence of repeat-induced point mutation (RIP) was identified throughout the AT-rich regions, and two copies of the rid gene and one of dim-2, the key genes in the RIP mutation pathway, were identified in the genome. Consistent with its homothallic sexual reproduction cycle, both MAT1-1 and MAT1-2 idiomorphs were found. We identified a large suite of genes likely involved in pathogenicity, including 614 carbohydrate active enzymes, 762 secreted proteins and 165 effectors. CONCLUSIONS: This study reveals the genomic structure, composition, and putative gene function of the important pathogen A. anomala. It provides insight into the molecular basis of the pathogen's life cycle and a solid foundation for studying EFB.


Assuntos
Ascomicetos , Corylus , Corylus/genética , Ascomicetos/genética , Fenótipo , Tamanho do Genoma
12.
Arch Microbiol ; 206(5): 225, 2024 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-38642078

RESUMO

Cordyceps militaris has been extensively cultivated as a model cordyceps species for commercial purposes. Nevertheless, the problems related to strain degeneration and breeding technologies remain unresolved. This study assessed the physiology and fertility traits of six C. militaris strains with distinct origins and characteristics, focusing on single mating-type strains. The results demonstrated that the three identified strains (CMDB01, CMSY01, and CMJB02) were single mating-type possessing only one mating-type gene (MAT1-1). In contrast, the other three strains (CMXF07, CMXF09, and CMMS05) were the dual mating type. The MAT1-1 strains sourced from CMDB01, CMSY01, and CMJB02 consistently produced sporocarps but failed to generate ascospores. However, when paired with MAT1-2 strains, the MAT1-1 strains with slender fruiting bodies and normal morphology were fertile. The hyphal growth rate of single mating-type strains (CMDB01, CMSY01, and CMJB02) typically surpassed that of dual mating-type strains (CMXF07, CMXF09, and CMMS05). The growth rates of MAT1-2 and MAT1-1 strains were proportional to their ratios, such that a single mating-type strain with a higher ratio exhibited an increased growth rate. As C. militaris matured, the adenosine content decreased. In summary, the C. militaris strains that consistently produce sporocarps and have a single mating type are highly promising for production and breeding.


Assuntos
Cordyceps , Cordyceps/genética , Genes Fúngicos Tipo Acasalamento , Melhoramento Vegetal , Adenosina , Esporos Fúngicos/genética
13.
DNA Res ; 31(3)2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38686638

RESUMO

Lodderomyces beijingensis is an ascosporic ascomycetous yeast. In contrast to related species Lodderomyces elongisporus, which is a recently emerging human pathogen, L. beijingensis is associated with insects. To provide an insight into its genetic makeup, we investigated the genome of its type strain, CBS 14171. We demonstrate that this yeast is diploid and describe the high contiguity nuclear genome assembly consisting of eight chromosome-sized contigs with a total size of about 15.1 Mbp. We find that the genome sequence contains multiple copies of the mating type loci and codes for essential components of the mating pheromone response pathway, however, the missing orthologs of several genes involved in the meiotic program raise questions about the mode of sexual reproduction. We also show that L. beijingensis genome codes for the 3-oxoadipate pathway enzymes, which allow the assimilation of protocatechuate. In contrast, the GAL gene cluster underwent a decay resulting in an inability of L. beijingensis to utilize galactose. Moreover, we find that the 56.5 kbp long mitochondrial DNA is structurally similar to known linear mitochondrial genomes terminating on both sides with covalently closed single-stranded hairpins. Finally, we discovered a new double-stranded RNA mycovirus from the Totiviridae family and characterized its genome sequence.


Assuntos
Cromossomos Fúngicos , Genes Fúngicos Tipo Acasalamento , Genoma Fúngico , Cromossomos Fúngicos/genética , Saccharomycetales/genética , Saccharomycetales/metabolismo
14.
Trends Genet ; 40(7): 564-579, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38677904

RESUMO

Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary drivers of this phenomenon remain a mystery. For decades, differences in trait optima between sexes (sexual antagonism) have been the favoured hypothesis, but convincing evidence is lacking. Recent years have seen a surge of alternative hypotheses to explain progressive extensions and maintenance of recombination suppression: neutral accumulation of sequence divergence, selection of nonrecombining fragments with fewer deleterious mutations than average, sheltering of recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage compensation, and constraints on recombination restoration. Here, we explain these recent hypotheses and dissect their assumptions, mechanisms, and predictions. We also review empirical studies that have brought support to the various hypotheses.


Assuntos
Recombinação Genética , Cromossomos Sexuais , Cromossomos Sexuais/genética , Animais , Humanos , Evolução Molecular , Masculino , Feminino , Seleção Genética/genética , Mutação , Mecanismo Genético de Compensação de Dose , Modelos Genéticos
15.
Semin Cell Dev Biol ; 163: 2-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38664119

RESUMO

Homing genetic elements are a form of selfish DNA that inserts into a specific target site in the genome and spreads through the population by a process of biased inheritance. Two well-known types of homing element, called inteins and homing introns, were discovered decades ago. In this review we describe WHO elements, a newly discovered type of homing element that constitutes a distinct third category but is rare, having been found only in a few yeast species so far. WHO elements are inferred to spread using the same molecular homing mechanism as inteins and introns: they encode a site-specific endonuclease that cleaves the genome at the target site, making a DNA break that is subsequently repaired by copying the element. For most WHO elements, the target site is in the glycolytic gene FBA1. WHO elements differ from inteins and homing introns in two fundamental ways: they do not interrupt their host gene (FBA1), and they occur in clusters. The clusters were formed by successive integrations of different WHO elements into the FBA1 locus, the result of an 'arms race' between the endonuclease and its target site. We also describe one family of WHO elements (WHO10) that is no longer specifically associated with the FBA1 locus and instead appears to have become transposable, inserting at random genomic sites in Torulaspora globosa with up to 26 copies per strain. The WHO family of elements is therefore at the borderline between homing genetic elements and transposable elements.


Assuntos
Elementos de DNA Transponíveis , Elementos de DNA Transponíveis/genética , Íntrons/genética , Sequências Repetitivas de Ácido Nucleico/genética
16.
Microbiol Res ; 283: 127691, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38492364

RESUMO

Saccharomycopsis species are natural organic sulphur auxotrophs. Their genomes do not encode genes for the uptake and assimilation of sulphate and thus these species cannot grow on media lacking e.g. methionine. Due to the similarity between sulphate and selenate, uptake and assimilation of selenate occurs through the same pathway starting from sulphate transporters encoded by the homologs of the SUL1 and SUL2 genes in S. cerevisiae. Lack of these transporters renders Saccharomycopsis species resistant to selenate levels that are toxic to other microorganisms. We used this feature to enrich environmental samples for Saccharomycopsis species. This led to the isolation of S. schoenii, S. lassenensis and a hitherto undescribed Saccharomycopsis species with limited by-catch of other yeasts, mainly belonging to Metschnikowia and Hanseniaspora. We performed growth and predation assays to characterize the potential of these new isolates as predacious yeasts. Most Saccharomycopsis species are temperature sensitive and cannot grow at 37°C; with the exception of S. lassenensis strains. Predation assays with S. schoenii and S. cerevisiae as prey indicated that predation was enhanced at 20°C compared to 30°C. We crossed an American isolate of S. schoenii with our German isolate using marker directed breeding. Viable progeny indicated that both strains are interfertile and belong to the same biological species. S. lassenensis is heterothallic, while S. schoenii and the new Saccharomycopsis isolate, for which we suggest the name S. geisenheimensis sp. nov., are homothallic.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomycopsis , Saccharomycopsis/genética , Saccharomyces cerevisiae/genética , Ácido Selênico/metabolismo , Transporte Biológico , Sulfatos , Transportadores de Sulfato/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte de Ânions/metabolismo
17.
J Agric Food Chem ; 72(17): 9915-9922, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38530934

RESUMO

Flammulina velutipes has two independent and functional mating type factors, HD and PR. The HD locus contains two separate subloci: HD-a and HD-b. In this study, we investigated the roles of Hd1 genes of the HD-a and HD-b subloci in the process of mating, clamp cell formation, and regulation of FvClp1 (F. velutipes clampless1 gene) gene expression in F. velutipes. To this end, we introduced Hd1 genes from mating compatible strains into F. velutipes monokaryon L11. Overexpression of Hd1 gene FvHd-a1-1 of the HD-a sublocus resulted in the formation of pseudoclamps in L11 monokaryons. L11 mutants overexpressing the Hd1 gene FvHd-b1-2 of the HD-b sublocus also similarly developed pseudoclamps in the L11 monokaryons. Moreover, these mutant L11 monokaryons produced complete clamps when crossed with monokaryotic strains that differed at the PR loci, i.e., when selective activation of the PR pathway was obtained through crossing. Thus, Hd1 genes of the two different HD subloci in F. velutipes can activate the HD mating type pathway and induce clamp cell formation. In addition, activation of the HD pathway resulted in upregulation of the FvClp1 gene. Finally, to complete clamp cell formation, activation of the PR pathway appears to be essential. Overall, these findings were beneficial for deepening our understanding of sexual reproduction and fruiting body development of edible fungi.


Assuntos
Flammulina , Proteínas Fúngicas , Regulação Fúngica da Expressão Gênica , Genes Fúngicos Tipo Acasalamento , Regulação para Cima , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Flammulina/genética , Flammulina/química , Flammulina/metabolismo , Genes Fúngicos Tipo Acasalamento/genética , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo
18.
Proc Natl Acad Sci U S A ; 121(13): e2315531121, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38498704

RESUMO

Mating type (sex) plays a crucial role in regulating sexual reproduction in most extant eukaryotes. One of the functions of mating types is ensuring self-incompatibility to some extent, thereby promoting genetic diversity. However, heterothallic mating is not always the best mating strategy. For example, in low-density populations or specific environments, such as parasitic ones, species may need to increase the ratio of potential mating partners. Consequently, many species allow homothallic selfing (i.e., self-fertility or intraclonal mating). Throughout the extensive evolutionary history of species, changes in environmental conditions have influenced mating strategies back and forth. However, the mechanisms through which mating-type recognition regulates sexual reproduction and the dynamics of mating strategy throughout evolution remain poorly understood. In this study, we show that the Cip1 protein is responsible for coupling sexual reproduction initiation to mating-type recognition in the protozoal eukaryote Tetrahymena thermophila. Deletion of the Cip1 protein leads to the loss of the selfing-avoidance function of mating-type recognition, resulting in selfing without mating-type recognition. Further experiments revealed that Cip1 is a regulatory subunit of the Cdk19-Cyc9 complex, which controls the initiation of sexual reproduction. These results reveal a mechanism that regulates the choice between mating and selfing. This mechanism also contributes to the debate about the ancestral state of sexual reproduction.


Assuntos
Fertilidade , Reprodução , Reprodução/genética , Eucariotos/genética , Genes Fúngicos Tipo Acasalamento
19.
Microorganisms ; 12(3)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38543639

RESUMO

The process of sexual reproduction in eukaryotes starts when gametes from two different sexes encounter each other. Paramecium, a unicellular eukaryote, undergoes conjugation and uses a gametic nucleus to enter the sexual reproductive process. The molecules responsible for recognizing mating partners, hypothetically called mating-type substances, are still unclear. We have identified an O3-type mating substance polypeptide and its gene sequence using protein chemistry, molecular genetics, immunofluorescence, RNA interference, and microinjection. The O3-type substance is a polypeptide found in the ciliary membranes, located from the head to the ventral side of cells. The O3-type substance has a kinase-like domain in its N-terminal part located outside the cell and four EF-hand motifs that bind calcium ions in its C-terminal part located inside the cell. RNA interference and immunofluorescence revealed that this polypeptide positively correlated with the expression of mating reactivity. Microinjection of an expression vector incorporating the O3Pc-MSP gene (Oms3) induced additional O3 mating type in the recipient clones of different mating types or syngen. Phylogenetic analysis indicates that this gene is widely present in eukaryotes and exhibits high homology among closely related species. The O3Pc-MSP (Oms3) gene had nine silent mutations compared to the complementary mating type of the E3 homologue gene.

20.
Antioxidants (Basel) ; 13(3)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38539819

RESUMO

Colorectal cancer is the most common cancer that affects both sexes and has a poor prognosis due to aggressiveness and chemoresistance. Essential oils isolated from Calocedrus formosana (CF-EOs) have been shown to demonstrate anti-termite, antifungal, anti-mosquito, and anti-microbial activities. However, the anticancer effects of CF-EOs are not yet fully understood. Therefore, the present study aimed to explore the molecular mechanism underlying CF-EOs-mediated anti-proliferative activity in colon cancer cells. Here, cell impedance measurements showed that CF-EOs inhibit proliferation in colon cancer cells with wild-type or mutant p53. Flow cytometry revealed that CF-EOs at 20, 50 µg/mL significantly induced ROS generation and autophagy in both HCT116 p53-wt and HCT116 p53-null cell lines, whereas pretreatment with the ROS scavenger N-acetyl cysteine (NAC) markedly attenuated these changes. CF-EOs also induced apoptosis at 50 µg/mL in both lines, as determined by flow cytometry. Protein analysis showed that CF-EOs markedly induced apoptosis markers, including Trail, cleaved caspase-3, cleaved caspase-9, and cleaved PARP, as well as autophagy markers, such as the levels of ULK1, Atg5, Atg6, Atg7, and the conversion of LC3-I to LC3-II. CF-EOs were further found to inhibit the activity and expression of the NAD+-dependent deacetylase SIRT1 to increase the levels of acetylated p53 (Ac-p53) in p53-wt cells and acetylated c-Myc (Ac-c-Myc) in p53-null cells, ultimately inducing apoptosis in both lines. Interestingly, suppression of SIRT1 by CF-EOs enhanced the acetylation of ULK1, which in turn prompted ROS-dependent autophagy in colon cancer cells. The induction of apoptosis and autophagy by CF-EOs suggests that they may have potential as a promising new approach for treating cancer. Collectively, our results suggest that essential oils isolated from Calocedrus formosana act as a promising anticancer agent against colon cancer cells by targeting SIRT1 to induce ROS-mediated autophagy and apoptosis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA