RESUMO
Two-dimensional imine covalent organic frameworks (2D imine-COFs) are crystalline porous materials with broad application prospects. Despite the efforts into their design and synthesis, the mechanisms of their formation are still not fully understood. Herein, a one-pot two-step mechanochemical cocrystal precursor synthetic strategy is developed for efficient construction of 2D imine-COFs. The mechanistic investigation demonstrated that the cocrystal precursors of 4,4',4''-(1,3,5-triazine-2,4,6-triyl)trianiline (TAPT) and p-toluenesulphonic acid (PTSA) sufficiently regulate the crystalline structure of COF. Evidenced by characterizations and theoretical studies, a helical hydrogen-bond network was constructed by the N-H···O supramolecular synthons between amine and sulfate in TAPT-PTSA, demonstrating the role of cocrystals in promoting the organized stacking of interlayer π-π interactions, layer arrangement, and interlayer spacing, thus facilitating the orderly assembly of COFs. Moreover, the protonation degree of TAPT amines, which tuned nucleophilic directionality, enabled the sequential progression of intra- and interlayer imine condensation reactions, inhibiting the formation of amorphous polymers. The transformation from cocrystal precursors to COFs was achieved through comprehensive control of hydrogen bond and covalent bond sites. This work significantly advances the concept of hydrogen-bond-regulated COF assembly and its mechanochemical method in the design and synthesis of 2D imine-COFs, further elucidating the mechanistic aspects of their mechanochemical synthesis.
RESUMO
In all-solid-state batteries, a solid electrolyte with high ionic conductivity is required for fast charging, uniform lithium deposition, and increased cathode capacity. Lithium argyrodite with BH4 - substitution has promising potential due to its higher ionic conductivity compared to argyrodites substituted with halides. In this study, Li5.25PS4.25(BH4)1.75, characterized by a high ionic conductivity of 13.8 mS cm-1 at 25 °C, is synthesized via wet ball-milling employing o-xylene. The investigation focused on optimizing wet ball-milling parameters such as ball size, xylene content, drying temperature, as well as the amount of BH4 - substitution in argyrodite. An all-solid-state battery prepared using Li5.25PS4.25(BH4)1.75 as the electrolyte and LiNbO3 coated NCM811 as the cathode exhibits an initial coulombic efficiency of 90.2% and maintains 93.9% of its initial capacity after 100 cycles at fast charging rate (5C). It is anticipated that the application of this wet mechanochemical synthesis will contribute further to the commercialization of all-solid-state batteries using BH4-substituted argyrodites.
RESUMO
The 1:1 resveratrol-piperazine cocrystal was successfully synthesized and scaled-up to 300 g scale with the mechanochemical method, as a result of investigating key process parameters, namely the solvent and the grinding time. The use of water, ethanol or ethanol-water mixtures and reaction times up to 50 min were evaluated relative to the dry grinding process. Cocrystal formation and purity were monitored through X-ray diffraction and calorimetry measurements. The dry grinding resulted in an incomplete cocrystal formation, while the use of water or water-ethanol mixture yielded a monohydrate solid phase. Pure ethanol was found to be the optimal solvent for large-scale cocrystallization, as it delivered cocrystals with high crystallinity and purity after 10-30 min grinding time at the laboratory scale. Notably, a relatively fast reaction time (30-60 min) was sufficient for the completion of cocrystallization at larger scales, using a planetary ball mill and a plant reactor. Also, the obtained cocrystal increases the aqueous solubility of resveratrol by 6%-16% at pH = 6.8. Overall, this study highlights the potential of solvent-assisted mechanochemical synthesis as a promising new approach for the efficient production of pure resveratrol-piperazine cocrystals.
RESUMO
This paper focuses on high-entropy spinels, which represent a rapidly growing group of materials with physicochemical properties that make them suitable for hydrogen energy applications. The influence of high-pressure pure hydrogen on the chemical stability of three high-entropy oxide (HEO) sinter samples with a spinel structure was investigated. Multicomponent HEO samples were obtained via mechanochemical synthesis (MS) combined with high-temperature thermal treatment. Performing the free sintering procedure on powders after MS at 1000 °C for 3 h in air enabled achieving single-phase (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 and (Cu0.2Fe0.2Mg0.2Ni0.2Ti0.2)3O4 powders with a spinel structure, and in the case of (Cu0.2Fe0.2Mg0.2Ti0.2Zn0.2)3O4, a spinel phase in the amount of 95 wt.% was achieved. A decrease in spinel phase crystallite size and an increase in lattice strains were established in the synthesized spinel powders. The hydrogenation of the synthesized samples in a high-pressure hydrogen atmosphere was investigated using Sievert's technique. The results of XRD, SEM, and EDS investigations clearly showed that pure hydrogen at temperatures of up to 250 °C and a pressure of up to 40 bar did not significantly impact the structure and microstructure of the (Cr0.2Fe0.2Mg0.2Mn0.2Ni0.2)3O4 ceramic, which demonstrates its potential for application in hydrogen technologies.
RESUMO
Lead toxicity has hindered the wide applications of lead halide perovskites in optoelectronics and bioimaging. A significant amount of effort has been made to synthesize lead-free halide perovskites as alternatives to lead halide perovskites. In this work, we demonstrate the feasibility of synthesizing CsSnI3-based powders mechanochemically with dual light emissions under ambient conditions from CsI and SnI2 powders. The formed CsSnI3-based powders are divided into CsSnI3-dominated powders and CsSnI3-contained powders. Under the excitation of ultraviolet light of 365 nm in wavelength, the CsSnI3-dominated powders emit green light with a wavelength centered at 540 nm, and the CsSnI3-contained powders emit orange light with a wavelength centered at 608 nm. Both the CsSnI3-dominated and CsSnI3-contained powders exhibit infrared emission with the peak emission wavelengths centered at 916 nm and 925 nm, respectively, under a laser of 785 nm in wavelength. From the absorbance spectra, we obtain bandgaps of 2.32 eV and 2.08 eV for the CsSnI3-dominated and CsSnI3-contained powders, respectively. The CsSnI3-contained powders exhibit the characteristics of thermal quenching and photoelectrical response under white light.
RESUMO
The development of green and environmentally friendly synthesis methods of electrocatalysts is a crucial aspect in decarbonizing energy generation. In this study, eco-friendly mechanochemical synthesis of perovskite metal oxide-carbon black composites is proposed using different conditions and additives such as KOH. Furthermore, the optimization of ball milling conditions, including time and rotational speed, is studied. The mechanochemical synthesis in solid-state conditions without additives produces electrocatalysts that exhibit the highest bifunctional electrochemical activity towards both oxygen reduction reaction (ORR) and oxygen evolution reaction (OER). Moreover, this synthesis demonstrates a lower Environmental Impact Factor (E-factor), indicating its greener nature, and due to its simplicity, it has a great potential for scalability. The obtained bifunctional electrocatalysts have been tested in a rechargeable zinc-air battery (ZAB) for 22â h with similar performance compared to the commercial catalyst (Pt/C) at significantly lower cost. These promising findings are attributed to the enhanced interaction between the perovskite metal oxide and carbon material and the improved dispersion of the perovskite metal oxide on the carbon materials.
RESUMO
Chitosan is a promising adsorbent for removing a wide range of pollutants from wastewater. However, its practical application is hindered by instability in acidic environments, which significantly impairs its adsorption capacity and limits its utilization in water purification. While cross-linking can enhance the acid stability of chitosan, current solvent-based methods are often costly and environmentally unfriendly. In this study, a solvent-free mechanochemical process was developed using high-energy ball milling to cross-link chitosan with various polyanionic linkers, including dextran sulfate (DS), poly[4-styrenesulfonic acid-co-maleic acid] (PSSM), and tripolyphosphate (TPP). The mechanochemically cross-linked (MCCL) chitosan products exhibited superior adsorption capacity and stability in acidic solutions compared to pristine chitosan. Chitosan cross-linked with DS (Cht-DS) showed the highest Reactive Red 2 (RR2) adsorption capacity, reaching 1559 mg·g-1 at pH 3, followed by Cht-PSSM (1352 mg·g-1) and Cht-TPP (1074 mg·g-1). The stability of MCCL chitosan was visually confirmed by the negligible mass loss of Cht-DS and Cht-PSSM tablets in pH 3 solution, unlike the complete dissolution of the pristine chitosan tablet. The MCCL significantly increased the microhardness of chitosan, with the order Cht-DS > Cht-PSSM > Cht-TPP, consistent with the RR2 adsorption capacity. When tested on simulated rinsing wastewater from chromium electroplating, Cht-DS effectively removed Cr(VI) (98.75% removal) and three per- and polyfluoroalkyl substances (87.40-95.87% removal), following pseudo-second-order adsorption kinetics. This study demonstrates the potential of the cost-effective and scalable MCCL approach to produce chitosan-based adsorbents with enhanced stability, mechanical strength, and adsorption performance for treating highly acidic industrial wastewater containing a mixture of toxic pollutants.
RESUMO
Superhydrophobic porous organic polymers are potential sorbents for volatile organic compounds (VOCs) pollution control by suppressing the competition of water molecules on their surfaces. However, the synthesis of superhydrophobic reagents usually requires large amounts of organic solvents and a long reaction time (≥ 24 h). Herein, a green mechanochemical method was developed to synthesize a superhydrophobic polymer (MSHMP-1) with the advantages of using a small amount of organic solvents (5 mL/g) and a short reaction time (2 h). Meanwhile, MSHMP-1 with a water contact angle (WCA) of 162° exhibited a dramatically rich pore structure as revealed by its specific surface area (SSA) of 1780 m2/g. The decrease in the adsorption of benzene on MSHMP-1 due to the competition of water molecules, even at relative humidity of 90 %, was nonsignificant (<10 %), indicating the great application potential of MSHMP-1 in hydrophobic adsorption. Moreover, the adsorption capacity of MSHMP-1 was maintained after at least five adsorption-desorption cycles. Therefore, MSHMP-1 can be a remarkable adsorbent for the removal of hazardous VOCs, especially at high humidity levels.
RESUMO
The present work aims to explore the new solid forms of telmisartan (TEL) with alpha-ketoglutaric acid (KGA) and glutamic acid (GA) as potential coformers using mechanochemical approach and their role in augmentation in physicochemical parameters over pure crystalline TEL. Mechanochemical synthesis was performed using 1:1 stoichiometric ratio of TEL and the selected coformers in the presence of catalytic amount of ethanol for 1 h. The ground product was characterized by PXRD, DSC, and FTIR. The new solid forms were evaluated for apparent solubility, intrinsic dissolution, and physical stability. Preliminary characterization revealed the amorphization of the mechanochemical product as an alternate outcome of cocrystallization screening. Mechanistic understanding of the amorphous phase highlights the formation of amorphous-mediated cocrystallization that involves three steps, viz., molecular recognition, intermediate amorphous phase, and product nucleation. The solubility curves of both multicomponent amorphous solid forms (TEL-KGA and TEL-GA) showed the spring-parachute effect and revealed significant augmentation in apparent solubility (8-10-folds), and intrinsic dissolution release (6-9-folds) as compared to the pure drug. Besides, surface anisotropy and differential elemental distributions in intrinsic dissolution compacts of both solid forms were confirmed by FESEM and EDX mapping. Therefore, amorphous phases prepared from mechanochemical synthesis can serve as a potential solid form for the investigation of a cocrystal through amorphous-mediated cocrystallization. This has greater implications in solubility kinetics wherein the rapid precipitation of the amorphous phase can be prevented by the metastable cocrystal phase and contribute to the significant augmentation in the physicochemical parameters.
Assuntos
Telmisartan , Cristalização , Solubilidade , Estabilidade de MedicamentosRESUMO
Thermogravimetry coupled with thermal analysis and quadrupole mass spectroscopy TGA/DTA-QMS were primarily used to assess the oxidation susceptibility of a pool of nanocrystalline powders of the semiconductor kesterite Cu2ZnSnS4 for prospective photovoltaic applications, which were prepared via the mechanochemically assisted synthesis route from two different precursor systems. Each system, as confirmed by XRD patterns, yielded first the cubic polytype of kesterite with defunct semiconductor properties, which, after thermal annealing at 500 °C under neutral gas atmosphere, was converted to the tetragonal semiconductor polytype. The TGA/DTA-QMS determinations up to 1000 °C were carried out under a neutral argon Ar atmosphere and under a dry, oxygen-containing gas mixture of O2:Ar = 1:4 (vol.). The mass spectroscopy data confirmed that under each of the gas atmospheres, a distinctly different, multistep evolution of such oxygen-bearing gaseous compounds as sulfur oxides SO2/SO3, carbon dioxide CO2, and water vapor H2O was taking place. The TGA/DTA changes in correlation with the nature of evolving gases helped in the elucidation of the plausible chemistry linked to kesterite oxidation, both in the stage of nanopowder synthesis/storage at ambient air conditions and during forced oxidation up to 1000 °C in the dry, oxygen-containing gas mixture.
RESUMO
Plasmonic photocatalysis has been limited by the high cost and scalability of plasmonic materials, such as Ag and Au. By focusing on earth-abundant photocatalyst/plasmonic materials (HxMoO3) and Pd as a catalyst, we addressed these challenges by developing a solventless mechanochemical synthesis of Pd/HxMoO3 and optimizing photocatalytic activities in the visible range. We investigated the effect of HxMoO3 band gap excitation (at 427 nm), Pd interband transitions (at 427 nm), and HxMoO3 localized surface plasmon resonance (LSPR) excitation (at 640 nm) over photocatalytic activities toward the hydrogen evolution and phenylacetylene hydrogenation as model reactions. Although both excitation wavelengths led to comparable photoenhancements, a 110% increase was achieved under dual excitation conditions (427 + 640 nm). This was assigned to a synergistic effect of optical excitations that optimized the generation of energetic electrons at the catalytic sites. These results are important for the development of visible-light photocatalysts based on earth-abundant components.
RESUMO
Perovskite quantum dots (QDs) have been considered new-generation emitters for lighting and displays due to their high photoluminescence (PL) efficiency, and pure color. However, their commercialization process is currently hindered by the challenge of mass production in a quick and environmentally friendly manner. In this study, a polymer-surface-mediated mechanochemical reaction (PMR) is proposed to prepare perovskite QDs using a high-speed multifunction grinder for the first time. PMR possesses two distinctive features: i) The ultra-high rotating speed (>15â¯000 rpm) of the grinder facilitates the rapid conversion of the precursor to perovskite; ii) The surface-rich polymer particulate ensures QDs with high dispersity, avoiding QD aggregation-induced PL quenching. Therefore, PMR can successfully manufacture green perovskite QDs with a high PL quantum yield (PLQY) exceeding 90% in a highly material- (100% yield), time- (1 kg min-1), and effort- (solvent-free) efficient manner. Moreover, the PMR demonstrates remarkable versatility, including synthesizing by various polymers and producing diverse colored and Pb-free phosphors. Importantly, these phosphors featuring a combination of polymer and perovskite, are facilely processed into various solid emitters. The proposed rapid, green, and scalable approach has great potential to accelerate the commercialization of perovskite QDs.
RESUMO
Recent environmental concerns have increased demand for renewable polymers and sustainable green resource usage, such as biomass-derived components and carbon dioxide (CO2). Herein, we present crosslinked polyurethanes (CPUs) fabricated from CO2- and biomass-derived monomers via a facile solvent-free ball milling process. Furan-containing bis(cyclic carbonate)s were synthesized through CO2 fixation and further transformed to tetraols, denoted FCTs, by aminolysis and utilized in CPU synthesis. Highly dispersed polyurethane-based hybrid composites (CPU-Ag) were also manufactured using a similar ball milling process. Due to the malleability of the CPU matrix, enabled by transcarbamoylation (dynamic covalent chemistry), CPU-based composites are expected to present very low interfacial thermal resistance between the heat sink and heat source. The characteristics of the dynamic covalent bond (i.e., urethane exchange reaction) were confirmed by the results of dynamic mechanical thermal analysis and stress relaxation analysis. Importantly, the high thermal conductivity of the CPU-based hybrid material was confirmed using laser flash analysis (up to 51.1 W/m·K). Our mechanochemical approach enables the facile preparation of sustainable polymers and hybrid composites for functional application.
RESUMO
Among porous organic polymers (POPs), azo-linked POPs represent a crucial class of materials, making them the focus of numerous catalytic systems proposed for their synthesis. However, the synthetic process is limited to metal-catalyzed, high-temperature, and liquid-phase reactions. In this study, we employ mechanochemical oxidative metal-free systems to encompass various syntheses of azo-based polymers. Drawing inspiration from the "rule of six" principle (six or more carbons on an azide group render the organic compound relatively safe), an azo compound featuring significant steric hindrance is obtained using the hypervalent iodine oxidation strategy. Furthermore, during the polymerization process, steric hindrance is enhanced in monomers to effectively prevent explosions resulting from direct contact between hypervalent iodine oxidants and primary amines. Indeed, this approach provides a facile and innovative solid-phase synthesis method for synthesizing azo-based materials.
RESUMO
Pipette tip solid-phase extraction (PT-SPE) as a miniaturized solid-phase extraction technique have a wide range of applications in the field of sample pretreatment. In this study, ionic covalent organic frameworks@cotton (iCOF@cotton) were facilely synthesized by mechanochemical grinding method only in half an hour, and used as the adsorbents of PT-SPE. The synthesized iCOF@cotton not only had high specific surface area, suitable pore structure and cationic charge groups of iCOF that can extract polar targets quickly, but also reduced the problem of high back pressure of PT-SPE by the addition of cotton, thus accelerating extraction time. Combined with high performance liquid chromatographic tandem mass spectrometry (HPLC-MS/MS), an efficient and sensitive method was established for detection of domoic acid (DA, a toxin produced by algae). Under the optimal conditions, the proposed analysis method displayed excellent analytical performance, including broad range of linearity (10-1000 pg mL-1), low limit of detection (LOD, 5 pg mL-1), high correlation coefficient (0.9993), satisfactory precision (RSDs ≤6.4 %). In addition, the developed method was applied to the detection of DA in marine samples, and detected trace DA (18.6 pg mL-1) with satisfactory recovery (85.7%-107.2 %). The above results indicated that the prepared iCOF@cotton have great potential as the adsorbents for PT-SPE.
Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Espectrometria de Massas em Tandem , Cromatografia Líquida de Alta Pressão/métodos , Alimentos Marinhos/análise , Extração em Fase Sólida/métodosRESUMO
A non-solvated alkyl-substituted Al(I) anion dimer was synthesized by a reduction of haloalumane precursor using a mechanochemical method. The crystallographic and theoretical analysis revealed its structure and electronic properties. Experimental XPS analysis of the Al(I) anions with reference compounds revealed the lower Alâ 2p binding energy corresponds to the lower oxidation state of Al species. It should be emphasized that the experimentally obtained XPS binding energies were reproduced by delta SCF calculations and were linearly correlated with NPA charges and 2p orbital energies.
RESUMO
High levels of unconjugated bilirubin (UB) in serum lead to asymptomatic and neonatal jaundice and brain dysfunctions. Herein, we have reported the detection of UB at as low as 1â µM in an aqueous alkaline medium using a Zn(II) complex. The specificity of the complex has been validated by the HPLC in the concentration window 6-90â µM, which is rare. The sensory response of the probe at physiological pH against nitro explosives developed it as an instant-acting fluorosensor for picric acid (PA) and 2,4-dinitrophenol (2,4-DNP). Spectroscopic titration provided a binding constant of 4×105 â M-1 with PA. The naked eye detection was found to be 15â µM. The solid-state photoluminescent nature of the complex enabled it for PA sensing in the solid phase. Interestingly, the probe remained fluorescent in various volatile and non-volatile organic solvents. As a result, it can also detect PA and 2,4-DNP in a wide range of common organic media. NMR studies revealed the coordination of PA, 2,4-DNP, and UB to the Zn(II) center of the probe, which is responsible for the observed quenching of the probe with the analytes.
Assuntos
Nitrofenóis , Picratos , Água , Recém-Nascido , Humanos , Zinco , 2,4-Dinitrofenol , Antifúngicos , BilirrubinaRESUMO
Nanoporous carbonaceous materials are ideal ingredients in various industrial products due to their large specific surface area. They are typically prepared by post-synthesis activation and templating methods. Both methods require the input of large amounts of energy to sustain thermal treatment at high temperatures (typically >600°C), which is clearly in violation of the green-chemistry principles. To avoid this issue, other strategies have been developed for the synthesis of carbonaceous materials at lower temperatures (<600°C). This mini review is focused on three strategies suitable for processing carbons at lower temperatures, namely, hydrothermal carbonization, in situ hard templating method, and mechanically induced self-sustaining reaction. Typical procedures of these strategies are demonstrated by using recently reported examples. At the end, some problems associated with the strategies and potential solutions are discussed.
RESUMO
Hydroxyapatite (HAP) is the main mineral component of bones and teeth. It is widely used in medicine as a bone filler and coating for implants to promote new bone growth. Ion substitutions into the HAP structure highly affect its properties. One of the most important substituents is magnesium. This paper presents new results obtained using high-precision hybrid density functional theory calculations for Mg/Ca substitutions in HAP in a wide magnesium concentration range within a 2 × 2 × 2 supercell model. Experimental data on the mechanochemical synthesis of HAP-Mg samples with different Mg concentrations are also presented. A comparison between the experiment and the theory showed good agreement: the HAP-Mg unit cell parameters and volume decreased with increasing degree of Mg/Ca substitution. The changes in the distances between the Ca and O, Ca and H, and Mg and O ions upon Mg/Ca substitution in different calcium positions was analyzed. The resulting asymmetry and distortion of the cell parameters were evaluated. It was shown that bulk modulus, energy levels, and band gap depend on the degree of Mg substitutions in the Ca1 and Ca2 positions. The formation energies of Mg/Ca substitutions showed non-monotonic behavior that was different for Ca1 and Ca2 positions. The Ca2 position had a slightly higher probability (~5 meV/f.u.) of substitution than Ca1 position at a Mg concentration x = 0.5. At x = 1, substitution in both positions can coexist. The simulated IR spectra for different Mg/Ca substitutions showed that Mg in the Ca2 position changes the IR spectrum more significantly than Mg in the Ca1 position. Similar changes were recorded in the IR spectra of the synthesized samples. The electronic structure is shown to be sensitive to the number and position of substitutions, which may be used to tweak the optical properties of the HAP-Mg material.
RESUMO
The often overlooked and annoying aspects of the propensity of no-oxygen semiconductor kesterite, Cu2ZnSnS4, to oxidation during manipulation and storage in ambient air prompted the study on the prolonged exposure of kesterite nanopowders to air. Three precursor systems were used to make a large pool of the cubic and tetragonal polytypes of kesterite via a convenient mechanochemical synthesis route. The systems included the starting mixtures of (i) constituent elements (2Cu + Zn + Sn + 4S), (ii) selected metal sulfides and sulfur (Cu2S + ZnS + SnS + S), and (iii) in situ made copper alloys (from the high-energy ball milling of the metals 2Cu + Zn + Sn) and sulfur. All raw products were shown to be cubic kesterite nanopowders with defunct semiconductor properties. These nanopowders were converted to the tetragonal kesterite semiconductor by annealing at 500 °C under argon. All materials were exposed to the ambient air for 1, 3, and 6 months and were suitably analyzed after each of the stages. The characterization methods included powder XRD, FT-IR/UV-Vis/Raman/NMR spectroscopies, SEM, the determination of BET/BJH specific surface area and helium density (dHe), and direct oxygen and hydrogen-content analyses. The results confirmed the progressive, relatively fast, and pronounced oxidation of all kesterite nanopowders towards, mainly, hydrated copper(II) and zinc(II) sulfates, and tin(IV) oxide. The time-related oxidation changes were reflected in the lowering of the energy band gap Eg of the remaining tetragonal kesterite component.