Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39273113

RESUMO

Sodium tungstate (Na2WO4) normalizes glucose metabolism in the liver and muscle, activating the Mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway. Because this pathway controls neuronal survival and differentiation, we investigated the effects of Na2WO4 in mouse Neuro2a and human SH-SY5Y neuroblastoma monolayer cell cultures. Na2WO4 promotes differentiation to cholinergic neurites via an increased G1/G0 cell cycle in response to the synergic activation of the Phosphatidylinositol 3-kinase (PI3K/Akt) and ERK1/2 signaling pathways. In Neuro2a cells, Na2WO4 increases protein synthesis by activating the mechanistic target of rapamycin (mTOR) and S6K kinases and GLUT3-mediated glucose uptake, providing the energy and protein synthesis needed for neurite outgrowth. Furthermore, Na2WO4 increased the expression of myocyte enhancer factor 2D (MEF2D), a member of a family of transcription factors involved in neuronal survival and plasticity, through a post-translational mechanism that increases its half-life. Site-directed mutations of residues involved in the sumoylation of the protein abrogated the positive effects of Na2WO4 on the MEF2D-dependent transcriptional activity. In addition, the neuroprotective effects of Na2WO4 were evaluated in the presence of advanced glycation end products (AGEs). AGEs diminished neurite differentiation owing to a reduction in the G1/G0 cell cycle, concomitant with lower expression of MEF2D and the GLUT3 transporter. These negative effects were corrected in both cell lines after incubation with Na2WO4. These findings support the role of Na2WO4 in neuronal plasticity, albeit further experiments using 3D cultures, and animal models will be needed to validate the therapeutic potential of the compound.


Assuntos
Crescimento Neuronal , Fármacos Neuroprotetores , Compostos de Tungstênio , Humanos , Crescimento Neuronal/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Compostos de Tungstênio/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Neuroproteção/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Fosfatidilinositol 3-Quinases/metabolismo , Neuritos/metabolismo , Neuritos/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/efeitos dos fármacos
2.
J Therm Biol ; 119: 103801, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38310810

RESUMO

Skeletal muscle is a highly plastic tissue. The role of heat shock protein 72 (Hsp72) in heat stress-induced skeletal muscle hypertrophy has been well demonstrated; however, the precise mechanisms remain unclear. Essential amino acids, such as leucine, mainly mediate muscle protein synthesis. We investigated the effects of pre-heating and increased Hsp72 expression on the mechanistic target of rapamycin (mTOR) signaling and protein synthesis following leucine administration in rat gastrocnemius muscle. To ensure increased Hsp72 expression in both the red and white portions of the muscle, one leg of male Wistar rats (10-week-old, n = 23) was heat-stressed in 43 °C water for 30 min twice at a 48-h-interval (heat-stressed leg, HS leg). The contralateral leg served as a non-heated internal control (CT leg). After the recovery period (48 h), rats were divided into the pre-administration or oral leucine administration groups. We harvested the gastrocnemius muscle (red and white parts) prior to administration and 30 and 90 min after leucine treatment (n = 7-8 per group) and intramuscular signaling responses to leucine ingestion were determined using western blotting. Heat stress significantly upregulated the expression of Hsp72 and was not altered by leucine administration. Although the phosphorylation levels of mTOR/S6K1 and ERK were similar regardless of heating, 4E-BP1 was less phosphorylated in the HS legs than the CT legs after leucine administration in the red portion of the muscles (P < 0.05). Moreover, c-Myc expression differed significantly after leucine administration in both the red and white portions of the muscles. Our findings indicate that following oral leucine administration, pre-heating partially blunted the muscle protein synthesis signaling response in the rat gastrocnemius muscle.


Assuntos
Calefação , Transdução de Sinais , Ratos , Masculino , Animais , Leucina/farmacologia , Ratos Sprague-Dawley , Ratos Wistar , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/farmacologia , Músculo Esquelético/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/farmacologia , Suplementos Nutricionais
3.
Biomolecules ; 14(2)2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38397384

RESUMO

Fibrodysplasia ossificans progressiva (FOP; MIM# 135100) is an ultra-rare congenital disorder caused by gain-of-function point mutations in the Activin receptor A type I (ACVR1, also known as ALK2) gene. FOP is characterized by episodic heterotopic ossification (HO) in skeletal muscles, tendons, ligaments, or other soft tissues that progressively causes irreversible loss of mobility. FOP mutations cause mild ligand-independent constitutive activation as well as ligand-dependent bone morphogenetic protein (BMP) pathway hypersensitivity of mutant ACVR1. BMP signaling is also a key pathway for mediating acquired HO. However, HO is a highly complex biological process involving multiple interacting signaling pathways. Among them, the hypoxia-inducible factor (HIF) and mechanistic target of rapamycin (mTOR) pathways are intimately involved in both genetic and acquired HO formation. HIF-1α inhibition or mTOR inhibition reduces HO formation in mouse models of FOP or acquired HO in part by de-amplifying the BMP pathway signaling. Here, we review the recent progress on the mechanisms of the HIF-1α and mTOR pathways in the amplification of HO lesions and discuss the future directions and strategies to translate the targeting of HIF-1α and the mTOR pathways into clinical interventions for FOP and other forms of HO.


Assuntos
Subunidade alfa do Fator 1 Induzível por Hipóxia , Miosite Ossificante , Ossificação Heterotópica , Serina-Treonina Quinases TOR , Animais , Camundongos , Ligantes , Mutação , Miosite Ossificante/genética , Miosite Ossificante/metabolismo , Ossificação Heterotópica/genética , Ossificação Heterotópica/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
4.
Cell Commun Signal ; 21(1): 223, 2023 08 25.
Artigo em Inglês | MEDLINE | ID: mdl-37626304

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is one of the most intractable malignancies to overcome clinically due to its insidious onset as well as rapid progression. It is urgent to seek new diagnostic markers and therapeutic targets in order to furthest ameliorate the prognosis of patients with PDAC. V-set and immunoglobulin domain containing 2 (VSIG2) belongs to immunoglobulin superfamily (IgSF), which function as coinhibitory molecule to mediate immune evasion of tumors. Nevertheless, the role of VSIG2 in PDAC and related mechanism still keep unclear. METHODS: Different expression of VSIG2 in PDAC tissues and cells were detected by bioinformatic analysis, immunohistochemistry, real-time quantitative PCR as well as western blotting. CCK-8, colony formation, Transwell assay, and scratch experiment were utilized to assess proliferation, invasion and migration properties of PDAC cells. The relationship of VSIG2 with late endosomal/lysosomal adaptor, MAPK and MTOR activator 2 (LAMTOR2) and mechanistic target of rapamycin (mTOR) was identified using mass spectrometry, co-immunoprecipitation and immunofluorescence. GO and KEGG enrichment analysis were performed for further pathway verification using western blotting. Additionally, subcutaneous xenograft tumor model and clinical samples analysis were implemented to further elucidate the oncogenic effect of VSIG2 on PDAC in vivo and clinically. RESULTS: VSIG2 was highly expressed in PDAC tissues and cells. Overexpression of VSIG2 facilitated the proliferation, invasion and migration abilities of PDAC cells, while VSIG2-inhibition exerted opposite effects. Mechanistically, VSIG2 could simultaneously bind to LAMTOR2 and mTOR, thereby enhancing interaction between two molecules, which resulted in elevated phosphorylation-modificatory activation of mTOR and downstream key molecules. Clinically, up-regulation of VSIG2 was positively associated with advanced stage, overall survival and disease-free survival of PDAC patients. CONCLUSIONS: Our study disclosed that VSIG2 was overexpressed in PDAC, which promoted the proliferation, invasion and metastasis. Mechanically, VSIG2 acted as a scaffold to recruit LAMTOR2 and mTOR simultaneously, stabilize the interaction between them, thus enhancing LAMTOR2-mediated mTOR phosphorylated activation. Collectively, VSIG2 could be exploited as a biomarker for diagnosis and prognosis monitor of PDAC in the future, meanwhile, targeting VSIG2 in PDAC management is expected to be a novel strategy. Video Abstract. Video Abstract.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Humanos , Bioensaio , Biologia Computacional , Modelos Animais de Doenças , Neoplasias Pancreáticas
5.
Biomolecules ; 13(5)2023 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-37238686

RESUMO

It is estimated that, at minimum, 500 million individuals suffer from cellular metabolic dysfunction, such as diabetes mellitus (DM), throughout the world. Even more concerning is the knowledge that metabolic disease is intimately tied to neurodegenerative disorders, affecting both the central and peripheral nervous systems as well as leading to dementia, the seventh leading cause of death. New and innovative therapeutic strategies that address cellular metabolism, apoptosis, autophagy, and pyroptosis, the mechanistic target of rapamycin (mTOR), AMP activated protein kinase (AMPK), growth factor signaling with erythropoietin (EPO), and risk factors such as the apolipoprotein E (APOE-ε4) gene and coronavirus disease 2019 (COVID-19) can offer valuable insights for the clinical care and treatment of neurodegenerative disorders impacted by cellular metabolic disease. Critical insight into and modulation of these complex pathways are required since mTOR signaling pathways, such as AMPK activation, can improve memory retention in Alzheimer's disease (AD) and DM, promote healthy aging, facilitate clearance of ß-amyloid (Aß) and tau in the brain, and control inflammation, but also may lead to cognitive loss and long-COVID syndrome through mechanisms that can include oxidative stress, mitochondrial dysfunction, cytokine release, and APOE-ε4 if pathways such as autophagy and other mechanisms of programmed cell death are left unchecked.


Assuntos
Doença de Alzheimer , COVID-19 , Diabetes Mellitus , Doenças Metabólicas , Doenças Neurodegenerativas , Humanos , Proteínas Quinases Ativadas por AMP/metabolismo , Síndrome de COVID-19 Pós-Aguda , Serina-Treonina Quinases TOR/metabolismo , Doença de Alzheimer/metabolismo , Doenças Neurodegenerativas/metabolismo , Encéfalo/metabolismo
6.
Eur J Med Chem ; 248: 115038, 2023 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-36634458

RESUMO

Upregulation of mechanistic target of rapamycin (mTOR) signaling drives various types of cancers and neurological diseases. Rapamycin and its analogues (rapalogs) are first generation mTOR inhibitors, and selectively block mTOR complex 1 (TORC1) by an allosteric mechanism. In contrast, second generation ATP-binding site inhibitors of mTOR kinase (TORKi) target both TORC1 and TORC2. Here, we explore 3,6-dihydro-2H-pyran (DHP) and tetrahydro-2H-pyran (THP) as isosteres of the morpholine moiety to unlock a novel chemical space for TORKi generation. A library of DHP- and THP-substituted triazines was prepared, and molecular modelling provided a rational for a structure activity relationship study. Finally, compound 11b [5-(4-(3-oxa-8-azabicyclo[3.2.1]octan-8-yl)-6-(tetrahydro-2H-pyran-4-yl)-1,3,5-triazin-2-yl)-4-(difluoromethyl)pyridin-2-amine] was selected due its potency and selectivity for mTOR kinase over the structurally related class I phosphoinositide 3-kinases (PI3Ks) isoforms. 11b displayed high metabolic stability towards CYP1A1 degradation, which is of advantage in drug development. After oral administration to male Sprague Dawley rats, 11b reached high concentrations both in plasma and brain, revealing an excellent oral bioavailability. In a metabolic stability assay using human hepatocytes, 11b was more stable than PQR620, the first-in-class brain penetrant TORKi. Compound 11b also displayed dose-dependent anti-proliferative activity in splenic marginal zone lymphoma (SMZL) cell lines as single agent and when combined with BCL2 inhibition (venetoclax). Our results identify the THP-substituted triazine core as a novel scaffold for the development of metabolically stable TORKi for the treatment of chronic diseases and cancers driven by mTOR deregulation and requiring drug distribution also to the central nervous system.


Assuntos
Neoplasias , Serina-Treonina Quinases TOR , Ratos , Animais , Masculino , Humanos , Ratos Sprague-Dawley , Serina-Treonina Quinases TOR/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Morfolinas/farmacologia , Morfolinas/química , Sirolimo/farmacologia , Sirolimo/uso terapêutico , Neoplasias/tratamento farmacológico , Piranos/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
7.
Chem Pharm Bull (Tokyo) ; 71(2): 120-128, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36436947

RESUMO

Mechanistic target of rapamycin (mTOR) is an effective anti-tumor drug target. Several mTOR kinase inhibitors have entered clinical research, but there are still challenges of potential toxicity. As a new type of targeted drug, proteolysis targeting chimeras (PROTACs) have features of low dosage and low toxicity. However, this approach has been rarely reported to involve mTOR degradation. In this study, the mTOR kinase inhibitor MLN0128 was used as the ligand to the protein of interest and conjugated with pomalidomide by diverse intermediate linkage chains. Several potential small molecule PROTACs for the degradation of mTOR were designed and synthesized. PROTAC compounds exhibited mTOR inhibitory activity and suppressed MCF-7 cell proliferation. The representative compound P1 could inhibit the expression of mTOR downstream proteins and the growth of cancer cells by inducing autophagy but not affecting the cell cycle and not inducing apoptosis.


Assuntos
Inibidores de Proteínas Quinases , Sirolimo , Humanos , Sirolimo/farmacologia , Proteólise , Inibidores de Proteínas Quinases/farmacologia , Serina-Treonina Quinases TOR/metabolismo
8.
Mol Med ; 28(1): 147, 2022 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-36476132

RESUMO

BACKGROUND: Deregulated autophagy in diabetes has been a field of many experimental studies recently. Impaired autophagy in diabetic kidneys orchestrates every step of diabetic nephropathy (DN) pathogenesis. This study aimed to evaluate three autophagy regulators; RUBCN, mTOR, and SESN2 as clinically applicable indicators of DN progression and as early predictors of DN. METHODS: This retrospective study included 120 participants in 4 groups; G1: diabetic patients without albuminuria, G2: diabetic patients with microalbuminuria, G3: diabetic patients with macroalbuminuria and G4: healthy controls. RUBCN and SESN2 genes expression were tested by RT-qPCR. RUBCN, mTOR, and SESN2 serum proteins were quantitated by ELISA. RESULTS: RUBCN mRNA was over-expressed in diabetic patients relative to controls with the highest level found in G3 followed by G2 then G1; (9.04 ± 0.64, 5.18 ± 0.73, 1.94 ± 0.41 respectively. P < 0.001). SESN2 mRNA expression was at its lowest level in G3 followed by G2 then G1 (0.1 ± 0.06, 0.48 ± 0.11, 0.78 ± 0.13 respectively. P < 0.001). Similar parallel reduction in serum SENS2 was observed. Serum RUBCN and mTOR were significantly elevated in diabetic patients compared to controls, with the increase parallel to albuminuria degree. RUBCN expression, serum RUBCN and mTOR strongly correlated with albuminuria (r = 0.912, 0.925 and 0.867 respectively). SESN2 expression and serum level negatively correlated with albuminuria (r = - 0.897 and -0.828 respectively); (All p < 0.001). Regression analysis showed that serum RUBCN, mTOR, RUBCN and SESN2 mRNAs could successfully predict DN. CONCLUSIONS: The study proves the overexpression of RUBCN and mTOR in DN and the down-expression of SESN2. The three markers can be clinically used to predict DN and to monitor disease progression.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Humanos , Nefropatias Diabéticas/diagnóstico , Estudos Retrospectivos , Autofagia , RNA Mensageiro/genética , Sestrinas
9.
Clin Immunol ; 245: 109141, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36270469

RESUMO

Myasthenia gravis (MG) is a T-cell-dependent, antibody-mediated autoimmune disease. Diabetes mellitus (DM) is a chronic metabolic disease characterized by hyperglycemia and emerging evidence indicates its profound impacts on the immune homeostasis. Previous studies and our data showed DM might serve as an independent risk factor of MG, yet the underlying immune and molecular mechanisms remain to be addressed. Our study observed that circulating Tfh (cTfh) cells were increased in MG patients with DM and expressed a high level of ICOS. Besides, positive correlations between activated cTfh cells and plasmablasts were documented. Further studies demonstrated hyperglycemia promoted the differentiation and activation of Tfh cells which, in turn, caused abnormal plasmablasts differentiation and antibody secretion through the mTOR signaling pathway. These results indicated DM might aggravate the aberrant humoral immunity in MG patients by augmenting Tfh cells differentiation and function and tight glycemic control might be beneficial for MG patients with DM.


Assuntos
Diabetes Mellitus , Hiperglicemia , Miastenia Gravis , Humanos , Imunidade Humoral , Linfócitos T Auxiliares-Indutores , Células T Auxiliares Foliculares , Diabetes Mellitus/metabolismo
10.
Eur J Pharmacol ; 934: 175301, 2022 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-36191631

RESUMO

In this study we aimed to reduce tau pathology, a hallmark of Alzheimer's Disease (AD), by activating mTOR-dependent autophagy in a transgenic mouse model of tauopathy by long-term dosing of animals with mTOR-inhibitors. Rapamycin treatment reduced the burden of hyperphosphorylated and aggregated pathological tau in the cerebral cortex only when applied to young mice, prior to the emergence of pathology. Conversely, PQR530 which exhibits better brain exposure and superior pharmacokinetic properties, reduced tau pathology even when the treatment started after the onset of pathology. Our results show that dosing animals twice per week with PQR530 resulted in intermittent, rather than sustained target engagement. Nevertheless, this pulse-like mTOR inhibition followed by longer intervals of re-activation was sufficient to reduce tau pathology in the cerebral cortex in P301S tau transgenic mice. This suggests that balanced therapeutic dosing of blood-brain-barrier permeable mTOR-inhibitors can result in a disease-modifying effect in AD and at the same time prevents toxic side effects due to prolonged over activation of autophagy.


Assuntos
Doença de Alzheimer , Animais , Camundongos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/patologia , Proteínas tau/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Camundongos Transgênicos , Encéfalo , Sirolimo/farmacologia , Modelos Animais de Doenças
11.
Front Cell Infect Microbiol ; 12: 979996, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36171757

RESUMO

The mechanistic target of rapamycin (mTOR) functions in two distinct complexes: mTORC1, and mTORC2. mTORC1 has been implicated in the pathogenesis of flaviviruses including dengue, where it contributes to the establishment of a pro-viral autophagic state. Activation of mTORC2 occurs upon infection with some viruses, but its functional role in viral pathogenesis remains poorly understood. In this study, we explore the consequences of a physical protein-protein interaction between dengue non-structural protein 5 (NS5) and host cell mTOR proteins during infection. Using shRNA to differentially target mTORC1 and mTORC2 complexes, we show that mTORC2 is required for optimal dengue replication. Furthermore, we show that mTORC2 is activated during viral replication, and that mTORC2 counteracts virus-induced apoptosis, promoting the survival of infected cells. This work reveals a novel mechanism by which the dengue flavivirus can promote cell survival to maximize viral replication.


Assuntos
Dengue , Complexos Multiproteicos , Apoptose , Humanos , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Alvo Mecanístico do Complexo 2 de Rapamicina/genética , Alvo Mecanístico do Complexo 2 de Rapamicina/metabolismo , Complexos Multiproteicos/genética , Complexos Multiproteicos/metabolismo , RNA Interferente Pequeno , Sirolimo/farmacologia , Serina-Treonina Quinases TOR/metabolismo , Replicação Viral
12.
Biomedicines ; 10(4)2022 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-35453576

RESUMO

Previous studies have suggested that the topical mechanistic target of rapamycin (mTOR) inhibitors may be effective in treating facial angiofibromas in patients with tuberous sclerosis complex (TSC). Various concentrations of topical sirolimus for TSC have been tested, but their comparative efficacy and safety remained unclear. To assess the effects of topical mTOR inhibitors in treating facial angiofibromas, we conducted a systematic review and network meta-analysis (NMA) and searched MEDLINE, Embase, and Cochrane Library for relevant randomized controlled trials on 14 February 2022. The Cochrane Collaboration tool was used to assess the risk of bias of included trials. Our outcomes were clinical improvement and severe adverse events leading to withdrawal. We included three trials on 261 TSC patients with facial angiofibromas. The NMA found when compared with placebo, facial angiofibromas significantly improved following the application of various concentrations of topical sirolimus (risk ratio being 3.87, 2.70, 4.43, and 3.34 for 0.05%, 0.1%, 0.2%, and 1%, respectively). When compared with placebo, all concentrations of topical sirolimus did not differ in severe adverse events leading to withdrawal. The ranking analysis suggested topical sirolimus 0.2% as the most effective drug. In conclusion, topical sirolimus 0.05-1% are effective and safe in treating facial angiofibromas in patients with TSC, with topical sirolimus 0.2% being the most effective.

13.
Antioxid Redox Signal ; 37(10-12): 631-646, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35018792

RESUMO

Aims: The circadian clock oscillates in a cell-autonomous manner with a period of ∼24 h, and the phase is regulated by various time cues such as light and temperature through multiple clock input pathways. We previously found that osmotic and oxidative stress strongly affected the circadian period and phase of cellular rhythms, and triple knockout of apoptosis signal-regulating kinase (ASK) family members, Ask1, Ask2, and Ask3, abolished the phase shift (clock resetting) induced by hyperosmotic pulse treatment. We aimed at exploring a key molecule(s) and signaling events in the clock input pathway dependent on ASK kinases. Results: The phase shift of the cellular clock induced by the hyperosmotic pulse treatment was significantly reduced by combined deficiencies of the clock(-related) genes, Dec1, Dec2, and E4 promoter-binding protein 4 (also known as Nfil3) (E4bp4). In addition, liquid chromatography mass/mass spectrometry (LC-MS/MS)-based proteomic analysis identified hyperosmotic pulse-induced phosphorylation of circadian locomotor output cycles caput (CLOCK) Ser845 in an AKT-dependent manner. We found that AKT kinase was phosphorylated at Ser473 (i.e., activated) in response to the hyperosmotic pulse experiments. Inhibition of mechanistic target of rapamycin (mTOR) kinase by Torin 1 treatment completely abolished the AKT activation, suppressed the phosphorylation of CLOCK Ser845, and blocked the clock resetting induced by the hyperosmotic pulse treatment. Innovation and Conclusions: We conclude that mTOR-AKT signaling is indispensable for the CLOCK Ser845 phosphorylation, which correlates with the clock resetting induced by the hyperosmotic pulse treatment. Immediate early induction of the clock(-related) genes and CLOCK carboxyl-terminal (C-terminal) region containing Ser845 also play important roles in the clock input pathway through redox-sensitive ASK kinases. Antioxid. Redox Signal. 37, 631-646.


Assuntos
Ritmo Circadiano , Proteínas Proto-Oncogênicas c-akt , Cromatografia Líquida , Ritmo Circadiano/genética , Pressão Osmótica , Proteômica , Sirolimo , Serina-Treonina Quinases TOR , Espectrometria de Massas em Tandem , Fatores de Transcrição/metabolismo
14.
Liver Res ; 6(4): 227-237, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37124481

RESUMO

Background: Alcohol-associated liver disease (ALD) is a major chronic liver disease around the world without successful treatment. Acute alcoholic hepatitis is one of the most severe forms of ALD with high mortality, which is often associated with binge drinking. Alcohol drinking dysregulates lipid metabolism, increases adipose tissue lipolysis, and induces liver steatosis and adipose tissue atrophy. Increasing evidence implicates that crosstalk of liver and adipose tissue in the pathogenesis of ALD. Mechanistic target of rapamycin (mTOR) is a phosphatidylinositol 3-kinase (PI3K)-like serine/threonine protein kinase that regulates lipid metabolism, cell proliferation and autophagy. However, the role of mTOR in regulating adipose-liver crosstalk in binge drinking-induced organ damage remains unclear. Methods: We generated liver-specific and adipocyte-specific regulatory-associated protein of mTOR (Rptor) knockout (Rptor LKO and Rptor AKO) as well as Mtor knockout (Mtor LKO and Mtor AKO) mice, by crossing Rptor flox and Mtor flox mice with albumin Cre or adiponectin Cre mice, respectively. In addition, we generated liver and adipocyte double deletion of Rptor or Mtor (Mtor LAKO and Rptor LAKO) mice. The knockout mice with their matched wild-type littermates (Rptor WT and Mtor WT) were subjected to acute gavage of 7 g/kg ethanol. Results: Mice with adipocyte deletion of Rptor or Mtor developed hepatomegaly and adipose tissue atrophy. Alcohol gavage increased liver injury, hepatic steatosis and inflammation in mouse livers as demonstrated by elevated serum alanine aminotransferase activities, increased hepatic levels of triglyceride and increased hepatic numbers of CD68 positive macrophages in mouse livers after alcohol gavage. Liver injury was further exacerbated by deletion of adipocyte Rptor or Mtor. Serum adipokine array analysis revealed that increased levels of pro-inflammatory cytokines IL-6 and TNFα as well as chemokine MCP-1 following acute alcohol gavage in wild-type mice, which were further increased in adipocyte-specific Mtor or Rptor knockout mice. Conversely, levels of anti-inflammatory cytokine IL-10 decreased in adipocyte-specific Mtor or Rptor knockout mice. The levels of circulating fibroblast growth factor 21 (FGF21) increased whereas levels of circulating adiponectin and fetuin A decreased in wild-type mice after alcohol gavage. Intriguingly, adipocyte-specific Mtor or Rptor knockout mice already had decreased basal level of FGF21 which increased by alcohol gavage. Moreover, adipocyte-specific Mtor or Rptor knockout mice already had increased basal level of adiponectin and decreased fetuin A which were not further changed by alcohol gavage. Conclusions: Adipocyte but not hepatocyte ablation of Mtor pathway contributes to acute alcohol-induced liver injury with increased inflammation. Our results demonstrate the critical role of adipocyte mTOR in regulating the adipose-liver crosstalk in ALD.

15.
Anim Biosci ; 35(9): 1444-1453, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34727637

RESUMO

OBJECTIVE: Acetate plays an important role in host lipid metabolism. However, the network of acetate-regulated lipid metabolism remains unclear. Previous studies show that mitogen-activated protein kinases (MAPKs) and mechanistic target of rapamycin (mTOR) play a crucial role in lipid metabolism. We hypothesize that acetate could affect MAPKs and/or mTOR signaling and then regulate lipid metabolism. The present study investigated whether any cross talk occurs among MAPKs, mTOR and acetate in regulating lipid metabolism. METHODS: The ceramide C6 (an extracellular signaling-regulated kinases 1 and 2 [ERK1/2] activator) and MHY1485 (a mTOR activator) were used to treat rabbit adipose-derived stem cells (ADSCs) with or without acetate, respectively. RESULTS: It indicated that acetate (9 mM) treatment for 48 h decreased the lipid deposition in rabbit ADSCs. Acetate treatment decreased significantly phosphorylated protein levels of ERK1/2 and mTOR but significantly increased mRNA level of hormone-sensitive lipase (HSL). Acetate treatment did not significantly alter the phosphorylated protein level of p38 MAPK and c-Jun aminoterminal kinase (JNK). Activation of ERK1/2 and mTOR by respective addition in media with ceramide C6 and MHY1485 significantly attenuated decreased lipid deposition and increased HSL expression caused by acetate. CONCLUSION: Our results suggest that ERK1/2 and mTOR signaling pathways are associated with acetate regulated HSL gene expression and lipid deposition.

16.
Biol Pharm Bull ; 44(11): 1662-1669, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34719643

RESUMO

Glutamate differentially affects the levels extracellular signal-regulated kinase (ERK)1/2 and ERK3 and the protective effect of B355252, an aryl thiophene compound, 4-chloro-N-(naphthalen-1-ylmethyl)-5-(3-(piperazin-1-yl)phenoxy)thiophene-2-sulfonamide, is associated with suppression of ERK1/2. The objectives of this study were to further investigate the impact of B355252 on ERK3 and its downstream signaling pathways affected by glutamate exposure in the mouse hippocampal HT-22 neuronal cells. Murine hippocampal HT22 cells were incubated with glutamate and treated with B355252. Cell viability was assessed, protein levels of pERK3, ERK3, mitogen-activated protein kinase-activated protein kinase-5 (MAPKAPK-5), steroid receptor coactivator 3 (SRC-3), p-S6 and S6 were measured using Western blotting, and immunoreactivity of p-S6 was determined by immunocytochemistry. The results reveal that glutamate markedly diminished the protein levels of p-ERK3 and its downstream targets MK-5 and SRC-3 and increased p-S6, an indicator for mechanistic target of rapamycin (mTOR) activation. Conversely, treatment with B355252 protected the cells from glutamate-induced damage and prevented the glutamate-caused declines of p-ERK3, MK-5 and SRC-3 and increase of p-S6. Our study demonstrates that one of the mechanisms that glutamate mediates its cytotoxicity is through suppression of ERK3 and that B355252 rescues the cells from glutamate toxicity by reverting ERK3 level.


Assuntos
Antagonistas de Aminoácidos Excitatórios/farmacologia , Ácido Glutâmico/toxicidade , Hipocampo/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Proteína Quinase 6 Ativada por Mitógeno/metabolismo , Fármacos Neuroprotetores/farmacologia , Tiofenos/farmacologia , Animais , Western Blotting , Linhagem Celular , Relação Dose-Resposta a Droga , Imunofluorescência , Camundongos
17.
Ann Transl Med ; 9(20): 1596, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34790802

RESUMO

OBJECTIVE: To summarize the roles of AKT-mTOR signaling in the regulation of the DNA damage response and PD-L1 expression in cancer cells, and propose a novel strategy of targeting AKT-mTOR signaling in combination with radioimmunotherapy in the era of cancer immunotherapy. BACKGROUND: Immunotherapy has greatly improved the clinical outcomes of many cancer patients and has changed the landscape of cancer patient management. However, only a small subgroup of cancer patients (~20-30%) benefit from immune checkpoint blockade-based immunotherapy. The current challenge is to find biomarkers to predict the response of patients to immunotherapy and strategies to sensitize patients to immunotherapy. METHODS: Search and review the literature which were published in PUBMED from 2000-2021 with the key words mTOR, AKT, drug resistance, DNA damage response, immunotherapy, PD-L1, DNA repair, radioimmunotherapy. CONCLUSIONS: More than 50% of cancer patients receive radiotherapy during their course of treatment. Radiotherapy has been shown to reduce the growth of locally irradiated tumors as well as metastatic non-irradiated tumors (abscopal effects) by affecting systemic immunity. Consistently, immunotherapy has been demonstrated to enhance radiotherapy with more than one hundred clinical trials of radiation in combination with immunotherapy (radioimmunotherapy) across cancer types. Nevertheless, current available data have shown limited efficacy of trials testing radioimmunotherapy. AKT-mTOR signaling is a major tumor growth-promoting pathway and is upregulated in most cancers. AKT-mTOR signaling is activated by growth factors as well as genotoxic stresses including radiotherapy. Importantly, recent advances have shown that AKT-mTOR is one of the main signaling pathways that regulate DNA damage repair as well as PD-L1 levels in cancers. These recent advances clearly suggest a novel cancer therapy strategy by targeting AKT-mTOR signaling in combination with radioimmunotherapy.

18.
Front Biosci (Landmark Ed) ; 26(9): 614-627, 2021 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-34590471

RESUMO

Introduction: Dementia and cognitive loss impact a significant proportion of the global population and present almost insurmountable challenges for treatment since they stem from multifactorial etiologies. Innovative avenues for treatment are highly warranted. Methods and results: Novel work with biological clock genes that oversee circadian rhythm may meet this critical need by focusing upon the pathways of the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), the growth factor erythropoietin (EPO), and the wingless Wnt pathway. These pathways are complex in nature, intimately associated with autophagy that can maintain circadian rhythm, and have an intricate relationship that can lead to beneficial outcomes that may offer neuroprotection, metabolic homeostasis, and prevention of cognitive loss. However, biological clocks and alterations in circadian rhythm also have the potential to lead to devastating effects involving tumorigenesis in conjunction with pathways involving Wnt that oversee angiogenesis and stem cell proliferation. Conclusions: Current work with biological clocks and circadian rhythm pathways provide exciting possibilities for the treating dementia and cognitive loss, but also provide powerful arguments to further comprehend the intimate and complex relationship among these pathways to fully potentiate desired clinical outcomes.


Assuntos
Relógios Circadianos , Demência , Animais , Relógios Biológicos , Relógios Circadianos/genética , Ritmo Circadiano , Demência/genética , Transtornos da Memória , Serina-Treonina Quinases TOR
19.
Liver Res ; 5(2): 79-87, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34504721

RESUMO

BACKGROUND: Acetaminophen (APAP) overdose can cause liver injury and liver failure, which is one of the most common causes of drug-induced liver injury in the United States. Pharmacological activation of autophagy by inhibiting mechanistic target of rapamycin (mTOR) protects against APAP-induced liver injury likely via autophagic removal of APAP-adducts and damaged mitochondria. In the present study, we aimed to investigate the role of genetic ablation of mTOR pathways in mouse liver in APAP-induced liver injury and liver repair/regeneration. METHODS: Albumin-Cre (Alb-Cre) mice, mTORf/f and Raptorf/f mice (C57BL/6J background) were crossbred to produce liver-specific mTOR knockout (L-mTOR KO, Alb Cre+/-, mTORf/f) and liver-specific Raptor KO (L-Raptor, Alb Cre+/-, Raptor f/f) mice. Alb-Cre littermates were used as wild-type (WT) mice. These mice were treated with APAP for various time points for up to 48 h. Liver injury, cell proliferation, autophagy and mTOR activation were determined. RESULTS: We found that genetic deletion of neither Raptor, an important adaptor protein in mTOR complex 1, nor mTOR, in the mouse liver significantly protected against APAP-induced liver injury despite increased hepatic autophagic flux. Genetic deletion of Raptor or mTOR in mouse livers did not affect APAP metabolism and APAP-induced c-Jun N-terminal kinase (JNK) activation, but slightly improved mouse survival likely due to increased hepatocyte proliferation. CONCLUSIONS: Our results indicate that genetic ablation of mTOR in mouse livers does not protect against APAP-induced liver injury but may slightly improve liver regeneration and mouse survival after APAP overdose.

20.
Biomolecules ; 11(7)2021 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-34356626

RESUMO

Neurodegenerative disorders affect fifteen percent of the world's population and pose a significant financial burden to all nations. Cognitive impairment is the seventh leading cause of death throughout the globe. Given the enormous challenges to treat cognitive disorders, such as Alzheimer's disease, and the inability to markedly limit disease progression, circadian clock gene pathways offer an exciting strategy to address cognitive loss. Alterations in circadian clock genes can result in age-related motor deficits, affect treatment regimens with neurodegenerative disorders, and lead to the onset and progression of dementia. Interestingly, circadian pathways hold an intricate relationship with autophagy, the mechanistic target of rapamycin (mTOR), the silent mating type information regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), mammalian forkhead transcription factors (FoxOs), and the trophic factor erythropoietin. Autophagy induction is necessary to maintain circadian rhythm homeostasis and limit cortical neurodegenerative disease, but requires a fine balance in biological activity to foster proper circadian clock gene regulation that is intimately dependent upon mTOR, SIRT1, FoxOs, and growth factor expression. Circadian rhythm mechanisms offer innovative prospects for the development of new avenues to comprehend the underlying mechanisms of cognitive loss and forge ahead with new therapeutics for dementia that can offer effective clinical treatments.


Assuntos
Doença de Alzheimer/metabolismo , Relógios Circadianos , Disfunção Cognitiva/metabolismo , Regulação da Expressão Gênica , Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Animais , Disfunção Cognitiva/genética , Disfunção Cognitiva/patologia , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Humanos , Sirtuína 1/genética , Sirtuína 1/metabolismo , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA