Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
1.
Int J Mol Sci ; 25(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000168

RESUMO

Amyotrophic lateral sclerosis (ALS) is an extremely complex neurodegenerative disease involving different cell types, but motoneuronal loss represents its main pathological feature. Moreover, compensatory plastic changes taking place in parallel to neurodegeneration are likely to affect the timing of ALS onset and progression and, interestingly, they might represent a promising target for disease-modifying treatments. Therefore, a simplified animal model mimicking motoneuronal loss without the other pathological aspects of ALS has been established by means of intramuscular injection of cholera toxin-B saporin (CTB-Sap), which is a targeted neurotoxin able to kill motoneurons by retrograde suicide transport. Previous studies employing the mouse CTB-Sap model have proven that spontaneous motor recovery is possible after a subtotal removal of a spinal motoneuronal pool. Although these kinds of plastic changes are not enough to counteract the functional effects of the progressive motoneuron degeneration, it would nevertheless represent a promising target for treatments aiming to postpone ALS onset and/or delay disease progression. Herein, the mouse CTB-Sap model has been used to test the efficacy of mitochondrial division inhibitor 1 (Mdivi-1) as a tool to counteract the CTB-Sap toxicity and/or to promote neuroplasticity. The homeostasis of mitochondrial fission/fusion dynamics is indeed important for cell integrity, and it could be affected during neurodegeneration. Lesioned mice were treated with Mdivi-1 and then examined by a series of behavioral test and histological analyses. The results have shown that the drug may be capable of reducing functional deficits after the lesion and promoting synaptic plasticity and neuroprotection, thus representing a putative translational approach for motoneuron disorders.


Assuntos
Esclerose Lateral Amiotrófica , Modelos Animais de Doenças , Dinâmica Mitocondrial , Neurônios Motores , Animais , Neurônios Motores/efeitos dos fármacos , Neurônios Motores/metabolismo , Neurônios Motores/patologia , Dinâmica Mitocondrial/efeitos dos fármacos , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Esclerose Lateral Amiotrófica/tratamento farmacológico , Esclerose Lateral Amiotrófica/patologia , Toxina da Cólera/metabolismo , Saporinas , Quinazolinonas/farmacologia , Plasticidade Neuronal/efeitos dos fármacos , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo
2.
Sci Rep ; 14(1): 14178, 2024 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-38898058

RESUMO

Increasing evidence supports the hypothesis that cancer progression is under mitochondrial control. Mitochondrial fission plays a pivotal role in the maintenance of cancer cell homeostasis. The inhibition of DRP1, the main regulator of mitochondrial fission, with the mitochondrial division inhibitor (mdivi-1) had been associated with cancer cell sensitivity to chemotherapeutics and decrease proliferation. Here, using breast cancer cells we find that mdivi-1 induces the detachment of the cells, leading to a bulk of floating cells that conserved their viability. Despite a decrease in their proliferative and clonogenic capabilities, these floating cells maintain the capacity to re-adhere upon re-seeding and retain their migratory and invasive potential. Interestingly, the cell detachment induced by mdivi-1 is independent of DRP1 but relies on inhibition of mitochondrial complex I. Furthermore, mdivi-1 induces cell detachment rely on glucose and the pentose phosphate pathway. Our data evidence a novel DRP1-independent effect of mdivi-1 in the attachment of cancer cells. The generation of floating viable cells restricts the use of mdivi-1 as a therapeutic agent and demonstrates that mdivi-1 effect on cancer cells are more complex than anticipated.


Assuntos
Neoplasias da Mama , Dinaminas , Matriz Extracelular , Dinâmica Mitocondrial , Quinazolinonas , Humanos , Dinaminas/metabolismo , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Neoplasias da Mama/tratamento farmacológico , Feminino , Matriz Extracelular/metabolismo , Matriz Extracelular/efeitos dos fármacos , Linhagem Celular Tumoral , Quinazolinonas/farmacologia , Dinâmica Mitocondrial/efeitos dos fármacos , Adesão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos
3.
Front Med ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833102

RESUMO

CD39 serves as a crucial biomarker for neoantigen-specific CD8+ T cells and is associated with antitumor activity and exhaustion. However, the relationship between CD39 expression levels and the function of chimeric antigen receptor T (CAR-T) cells remains controversial. This study aimed to investigate the role of CD39 in the functional performance of CAR-T cells against hepatocellular carcinoma (HCC) and explore the therapeutic potential of CD39 modulators, such as mitochondrial division inhibitor-1 (mdivi-1), or knockdown CD39 through short hairpin RNA. Our findings demonstrated that glypican-3-CAR-T cells with moderate CD39 expression exhibited a strong antitumor activity, while high and low levels of CD39 led to an impaired cellular function. Methods modulating the proportion of CD39 intermediate (CD39int)-phenotype CAR-T cells such as mdivi-1 and CD39 knockdown enhanced and impaired T cell function, respectively. The combination of mdivi-1 and CD39 knockdown in CAR-T cells yielded the highest proportion of infiltrated CD39int CAR-T cells and demonstrated a robust antitumor activity in vivo. In conclusion, this study revealed the crucial role of CD39 in CAR-T cell function, demonstrated the potential therapeutic efficacy of combining mdivi-1 with CD39 knockdown in HCC, and provided a novel treatment strategy for HCC patients in the field of cellular immunotherapy.

4.
Acta Pharmacol Sin ; 45(9): 1809-1820, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38750074

RESUMO

Hypoxia-ischemia (HI) is one of the main causes of neonatal brain injury. Mitophagy has been implicated in the degradation of damaged mitochondria and cell survival following neonatal brain HI injury. Pleckstrin homology-like domain family A member 1 (PHLDA1) plays vital roles in the progression of various disorders including the regulation of oxidative stress, the immune responses and apoptosis. In the present study we investigated the role of PHLDA1 in HI-induced neuronal injury and further explored the mechanisms underlying PHLDA1-regulated mitophagy in vivo and in vitro. HI model was established in newborn rats by ligation of the left common carotid artery plus exposure to an oxygen-deficient chamber with 8% O2 and 92% N2. In vitro studies were conducted in primary hippocampal neurons subjected to oxygen and glucose deprivation/-reoxygenation (OGD/R). We showed that the expression of PHLDA1 was significantly upregulated in the hippocampus of HI newborn rats and in OGD/R-treated primary neurons. Knockdown of PHLDA1 in neonatal rats via lentiviral vector not only significantly ameliorated HI-induced hippocampal neuronal injury but also markedly improved long-term cognitive function outcomes, whereas overexpression of PHLDA1 in neonatal rats via lentiviral vector aggravated these outcomes. PHLDA1 knockdown in primary neurons significantly reversed the reduction of cell viability and increase in intracellular reactive oxygen species (ROS) levels, and attenuated OGD-induced mitochondrial dysfunction, whereas overexpression of PHLDA1 decreased these parameters. In OGD/R-treated primary hippocampal neurons, we revealed that PHLDA1 knockdown enhanced mitophagy by activating FUNDC1, which was abolished by FUNDC1 knockdown or pretreatment with mitophagy inhibitor Mdivi-1 (25 µM). Notably, pretreatment with Mdivi-1 or the knockdown of FUNDC1 not only increased brain infarct volume, but also abolished the neuroprotective effect of PHLDA1 knockdown in HI newborn rats. Together, these results demonstrate that PHLDA1 contributes to neonatal HI-induced brain injury via inhibition of FUNDC1-mediated neuronal mitophagy.


Assuntos
Animais Recém-Nascidos , Hipocampo , Hipóxia-Isquemia Encefálica , Mitofagia , Neurônios , Ratos Sprague-Dawley , Animais , Masculino , Ratos , Sobrevivência Celular/fisiologia , Células Cultivadas , Hipocampo/metabolismo , Hipocampo/patologia , Hipóxia-Isquemia Encefálica/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Mitofagia/fisiologia , Neurônios/metabolismo , Espécies Reativas de Oxigênio/metabolismo
5.
J Cell Biochem ; 125(6): e30558, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38577900

RESUMO

The complex impacts of prolonged morphine exposure continue to be a significant focus in the expanding area of addiction studies. This research investigates the effectiveness of a combined treatment using Cabergoline and Mdivi-1 to counteract the neuroadaptive changes caused by in vitro morphine treatment. The impact of Methadone, Cabergoline, and a combination of Cabergoline and Mdivi-1 on the cellular and molecular responses associated with Morphine-induced changes was studied in human Neuroblastoma (SK-N-MC) and Glioblastoma (U87-MG) cell lines that were exposed to prolong Morphine treatment. Cabergoline and Mdivi-1 combined treatment effectively influenced the molecular alterations associated with neuroadaptation in chronic morphine-exposed neural cells. This combination therapy normalized autophagy and reduced oxidative stress by enhancing total-antioxidant capacity, mitigating apoptosis, restoring BDNF expression, and balancing apoptotic elements. Our research outlines morphine's dual role in modulating mitochondrial dynamics via the dysregulation of the autophagy-apoptosis axis. This emphasizes the significant involvement of DRP1 activity in neurological adaptation processes, as well as disturbances in the dopaminergic pathway during in vitro chronic exposure to morphine in neural cells. This study proposes a novel approach by recommending the potential effectiveness of combining Cabergoline and Mdivi-1 to modulate the neuroadaptations caused by morphine. Additionally, we identified BDNF and PCNA in neural cells as potential neuroprotective markers for assessing the effectiveness of drugs against opioid toxicity, emphasizing the need for further validation. The study uncovers diverse effects observed in pretreated morphine glioblastoma cells under treatment with Cabergoline and methadone. This highlights the potential for new treatments in the DRD2 pathway and underscores the importance of investigating the interplay between autophagy and apoptosis to advance research in managing cancer-related pain. The study necessitates an in-depth investigation into the relationship between autophagy and apoptosis, with a specific emphasis on protein interactions and the dynamics of cell signaling.


Assuntos
Apoptose , Autofagia , Cabergolina , Morfina , Quinazolinonas , Humanos , Autofagia/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Morfina/farmacologia , Cabergolina/farmacologia , Linhagem Celular Tumoral , Quinazolinonas/farmacologia , Estresse Oxidativo/efeitos dos fármacos , Dinâmica Mitocondrial/efeitos dos fármacos , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Fator Neurotrófico Derivado do Encéfalo/metabolismo
6.
Acta Pharmacol Sin ; 45(7): 1438-1450, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38565961

RESUMO

Angiogenesis plays a critical role in many pathological processes, including irreversible blindness in eye diseases such as retinopathy of prematurity. Endothelial mitochondria are dynamic organelles that undergo constant fusion and fission and are critical signalling hubs that modulate angiogenesis by coordinating reactive oxygen species (ROS) production and calcium signalling and metabolism. In this study, we investigated the role of mitochondrial dynamics in pathological retinal angiogenesis. We showed that treatment with vascular endothelial growth factor (VEGF; 20 ng/ml) induced mitochondrial fission in HUVECs by promoting the phosphorylation of dynamin-related protein 1 (DRP1). DRP1 knockdown or pretreatment with the DRP1 inhibitor Mdivi-1 (5 µM) blocked VEGF-induced cell migration, proliferation, and tube formation in HUVECs. We demonstrated that VEGF treatment increased mitochondrial ROS production in HUVECs, which was necessary for HIF-1α-dependent glycolysis, as well as proliferation, migration, and tube formation, and the inhibition of mitochondrial fission prevented VEGF-induced mitochondrial ROS production. In an oxygen-induced retinopathy (OIR) mouse model, we found that active DRP1 was highly expressed in endothelial cells in neovascular tufts. The administration of Mdivi-1 (10 mg·kg-1·d-1, i.p.) for three days from postnatal day (P) 13 until P15 significantly alleviated pathological angiogenesis in the retina. Our results suggest that targeting mitochondrial fission may be a therapeutic strategy for proliferative retinopathies and other diseases that are dependent on pathological angiogenesis.


Assuntos
Movimento Celular , Dinaminas , Células Endoteliais da Veia Umbilical Humana , Subunidade alfa do Fator 1 Induzível por Hipóxia , Camundongos Endogâmicos C57BL , Dinâmica Mitocondrial , Quinazolinonas , Espécies Reativas de Oxigênio , Neovascularização Retiniana , Fator A de Crescimento do Endotélio Vascular , Dinâmica Mitocondrial/efeitos dos fármacos , Animais , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Humanos , Espécies Reativas de Oxigênio/metabolismo , Dinaminas/metabolismo , Dinaminas/antagonistas & inibidores , Fator A de Crescimento do Endotélio Vascular/metabolismo , Quinazolinonas/farmacologia , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Neovascularização Retiniana/tratamento farmacológico , Movimento Celular/efeitos dos fármacos , Camundongos , Proliferação de Células/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/efeitos dos fármacos , Angiogênese
7.
Biochem Biophys Res Commun ; 710: 149886, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38581953

RESUMO

Mdivi-1, Mitochondrial DIVIsion inhibitor 1, has been widely employed in research under the assumption that it exclusively influences mitochondrial fusion, but effects other than mitochondrial dynamics have been underinvestigated. This paper provides transcriptome and DNA methylome-wide analysis for Mdivi-1 treated SH-SY5Y human neuroblastoma cells using RNA sequencing (RNA-seq) and methyl capture sequencing (MC-seq) methods. Gene ontology analysis of RNA sequences revealed that p53 transcriptional gene network and DNA replication initiation-related genes were significantly up and down-regulated, respectively, showing the correlation with the arrest cell cycle in the G1 phase. MC-seq, a powerful sequencing method for capturing DNA methylation status in CpG sites, revealed that although Mdivi-1 does not induce dramatic DNA methylation change, the subtle alterations were concentrated within the CpG island. Integrative analysis of both sequencing data disclosed that the p53 transcriptional network was activated while the Parkinson's disease pathway was halted. Next, we investigated several changes in mitochondria in response to Mdivi-1. Copy number and transcription of mitochondrial DNA were suppressed. ROS levels increased, and elevated ROS triggered mitochondrial retrograde signaling rather than inducing direct DNA damage. In this study, we could better understand the molecular network of Mdivi-1 by analyzing DNA methylation and mRNA transcription in the nucleus and further investigating various changes in mitochondria, providing inspiration for studying nuclear-mitochondrial communications.


Assuntos
Dinaminas , Neuroblastoma , Humanos , Dinaminas/metabolismo , Dinâmica Mitocondrial , Espécies Reativas de Oxigênio/metabolismo , Proteína Supressora de Tumor p53/genética , Quinazolinonas/farmacologia
8.
Atherosclerosis ; 390: 117450, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38266625

RESUMO

BACKGROUND AND AIMS: New treatments are needed to prevent neointimal hyperplasia that contributes to post-angioplasty and stent restenosis in patients with coronary artery disease (CAD) and peripheral arterial disease (PAD). We investigated whether modulating mitochondrial function using mitochondrial division inhibitor-1 (Mdivi-1) could reduce post-vascular injury neointimal hyperplasia by metabolic reprogramming of macrophages from a pro-inflammatory to anti-inflammatory phenotype. METHODS AND RESULTS: In vivo Mdivi-1 treatment of Apoe-/- mice fed a high-fat diet and subjected to carotid-wire injury decreased neointimal hyperplasia by 68%, reduced numbers of plaque vascular smooth muscle cells and pro-inflammatory M1-like macrophages, and decreased plaque inflammation, endothelial activation, and apoptosis, when compared to control. Mdivi-1 treatment of human THP-1 macrophages shifted polarization from a pro-inflammatory M1-like to an anti-inflammatory M2-like phenotype, reduced monocyte chemotaxis and migration to CCL2 and macrophage colony stimulating factor (M-CSF) and decreased secretion of pro-inflammatory mediators. Finally, treatment of pro-inflammatory M1-type-macrophages with Mdivi-1 metabolically reprogrammed them to an anti-inflammatory M2-like phenotype by inhibiting oxidative phosphorylation and attenuating the increase in succinate levels and correcting the decreased levels of arginine and citrulline. CONCLUSIONS: We report that treatment with Mdivi-1 inhibits post-vascular injury neointimal hyperplasia by metabolic reprogramming macrophages towards an anti-inflammatory phenotype thereby highlighting the therapeutic potential of Mdivi-1 for preventing neointimal hyperplasia and restenosis following angioplasty and stenting in CAD and PAD patients.


Assuntos
Quinazolinonas , Lesões do Sistema Vascular , Humanos , Camundongos , Animais , Hiperplasia/patologia , Lesões do Sistema Vascular/genética , Reprogramação Metabólica , Movimento Celular , Músculo Liso Vascular/patologia , Neointima/metabolismo , Anti-Inflamatórios/farmacologia , Modelos Animais de Doenças , Proliferação de Células
9.
J Proteome Res ; 23(1): 301-315, 2024 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-38064546

RESUMO

Mitochondrial division inhibitor 1 (Mdivi-1) is a well-known synthetic compound aimed at inhibiting dynamin-related protein 1 (Drp1) to suppress mitochondrial fission, making it a valuable tool for studying mitochondrial dynamics. However, its specific effects beyond Drp1 inhibition remain to be confirmed. In this study, we employed integrative proteomics and phosphoproteomics to delve into the molecular responses induced by Mdivi-1 in SK-N-BE(2)C cells. A total of 3070 proteins and 1945 phosphorylation sites were identified, with 880 of them represented as phosphoproteins. Among these, 266 proteins and 97 phosphorylation sites were found to be sensitive to the Mdivi-1 treatment. Functional enrichment analysis unveiled their involvement in serine biosynthesis and extrinsic apoptotic signaling pathways. Through targeted metabolomics, we observed that Mdivi-1 enhanced intracellular serine biosynthesis while reducing the production of C24:1-ceramide. Within these regulated phosphoproteins, dynamic dephosphorylation of proteasome subunit alpha type 3 serine 250 (PSMA3-S250) occurred after Mdivi-1 treatment. Further site-directed mutagenesis experiments revealed that the dephosphorylation-deficient mutant PSMA3-S250A exhibited a decreased cell survival. This research confirms that Mdivi-1's inhibition of mitochondrial division leads to various side effects, ultimately influencing cell survival, rather than solely targeting Drp1 inhibition.


Assuntos
Multiômica , Neuroblastoma , Humanos , Apoptose , Fosfoproteínas , Serina , Neuroblastoma/tratamento farmacológico , Neuroblastoma/genética
10.
J Gastroenterol Hepatol ; 38(12): 2215-2227, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37839851

RESUMO

BACKGROUND AND AIMS: Mitochondrial dysfunction plays a crucial role in the progression of non-alcoholic steatohepatitis (NASH). Mitochondrial division inhibitor 1 (Mdivi1) is a potential inhibitor of dynamin-related protein (Drp1) and mitochondrial fission. However, the therapeutic effect of Mdivi1 against NASH and its underlying molecular mechanisms remain unclear. METHODS: In this study, we established mouse models of NASH by inducing high-fat/high-cholesterol (HFHC) or methionine- and choline-deficient (MCD) diets and treated the animals with 5 mg/kg/day Mdivi1 or placebo. RESULTS: Treatment with Mdivi1 significantly alleviated diet-induced fatty liver phenotypes, including increased liver weight/body weight ratio, insulin resistance, hepatic lipid accumulation, steatohepatitis, and liver injury. Furthermore, Mdivi1 treatment suppressed HFHC or MCD diet-induced changes in the expression of genes related to lipid metabolism and inflammatory cytokines. Additionally, Mdivi1 reduced macrophage infiltration in the injured liver and promoted polarization of macrophages towards the M1 phenotype. At the molecular level, Mdivi1 attenuated mitochondrial fission by reducing Drp1 activation and expression, thereby decreasing mitochondrial reactive oxygen species accumulation and mitochondrial DNA damage. Moreover, Mdivi1-treated mice exhibited elevated levels of phosphorylated-c-Jun N-terminal kinase (p-JNK), mitochondrial fission factor (MFF), cleaved caspase 3 protein, and TUNEL-positive cell expression in the liver, suggesting that Mdivi1 might ameliorate mitochondrial dysfunction and reduce hepatocyte apoptosis by inhibiting the JNK/MFF pathway. CONCLUSION: Collectively, Mdivi1 protected against diet-induced NASH by restoring mitochondrial homeostasis and function, potentially through its inhibitory effect on the JNK/MFF pathway. Consequently, further investigation of Mdivi1 as a promising drug for NASH treatment is warranted.


Assuntos
Doenças Mitocondriais , Hepatopatia Gordurosa não Alcoólica , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/tratamento farmacológico , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Fígado/metabolismo , Citocinas/metabolismo , Mitocôndrias/metabolismo , Fatores de Transcrição/metabolismo , Colina/metabolismo , Dinaminas , Doenças Mitocondriais/metabolismo , Camundongos Endogâmicos C57BL , Metionina , Modelos Animais de Doenças
11.
Immun Inflamm Dis ; 11(9): e1002, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37773697

RESUMO

OBJECTIVE: Allergic rhinitis (AR) is a common allergic disorder, afflicting thousands of human beings. Aberrant mitochondrial dynamics are important pathological elements for various immune cell dysfunctions and allergic diseases. However, the connection between mitochondrial dynamics and AR remains poorly understood. This study aimed to determine whether mitochondrial dynamics influence the inflammatory response in AR. METHODS: In the present study, we established a murine model of AR by sensitization with ovalbumin (OVA). Then, we investigated the mitochondrial morphology in mice with AR by transmission electron microscopy and confocal fluorescence microscopy, and evaluated the role of Mdivi-1 (an inhibitor of mitochondrial fission) on allergic symptoms, inflammatory responses, allergic-related signals, and reactive oxygen species formation. RESULTS: There was a notable enhancement in mitochondrial fragmentation in the nasal mucosa of mice following OVA stimulation, whereas Mdivi-1 prevented aberrant mitochondrial morphology. Indeed, Mdivi-1 alleviated the rubbing and sneezing responses in OVA-sensitized mice. Compared with vehicle-treated ones, mice treated with Mdivi-1 exhibited a reduction in interleukin (IL)-4, IL-5, and specific IgE levels in both serum and nasal lavage fluid, and shown an amelioration in inflammatory response of nasal mucosa. Meanwhile, Mdivi-1 treatment was associated with a suppression in JAK2 and STAT6 activation and reactive oxygen species generation, which act as important signaling for allergic response. CONCLUSION: Our findings reveal mitochondrial dynamics modulate the allergic responses in AR. Mitochondrial dynamics may represent a promising target for the treatment of AR.


Assuntos
Dinâmica Mitocondrial , Rinite Alérgica , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Espécies Reativas de Oxigênio , Imunoglobulina E , Inflamação
12.
Int J Mol Sci ; 24(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37685862

RESUMO

Chilodonella hexasticha is a harmful parasitic ciliate that can cause severe damage to fish and high mortalities worldwide. Its congeneric species, C. uncinata, is a facultative parasite that not only can be free-living but also can parasitize on fish gills and fins. In this study, single-cell transcriptomes of these two species were assembled and characterized. Numerous enzymes related to energy metabolism and parasitic adaption were identified through annotation in the Non-Redundant (NR), Clusters of Orthologous Genes (COG), Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. The expression of isocitrate dehydrogenase (IDH), cytochrome c oxidase subunit 1 (Cox1) and ATP synthase F1, delta subunit (ATP5D) was up-regulated in C. hexasticha compared with C. uncinata. The oxidative phosphorylation process was also enriched in C. hexasticha. The main mitochondrial metabolic pathways in C. hexasticha were depicted and enzymes related to energy metabolism pathways were compared between these two species. More importantly, mitochondrial division inhibitor 1 (mdivi-1) proved to be very effective in killing both C. hexasticha and C. uncinata, which could be a novel drug for Chilodonellosis control. This study can help us better understand the energy metabolisms of C. hexasticha and C. uncinata and provide new insight into novel targets for chilodonellosis control. Meanwhile, the transcriptome data can also facilitate genomic studies of these two species in the future.


Assuntos
Cilióforos , Parasitos , Animais , Transcriptoma , Aclimatação , Perfilação da Expressão Gênica
13.
J Mol Endocrinol ; 71(3)2023 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-37522854

RESUMO

Placenta synthesizes hormones that play a vital role in adapting maternal physiology and supporting fetal growth. This study aimed to explore the link between progesterone, a key steroid hormone produced by placenta, and mitochondrial fission and protein kinase R through the use of chemical inhibition in trophoblasts subjected to endotoxin lipopolysaccharide and double-stranded RNA analog polyinosinic:polycytidylic acid stress. Expressions of protein kinase R, dynamin-related protein 1, mitochondrial fission protein 1, and heat shock protein 60 were determined by applying lipopolysaccharide and polyinosinic:polycytidylic acid to BeWo trophoblast cells. Next, cells were treated with protein kinase R inhibitor 2-aminopurine and mitochondrial division inhibitor 1 to examine changes in progesterone levels and expression levels of proteins and mRNAs involved in progesterone biosynthesis. Last, effect of 2-aminopurine on mitochondrial fission was determined by immunoblotting and quantitative PCR (qPCR). Mitochondrial structural changes were also examined by transmission electron microscopy. Lipopolysaccharide and polyinosinic:polycytidylic acid stimulation induced mitochondrial fission and activated protein kinase R but decreased heat shock protein 60 levels and progesterone synthesis. Chemical inhibition of mitochondrial fission elevated progesterone synthesis and protein and mRNA levels of genes involved in progesterone biosynthesis. Inhibition of protein kinase R with 2-aminopurine prevented lipopolysaccharide and polyinosinic:polycytidylic acid induced mitochondrial fission and increased progesterone biosynthesis. Use of chemical inhibitors to treat placental stress caused by pathogens has potential to stabilize the production of progesterone. The study reveals that inhibiting mitochondrial fragmentation and reducing activity of stress kinase protein kinase R in syncytiotrophoblasts leads to an increase in progesterone synthesis when exposed to lipopolysaccharide and polyinosinic:polycytidylic acid.


Assuntos
Placenta , Progesterona , Gravidez , Feminino , Humanos , Placenta/metabolismo , Progesterona/metabolismo , Dinâmica Mitocondrial/fisiologia , Lipopolissacarídeos/farmacologia , 2-Aminopurina/metabolismo , 2-Aminopurina/farmacologia , Chaperonina 60/metabolismo , Proteínas Quinases/metabolismo , Poli C/metabolismo , Poli C/farmacologia
14.
J Transl Med ; 21(1): 427, 2023 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-37386574

RESUMO

BACKGROUND: Inflammation and immune dysfunction with classically activated macrophages(M1) infiltration are important mechanisms in the progression of atherosclerosis (AS). Dynamin-related protein 1 (DRP1)-dependent mitochondrial fission is a novel target for alleviating inflammatory diseases. This study aimed to investigate the effects of DRP1 inhibitor Mdivi-1 on AS. METHODS: ApoE-/- mice were fed with a high-fat diet supplemented with or without Mdivi-1. RAW264.7 cells were stimulated by ox-LDL, pretreated with or without MCC950, Mito-TEMPO, or Mdivi-1. The burden of plaques and foam cell formation were determined using ORO staining. The blood lipid profles and inflammatory cytokines in serum were detected by commercial kits and ELISA, respectively. The mRNA expression of macrophage polarization markers, activation of NLRP3 and the phosphorylation state of DRP1 were detected. Mitochondrial reactive oxygen species (mito-ROS), mitochondrial staining, ATP level and mitochondrial membrane potential were detected by mito-SOX, MitoTracker, ATP determination kit and JC-1 staining, respectively. RESULTS: In vivo, Mdivi-1 reduced the plaque areas, M1 polarization, NLRP3 activation and DRP1 phosphorylation at Ser616. In vitro, oxidized low-density lipoprotein (ox-LDL) triggered M1 polarization, NLRP3 activation and abnormal accumulation of mito-ROS. MCC950 and Mito-TEMPO suppressed M1 polarization mediated foam cell formation. Mito-TEMPO significantly inhibited NLRP3 activation. In addition, Mdivi-1 reduced foam cells by inhibiting M1 polarization. The possible mechanisms responsible for the anti-atherosclerotic effects of Mdivi-1 on reducing M1 polarization were associated with suppressing mito-ROS/NLRP3 pathway by inhibiting DRP1 mediated mitochondrial fission. In vitro, similar results were observed by DRP1 knockdown. CONCLUSION: Inhibition of DRP1-dependent mitochondrial fission by Mdivi-1 alleviated atherogenesis via suppressing mito-ROS/NLRP3-mediated M1 polarization, indicating DRP1-dependent mitochondrial fission as a potential therapeutic target for AS.


Assuntos
Aterosclerose , Indenos , Animais , Camundongos , Dinâmica Mitocondrial , Proteína 3 que Contém Domínio de Pirina da Família NLR , Espécies Reativas de Oxigênio , Aterosclerose/tratamento farmacológico , Dinaminas , Furanos , Trifosfato de Adenosina
15.
Mol Neurobiol ; 60(9): 5426-5449, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37314656

RESUMO

Memory loss, often known as amnesia, is common in the elderly population and refers to forgetting facts and experiences. It is associated with increased mitochondrial fragmentation, though the contribution of mitochondrial dynamics in amnesia is poorly understood. Therefore, the present study is aimed at elucidating the role of Mdivi-1 in mitochondrial dynamics, hippocampal plasticity, and memory during scopolamine (SC)-induced amnesia. The findings imply that Mdivi-1 significantly increased the expression of Arc and BDNF proteins in the hippocampus of SC-induced amnesic mice, validating improved recognition and spatial memory. Moreover, an improved mitochondrial ultrastructure was attributed to a decline in the percentage of fragmented and spherical-shaped mitochondria after Mdivi-1 treatment in SC-induced mice. The significant downregulation of p-Drp1 (S616) protein and upregulation of Mfn2, LC3BI, and LC3BII proteins in Mdivi-1-treated SC-induced mice indicated a decline in fragmented mitochondrial number and healthy mitochondrial dynamics. Mdivi-1 treatment alleviated ROS production and Caspase-3 activity and elevated mitochondrial membrane potential, Vdac1 expression, ATP production, and myelination, resulting in reduced neurodegeneration in SC mice. Furthermore, the decline of pro-apoptotic protein cytochrome-c and increase of anti-apoptotic proteins Procaspase-9 and Bcl-2 in Mdivi-1-treated SC-induced mice suggested improved neuronal health. Mdivi-1 also increased the dendritic arborization and spine density, which was further corroborated by increased expression of synaptophysin and PSD95. In conclusion, the current study suggests that Mdivi-1 treatment improves mitochondrial ultrastructure and function through the regulation of mitochondrial dynamics. These changes further improve neuronal cell density, myelination, dendritic arborization, and spine density, decrease neurodegeneration, and improve recognition and spatial memory. Schematic presentation depicts that Mdivi-1 rescues memory decline in scopolamine-induced amnesic male mice by ameliorating mitochondrial dynamics and hippocampal plasticity.


Assuntos
Dinâmica Mitocondrial , Escopolamina , Idoso , Camundongos , Masculino , Humanos , Animais , Amnésia/induzido quimicamente , Hipocampo/metabolismo , Quinazolinonas/farmacologia
16.
Biochim Biophys Acta Mol Basis Dis ; 1869(7): 166794, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37356737

RESUMO

N-myc downstream regulated gene 1 (NDRG1) has recently drawn increasing attention because of its involvement in angiogenesis, cell proliferation, and differentiation. We used in vitro [human pulmonary artery smooth muscle cells (hPASMCs)] and in vivo (rat) models under hypoxic conditions and found a vital role of NDRG1 in reducing apoptosis and increasing proliferation and migration by overexpressing and knocking down NDRG1. We also proved that hypoxia induced the protein expression of dynamin-related protein 1 (DRP1) and stimulated The phosphatidylinositol-3-kinase (PI3K)/ Protein kinase B (Akt)/mammalian target of rapamycin (mTOR) pathways, and these effects were reversed by NDRG1 knockdown. The relationship between NDRG1 and DRP1 and the PI3K/Akt/mTOR pathway was further evaluated by adding mdivi-1 (DRP1 inhibitor) or LY294002 (PI3K inhibitor). NDRG1 was found to regulate the proliferation, apoptosis, and migration of hypoxia-treated hPASMCs via DRP1 and PI3K/Akt/mTOR signaling pathways. We explored the upstream regulators of NDRG1 using in vivo and in vitro hypoxia models. Hypoxia was found to upregulate and downregulate KLF transcription factor 4 (KLF4) protein expression in the cytoplasm and nucleus, respectively. Further, we showed that KLF4 regulated the proliferation and migration of hypoxia-treated hPASMCs via NDRG1. These results indicated a link between KLF4, NDRG1, and DRP1 for the first time, providing new ideas for treating hypoxic pulmonary hypertension.


Assuntos
Hipertensão Pulmonar , Animais , Humanos , Ratos , Hipóxia Celular/fisiologia , Dinaminas/metabolismo , Hipertensão Pulmonar/genética , Hipertensão Pulmonar/metabolismo , Hipóxia/complicações , Hipóxia/genética , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinases TOR/metabolismo
17.
Adv Biol (Weinh) ; 7(7): e2300024, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37104841

RESUMO

It is found that a hot environment aggravates hemorrhagic shock-induced internal environment and organ dysfunction. Meanwhile mitochondria show over-fission. Whether inhibition of mitochondrial fission benefits from the early treatment of hemorrhagic shock under a hot environment is unclear. An uncontrolled hemorrhagic shock model in rats is used, and the effects of mitochondrial fission inhibitor mdivi-1 on mitochondrial function, organ function, and survival rate of rats are measured. The results show that 0.1-3 mg/kg mdivi-1 antagonizes hemorrhagic shock-induced mitochondrial fragment. In addition, mdivi-1 improves mitochondrial function, and alleviates hemorrhagic shock-induced oxidative stress and inflammation under a hot environment. Further studies show that 0.1-3 mg/kg Mdivi-1 reduces blood loss, and maintains a mean artery pressure (MAP) of 50-60 mmHg before bleeding-stops after hemorrhagic shock, compared with single Lactate Ringer's (LR) resuscitation. Notably, 1 mg/kg of Mdivi-1 extends the time of hypotensive resuscitation to 2-3 h. During 1 or 2 h of ligation, Mdivi-1 prolongs survival time and protects vital organ function by rescuing mitochondrial morphology and improving mitochondrial function. These results suggest Mdivi-1 is suitable for the early treatment of hemorrhagic shock under a hot environment and can extend the golden treatment time to 2-3 hour for hemorrhagic shock under a hot environment.


Assuntos
Choque Hemorrágico , Ratos , Animais , Choque Hemorrágico/tratamento farmacológico , Choque Hemorrágico/metabolismo , Mitocôndrias/metabolismo , Hemorragia/metabolismo , Estresse Oxidativo
18.
Life Sci ; 315: 121333, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36608867

RESUMO

AIMS: Mdivi-1 (Md-1) is a well-known inhibitor of mitochondrial fission and mitophagy. The mitochondrial superoxide scavenger Mito-TEMPO (MT) exerts positive effects on the developmental competence of pig embryos. This study aimed to explore the adverse effects of Md-1 on developmental capacity in porcine embryos and the protective effects of MT against Md-1-induced injury. MAIN METHODS: We exposed porcine embryos to Md-1 (10 and 50 µM) for 2 days after in vitro fertilization (IVF). MT (0.1 µM) treatment was applied for 4 days after exposing embryos to Md-1. We assessed blastocyst development, DNA damage, mitochondrial superoxide production, and mitochondrial distribution using TUNEL assay, Mito-SOX, and Mito-tracker, respectively. Subsequently, the expression of PINK1, DRP1, and p-DRP1Ser616 was evaluated via immunofluorescence staining and Western blot analysis. KEY FINDINGS: Md-1 compromised the developmental competence of blastocysts. Apoptosis and mitochondrial superoxide production were significantly upregulated in 50 µM Md-1-treated embryos, accompanied by a downregulation of p-DRP1Ser616, PINK1, and LC3B levels and lower mitophagy activity at the blastocyst stage. We confirmed the protective effects of MT against the detrimental effect of Md-1 on blastocyst developmental competence, mitochondrial fission, and DRP1/PINK1-mediated mitophagy activation. Eventually, MT recovered DRP1/PINK1-mediated mitophagy and mitochondrial fission by inhibiting superoxide production in Md-1-treated embryos. SIGNIFICANCE: MT protects against detrimental effects of Md-1 on porcine embryos by suppressing superoxide production. These findings expand available scientific knowledge on improving outcomes of IVF.


Assuntos
Mitofagia , Superóxidos , Suínos , Animais , Superóxidos/metabolismo , Dinâmica Mitocondrial , Apoptose , Blastocisto/metabolismo , Mitomicina/farmacologia , Proteínas Quinases/metabolismo , Dinaminas/metabolismo
19.
Pharm Biol ; 61(1): 249-258, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36655341

RESUMO

CONTEXT: Chaihu Shugan San (CHSGS) was effective in the treatment of functional dyspepsia (FD). OBJECTIVE: To investigate the mechanism of CHSGS in FD through dynamin-related protein 1 (Drp-1)-mediated interstitial cells of cajal (ICC) mitophagy. MATERIALS AND METHODS: Forty Sprague-Dawley (SD) rats were randomly divided into control, model, mdivi-1, mdivi-1 + CHSGS and CHSGS groups. Tail-clamping stimulation was used to establish the FD model. Mdivi-1 + CHSGS and CHSGS groups were given CHSGS aqueous solution (4.8 g/kg) by gavage twice a day. Mdivi-1 (25 mg/kg) was injected intraperitoneally once every other week for 4 w. Mitochondrial damage was observed by corresponding kits and related protein expressions were assessed by Immunofluorescence and (or) Western Blot. RESULTS: Compared with the mean value of the control group, superoxide dismutase (SOD) and citrate synthase (CS) in the model group were decreased by 11% and 35%; malondialdehyde (MDA) and reactive oxygen species (ROS) were increased by 1.2- and 2.8-times; ckit fluorescence and protein expressions were decreased by 85% and 51%, co-localization expression of LC3 and voltage dependent anion channel 1 (VDAC1), Drp-1 and translocase of the outer mitochondrial membrane 20 (Tom20) were increased by 10.1- and 5.4-times; protein expressions of Drp-1, Beclin-1, and LC3 were increased by 0.5-, 1.4-, and 2.5-times whereas p62 was decreased by 43%. After mdivi-1 and (or) CHSGS intervention, the above situation has been improved. DISCUSSION AND CONCLUSION: CHSGS could improve mitochondrial damage and promote gastric motility in FD rats by regulating Drp-1-mediated ICC mitophagy.


Assuntos
Dispepsia , Células Intersticiais de Cajal , Animais , Ratos , Dispepsia/tratamento farmacológico , Dispepsia/metabolismo , Células Intersticiais de Cajal/metabolismo , Mitofagia , Ratos Sprague-Dawley
20.
Toxicol In Vitro ; 88: 105552, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36621616

RESUMO

Excessively fragmented mitochondria have been reported in thyroid cancer (TC). Mitochondrial division inhibitor (mdivi-1), a putative inhibitor of dynamin-related protein 1 (Drp1), prevents mitochondrial fission and thereby restricts cell proliferation across several types of primary cancer. However, the role of mdivi-1 on TC has not been sufficiently studied. This research is intended to explore the therapeutic effect of mdivi-1 in TC cells. Results demonstrated that highly invasive TC cells displayed excessive mitochondrial fission with more fragmented mitochondria. Treatment with mdivi-1 inhibited mitochondrial fission in 8505C cells as indicated by transmission electron microscope (TEM). It also impaired the proliferation and increased apoptosis in 8505C and K1 cells as shown by plate cloning assay, cell viability assay, and apoptosis assay. Mdivi-1 treatment also attenuated migratory and invasive abilities in 8505C and K1 cells as shown by the transwell assay and the wound healing assay. And we noticed the same inhibition of mdivi-1 in cell migration and cell viability after the knockdown of Drp1 in 8505C cells. This demonstrated that mdivi-1 exerted an anti-tumor effect independently of Drp1 in 8505C cells. Moreover, mdivi-1 treatment reversed epithelial-mesenchymal transition (EMT) by inhibiting the NF-κB pathway in 8505C cells. The present findings demonstrate that mdivi-1 has a therapeutic role in thyroid carcinoma.


Assuntos
Transição Epitelial-Mesenquimal , NF-kappa B , Neoplasias da Glândula Tireoide , Humanos , Apoptose , Proliferação de Células/efeitos dos fármacos , Transição Epitelial-Mesenquimal/efeitos dos fármacos , Dinâmica Mitocondrial , NF-kappa B/metabolismo , Neoplasias da Glândula Tireoide/tratamento farmacológico , Neoplasias da Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA