Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 97
Filtrar
1.
Toxicol Rep ; 13: 101776, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39497762

RESUMO

the controlled release of silver as a biocide from Ag-coated medical implants is desirable. However, the biocompatibility of Ag leachates is poorly understood. This study investigated the toxicity of silver released from the silver plated titanium implants to human primary osteoblast cells; and the effect of cell culture medium on the silver speciation and bioavailability. METHODS: Ti6Al4V discs were coated with Ag nanoparticles (NPs), silver plus hydroxyapatite (HA) nanoparticles (Ag+nHA), or Ag NPs plus microparticles (Ag+mHA). Primary human osteoblast cells were exposed to the leachates from the various discs for up to 7 days. RESULTS: the total Ag concentrations released as leachate from the silver-plated titanium discs were 0.7-1.6 mg L-1, regardless of treatment. Cumulative silver release over 7 days was approximately 3 mg L-1 in all treatments. The concentration of total Ag in the cell homogenates from all the Ag-containing treatments was modest, ∼ 0.1 µg mg protein-1 or less at day 7. Cells showed normal healthy morphology with no appreciable leak of LDH or ALP activity into the external media compared to the reference control. Similarly, there was no significant differences (Kruskal Wallis, p > 0.05) in the LDH or ALP activity in the cell homogenate between treatments. CONCLUSIONS: overall, there was a controlled release of Ag into the external media, but this remained biocompatible with no deleterious effects on the osteoblast cells, which means that the released silver to the peri-implant environment is not toxic making the coating potential for clinical use.

2.
Med Res Rev ; 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39287199

RESUMO

Nanocomposite materials are emerging as key players in addressing critical challenges in healthcare, energy storage, and environmental remediation. These innovative systems hold great promise in engineering effective solutions for complex problems. Nanocomposites have demonstrated various advantages such as simplicity, versatility, lightweight, and potential cost-effectiveness. By reinforcing synthetic and natural polymers with nanomaterials, a range of nanocomposites have exhibited unique physicochemical properties, biocompatibility, and biodegradability. Current research on nanocomposites has demonstrated promising clinical and translational applications. Over the past decade, the production of nanocomposites has emerged as a critical nano-structuring methodology due to their adaptability and controllable surface structure. This comprehensive review article systematically addresses two principal domains. A comprehensive survey of metallic and nonmetallic nanomaterials (nanofillers), elucidating their efficacy as reinforcing agents in polymeric matrices. Emphasis is placed on the methodical design and engineering principles governing the development of functional nanocomposites. Additionally, the review provides an exhaustive examination of recent noteworthy advancements in industrial, environmental, biomedical, and clinical applications within the realms of nanocomposite materials. Finally, the review concludes by highlighting the ongoing challenges facing nanocomposites in a wide range of applications.

3.
ACS Appl Bio Mater ; 7(10): 6332-6342, 2024 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-39305253

RESUMO

Infections associated with medical implants due to bacterial adhesion and biofilm formation are a serious problem, leading to acute health risks to patients by compromising their immune system. Therefore, suppressing biofilm formation on biomedical implants is a challenging task, especially for overcoming the drug resistance of bacterial biofilms. Herein, a synergistic efficient surface coating method was developed to inhibit biofilm formation on a model medical implant by combining the antimicrobial property of trimethyl chitosan (TMC) with either 2D material graphene oxide (GO) or black phosphorus (BP) sheets using layer-by-layer (LbL) self-assembly. The multilayer coatings of TMC/GO and TMC/BP were optimized on the glass surface (a model implant) and characterized by using spectroscopic and microscopy techniques. Next, we investigated the antibiofilm formation properties of the TMC/GO and TMC/BP coatings on glass surfaces against both Gram-negative, Escherichia coli (E. coli), and Gram-positive, Bacillus subtilis (B. subtilis), bacteria. The antibiofilm formation was studied using crystal violet (CV) and live/dead assays. Both the live/dead and the CV assays confirmed that the TMC/2D material (2DM)-coated surfaces prevented biofilm formation much more effectively compared to the uncoated surfaces. Scanning electron microscopy analyses revealed that the bacteria were affected physically by incubating with TMC/2DM-coated surfaces due to membrane perturbation, thereby preventing cell attachment and biofilm formation. Further, BP composite coatings (TMC/BP) showed a much better ability to thwart biofilm formation than GO composite coatings (TMC/GO). Also, multilayer coatings showed superior cytocompatibility with human foreskin fibroblast (HFF). Our results demonstrate that the developed coatings TMC/2DMs could be potential candidates for thwarting biofilm formation on medical implants.


Assuntos
Antibacterianos , Bacillus subtilis , Biofilmes , Materiais Revestidos Biocompatíveis , Escherichia coli , Teste de Materiais , Testes de Sensibilidade Microbiana , Próteses e Implantes , Biofilmes/efeitos dos fármacos , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/síntese química , Escherichia coli/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/química , Materiais Revestidos Biocompatíveis/farmacologia , Bacillus subtilis/efeitos dos fármacos , Tamanho da Partícula , Propriedades de Superfície , Quitosana/química , Quitosana/farmacologia , Humanos , Grafite/química , Grafite/farmacologia , Fósforo/química
4.
Biomed Phys Eng Express ; 10(6)2024 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-39214121

RESUMO

Plate-like structures had been thoroughly studied in literature over years to reduce the computational space from 3D to 2D. Many of these theories suffer either from satisfying the free traction condition or thickness extensibility in addition to the consistency of transverse shear strain energy. This work presents a higher order shear deformation thickness-extensible plate theory (eHSDT) for the analysis of plates. The proposed eHSDT satisfies the condition of free traction as other theories do but it also satisfies the condition of consistency of transverse shear strain energy which is neglected by many theories in the area of plates and shells. The implementation of the proposed theory in displacement-based finite element procedure requires continuity of derivatives across elements. This necessary condition was achieved using the penalty enforcement method for derivative-based nodal degrees of freedom across the standard 9-nodes Lagrange element. The theory was tested for elastic bending deformation of Polyether-ether-ketone (PEEK) which is one of the basic materials for medical implants. The theory showed good accuracy compared to experimental data of the three-points bending test. The present eHSDT was also tested for different conditions with a wide range of aspects ratios (thin to thick plates) and different boundary conditions. The accuracy of the proposed eHSDT was verified against exact solutions for these conditions which showed the advantage over other approaches and commercial finite element packages.


Assuntos
Benzofenonas , Análise de Elementos Finitos , Cetonas , Teste de Materiais , Polietilenoglicóis , Polímeros , Próteses e Implantes , Estresse Mecânico , Cetonas/química , Polímeros/química , Polietilenoglicóis/química , Humanos , Materiais Biocompatíveis/química , Elasticidade , Simulação por Computador , Algoritmos
5.
Small ; : e2404351, 2024 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-39161205

RESUMO

Titanium and titanium alloys remain the gold standard for dental and orthopedic implants. These materials are heavily used because of their bioinert nature, robust mechanical properties, and seamless integration with bone. However, implant-associated infections (IAIs) remain one of the leading causes of implant failure. Eradicating an IAI can be difficult since bacteria can form biofilms on the medical implant, protecting the bacterial cells against systemic antibiotics and the host's immune system. If the infection is not treated promptly and aggressively, device failure is inevitable, leading to costly multi-step revision surgeries. To circumvent this dire situation, scientists and engineers continue to develop novel strategies to protect the surface of medical implants from bacteria. In this review, details on emerging strategies to prevent infection in titanium implants are reported. These strategies include anti-adhesion properties provided by polymers, superhydrophobic, superhydrophilic, and liquid-infused surface coatings, as well as strategies and coatings employed to lyse the bacteria. Additionally, commercially available technologies and those under preclinical trials are examined while discussing current and future trends.

6.
Biomimetics (Basel) ; 9(8)2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39194469

RESUMO

This research investigates the environmental sustainability and biomedical applications of shape memory polymers (SMPs), focusing on their integration into 4D printing technologies. The objectives include comparing the carbon footprint, embodied energy, and water consumption of SMPs with traditional materials such as metals and conventional polymers and evaluating their potential in medical implants, drug delivery systems, and tissue engineering. The methodology involves a comprehensive literature review and AI-driven data analysis to provide robust, scalable insights into the environmental and functional performance of SMPs. Thermomechanical modeling, phase transformation kinetics, and heat transfer analyses are employed to understand the behavior of SMPs under various conditions. Significant findings reveal that SMPs exhibit considerably lower environmental impacts than traditional materials, reducing greenhouse gas emissions by approximately 40%, water consumption by 30%, and embodied energy by 25%. These polymers also demonstrate superior functionality and adaptability in biomedical applications due to their ability to change shape in response to external stimuli. The study concludes that SMPs are promising sustainable alternatives for biomedical applications, offering enhanced patient outcomes and reduced environmental footprints. Integrating SMPs into 4D printing technologies is poised to revolutionize healthcare manufacturing processes and product life cycles, promoting sustainable and efficient medical practices.

7.
Phys Med Biol ; 69(16)2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39079547

RESUMO

Objective.A bone-inclusive ASTM phantom is proposed to improve the assessment of radiofrequency electromagnetic field (RF-EMF) power deposition near orthopedic device under 1.5 T and 3 T magnetic resonance imaging (MRI).Approach.A phantom is created by introducing a cylindrical bone structure inside the American Society for Testing and Materials (ASTM) phantom. Four orthopaedic implant families-rod, nailing system, plate system, and hip replacement-are used in the study. RF-EMF power deposition (in terms of peak averaged specific absorption rate over 1 gram) near these implants are evaluated by placing these implants inside the standard ASTM phantom, the developed bone-inclusive ASTM phantom, and two anatomically representative human body phantoms, known as Duke and Ella. Numerical simulations are performed to calculate the RF-EMF power deposition near various orthopaedic devices within these phantoms.Main Results.For devices implanted inside or near bone tissue, the evaluation of RF-EMF power deposition using the developed bone-inclusive ASTM phantom shows better correlations to the human body phantoms than the ASTM phantom. This improvement is attributed to the portion of the devices implanted within the bone tissue.Significance.The bone-inclusive ASTM phantom has the different tissue of interests surrounding the implants compared to the ASTM phantom. This variation can lead to the different resonance frequency under RF-EMF exposure. This leads to better correlation of RF-EMF power deposition near orthopaedic implants inside human body, making the bone-inclusive ASTM phantom more suitable for evaluating RF-EMF power deposition than ASTM phantom in MRI scans.


Assuntos
Osso e Ossos , Campos Eletromagnéticos , Imageamento por Ressonância Magnética , Imagens de Fantasmas , Ondas de Rádio , Imageamento por Ressonância Magnética/instrumentação , Humanos , Osso e Ossos/diagnóstico por imagem , Próteses e Implantes , Ortopedia
8.
J Funct Biomater ; 15(6)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921540

RESUMO

With the rising demand for medical implants and the dominance of implant-associated failures including infections, extensive research has been prompted into the development of novel biomaterials that can offer desirable characteristics. This study develops and evaluates new titanium-based alloys containing gallium additions with the aim of offering beneficial antibacterial properties while having a reduced stiffness level to minimise the effect of stress shielding when in contact with bone. The focus is on the microstructure, mechanical properties, antimicrobial activity, and cytocompatibility to inform the suitability of the designed alloys as biometals. Novel Ti-33Nb-xGa alloys (x = 3, 5 wt%) were produced via casting followed by homogenisation treatment, where all results were compared to the currently employed alloy Ti-6Al-4V. Optical microscopy, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) results depicted a single beta (ß) phase microstructure in both Ga-containing alloys, where Ti-33Nb-5Ga was also dominated by dendritic alpha (α) phase grains in a ß-phase matrix. EDS analysis indicated that the α-phase dendrites in Ti-33Nb-5Ga were enriched with titanium, while the ß-phase was richer in niobium and gallium elements. Mechanical properties were measured using nanoindentation and microhardness methods, where the Young's modulus for Ti-33Nb-3Ga and Ti-33Nb-5Ga was found to be 75.4 ± 2.4 and 67.2 ± 1.6 GPa, respectively, a significant reduction of 37% and 44% with respect to Ti-6Al-4V. This reduction helps address the disproportionate Young's modulus between titanium implant components and cortical bone. Importantly, both alloys successfully achieved superior antimicrobial properties against Gram-negative P. aeruginosa and Gram-positive S. aureus bacteria. Antibacterial efficacy was noted at up to 90 ± 5% for the 3 wt% alloy and 95 ± 3% for the 5 wt% alloy. These findings signify a substantial enhancement of the antimicrobial performance when compared to Ti-6Al-4V which exhibited very small rates (up to 6.3 ± 1.5%). No cytotoxicity was observed in hGF cell lines over 24 h. Cell morphology and cytoskeleton distribution appeared to depict typical morphology with a prominent nucleus, elongated fibroblastic spindle-shaped morphology, and F-actin filamentous stress fibres in a well-defined structure of parallel bundles along the cellular axis. The developed alloys in this work have shown very promising results and are suggested to be further examined towards the use of orthopaedic implant components.

9.
ACS Appl Mater Interfaces ; 16(23): 30385-30395, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38816917

RESUMO

In the present work, we explored Lewis acid catalysis, via FeCl3, for the heterogeneous surface functionalization of cellulose nanofibrils (CNFs). This approach, characterized by its simplicity and efficiency, facilitates the amidation of nonactivated carboxylic acids in carboxymethylated cellulose nanofibrils (c-CNF). Following the optimization of reaction conditions, we successfully introduced amine-containing polymers, such as polyethylenimine and Jeffamine, onto nanofibers. This introduction significantly enhanced the physicochemical properties of the CNF-based materials, resulting in improved characteristics such as adhesiveness and thermal stability. Reaction mechanistic investigations suggested that endocyclic oxygen of cellulose finely stabilizes the transition state required for further functionalization. Notably, a nanocomposite, containing CNF and a branched low molecular weight polyethylenimine (CNF-PEI 800), was synthesized using the catalytic reaction. The composite CNF-PEI 800 was thoroughly characterized having in mind its potential application as coating biomaterial for medical implants. The resulting CNF-PEI 800 hydrogel exhibits adhesive properties, which complement the established antibacterial qualities of polyethylenimine. Furthermore, CNF-PEI 800 demonstrates its ability to support the proliferation and differentiation of primary human osteoblasts over a period of 7 days.


Assuntos
Celulose , Cloretos , Nanocompostos , Nanofibras , Celulose/química , Nanocompostos/química , Humanos , Catálise , Nanofibras/química , Cloretos/química , Compostos Férricos/química , Osteoblastos/efeitos dos fármacos , Osteoblastos/citologia , Polietilenoimina/química , Próteses e Implantes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Materiais Biocompatíveis/síntese química
10.
ACS Appl Bio Mater ; 7(5): 2604-2619, 2024 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-38622845

RESUMO

Biofilms are an intricate community of microbes that colonize solid surfaces, communicating via a quorum-sensing mechanism. These microbial aggregates secrete exopolysaccharides facilitating adhesion and conferring resistance to drugs and antimicrobial agents. The escalating global concern over biofilm-related infections on medical devices underscores the severe threat to human health. Carbon dots (CDs) have emerged as a promising substrate to combat microbes and disrupt biofilm matrices. Their numerous advantages such as facile surface functionalization and specific antimicrobial properties, position them as innovative anti-biofilm agents. Due to their minuscule size, CDs can penetrate microbial cells, inhibiting growth via cytoplasmic leakage, reactive oxygen species (ROS) generation, and genetic material fragmentation. Research has demonstrated the efficacy of CDs in inhibiting biofilms formed by key pathogenic bacteria such as Escherichia coli, Staphylococcus aureus, and Pseudomonas aeruginosa. Consequently, the development of CD-based coatings and hydrogels holds promise for eradicating biofilm formation, thereby enhancing treatment efficacy, reducing clinical expenses, and minimizing the need for implant revision surgeries. This review provides insights into the mechanisms of biofilm formation on implants, surveys major biofilm-forming pathogens and associated infections, and specifically highlights the anti-biofilm properties of CDs emphasizing their potential as coatings on medical implants.


Assuntos
Antibacterianos , Biofilmes , Carbono , Biofilmes/efeitos dos fármacos , Carbono/química , Carbono/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Humanos , Próteses e Implantes , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Pontos Quânticos/química , Tamanho da Partícula , Testes de Sensibilidade Microbiana , Teste de Materiais , Equipamentos e Provisões/microbiologia
11.
Mater Today Bio ; 26: 101022, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38525309

RESUMO

Medical implant-associated infections (IAI) is a growing threat to patients undergoing implantation surgery. IAI prevention typically relies on medical implants endowed with bactericidal properties achieved through surface modifications with antibiotics. However, the clinical efficacy of this traditional paradigm remains suboptimal, often necessitating revision surgery and posing potentially lethal consequences for patients. To bolster the existing anti-IAI arsenal, we propose herein a chitosan-based bioactive coating, i.e., ChitoAntibac, which exerts bacteria-inhibitory effects either through immune modulation or phage-directed microbial clearance, without relying on conventional antibiotics. The immuno-stimulating effects and phage-induced bactericidal properties can be tailored by engineering the loading dynamic of macrophage migration inhibitory factor (MIF), which polarizes macrophages towards the proinflammatory subtype (M1) with enhanced bacterial phagocytosis, and Staphylococcal Phage K, resulting in rapid and targeted pathogenic clearance (>99.99%) in less than 8 h. Our innovative antibacterial coating opens a new avenue in the pursuit of effective IAI prevention through immuno-stimulation and phage therapeutics.

12.
Clin Microbiol Rev ; 37(2): e0010423, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38506553

RESUMO

SUMMARYImplant-associated infections (IAIs) pose serious threats to patients and can be associated with significant morbidity and mortality. These infections may be difficult to diagnose due, in part, to biofilm formation on device surfaces, and because even when microbes are found, their clinical significance may be unclear. Despite recent advances in laboratory testing, IAIs remain a diagnostic challenge. From a therapeutic standpoint, many IAIs currently require device removal and prolonged courses of antimicrobial therapy to effect a cure. Therefore, making an accurate diagnosis, defining both the presence of infection and the involved microorganisms, is paramount. The sensitivity of standard microbial culture for IAI diagnosis varies depending on the type of IAI, the specimen analyzed, and the culture technique(s) used. Although IAI-specific culture-based diagnostics have been described, the challenge of culture-negative IAIs remains. Given this, molecular assays, including both nucleic acid amplification tests and next-generation sequencing-based assays, have been used. In this review, an overview of these challenging infections is presented, as well as an approach to their diagnosis from a microbiologic perspective.


Assuntos
Técnicas Microbiológicas , Infecções Relacionadas à Prótese , Humanos , Infecções Relacionadas à Prótese/diagnóstico , Infecções Relacionadas à Prótese/microbiologia , Técnicas Microbiológicas/métodos , Bactérias/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Laboratórios Clínicos , Técnicas de Diagnóstico Molecular/métodos
13.
Small Methods ; 8(9): e2301341, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38403854

RESUMO

Chitin and chitosan-based bioink for 3D-printed flexible electronics have tremendous potential for innovation in healthcare, agriculture, the environment, and industry. This biomaterial is suitable for 3D printing because it is highly stretchable, super-flexible, affordable, ultrathin, and lightweight. Owing to its ease of use, on-demand manufacturing, accurate and regulated deposition, and versatility with flexible and soft functional materials, 3D printing has revolutionized free-form construction and end-user customization. This study examined the potential of employing chitin and chitosan-based bioinks to build 3D-printed flexible electronic devices and optimize bioink formulation, printing parameters, and postprocessing processes to improve mechanical and electrical properties. The exploration of 3D-printed chitin and chitosan-based flexible bioelectronics will open new avenues for new flexible materials for numerous industrial applications.


Assuntos
Materiais Biocompatíveis , Quitina , Quitosana , Tinta , Impressão Tridimensional , Quitosana/química , Quitina/química , Materiais Biocompatíveis/química , Eletrônica
14.
Heliyon ; 10(4): e26005, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38375289

RESUMO

The present study investigated the influence of pore size of strut-based Diamond and surface-based Gyroid structures for their suitability as medical implants. Samples were made additively from laser powder bed fusion process with a relative density of 0.3 and pore sizes ranging from 300 to 1300 µm. They were subsequently examined for their manufacturability and mechanical properties. In addition, non-Newtonian computational fluid dynamics and discrete phase models were conducted to assess pressure drop and cell seeding efficiency. The results showed that both Diamond and Gyroid had higher as-built densities with smaller pore sizes. However, Gyroid demonstrated better manufacturability as its relative density was closer to the as-designed one. In addition, based on mechanical testing, the elastic modulus was largely unaffected by pore size, but post-yielding behaviors differed, especially in Diamond. High mechanical sensitivity in Diamond could be explained partly by Finite Element simulations, which revealed stress localization in Diamond and more uniform stress distribution in Gyroid. Furthermore, we defined the product of the normalized specific surface, normalized pressure drop, and cell seeding efficiency as the indicator of an optimal pore size, in which this factor identified an optimal pore size of approximately 500 µm for both Diamond and Gyroid. Besides, based on such criterion, Gyroid exhibited greater applicability as bone scaffolds. In summary, this study provides comprehensive assessment of the effect of pore size and demonstrates the efficient estimation of an in-silico framework for evaluating lattice structures as medical implants, which could be applied to other lattice architectures.

15.
Phys Med Biol ; 69(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38324901

RESUMO

A direct comparison of the impact of RF coil design under specific absorption rate andB1+rmslimitations are investigated and quantified using RF coils of different geometries and topologies at 64 MHz and 128 MHz. The RF-inducedin vivoelectric field and power deposition of a 50 cm long pacemaker and 55 cm long deep brain stimulator (DBS) are evaluated within two anatomical models exposed with these RF coils. The associated uncertainty is quantified and analyzed under a fixedB1+rmsincident and normal operating mode. For a fixedB1+rmsincident, thein vivoincident field shows a much higher uncertainty (>5.6 dB) to the RF coil diameter compared to other design parameters (e.g. <2.2 dB for coil length and topology), while the associated uncertainty reduced greatly (e.g. <1.5 dB) under normal operating mode exposure. Similar uncertainties are observed in the power deposition near the pacemaker and DBS electrode. Compared to the normal operating mode, applying a fixedB1+rmsfield to the untested implant will lead to a large variation in the induced incident and power deposition of the implant, as a result, a larger safe margin when different coil designs (e.g. coil diameter) are considered.


Assuntos
Calefação , Temperatura Alta , Imageamento por Ressonância Magnética , Próteses e Implantes , Ondas de Rádio , Imagens de Fantasmas
16.
Antibiotics (Basel) ; 12(12)2023 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-38136691

RESUMO

In recent years, antibacterial coatings have become an important approach in the global fight against bacterial pathogens. Developments in materials science, chemistry, and biochemistry have led to a plethora of materials and chemical compounds that have the potential to create antibacterial coatings. However, insufficient attention has been paid to the analysis of the techniques and technologies used to apply these coatings. Among the various inorganic coating techniques, atomic layer deposition (ALD) is worthy of note. It enables the successful synthesis of high-purity inorganic nanocoatings on surfaces of complex shape and topography, while also providing precise control over their thickness and composition. ALD has various industrial applications, but its practical application in medicine is still limited. In recent years, a considerable number of papers have been published on the proposed use of thin films and coatings produced via ALD in medicine, notably those with antibacterial properties. The aim of this paper is to carefully evaluate and analyze the relevant literature on this topic. Simple oxide coatings, including TiO2, ZnO, Fe2O3, MgO, and ZrO2, were examined, as well as coatings containing metal nanoparticles such as Ag, Cu, Pt, and Au, and mixed systems such as TiO2-ZnO, TiO2-ZrO2, ZnO-Al2O3, TiO2-Ag, and ZnO-Ag. Through comparative analysis, we have been able to draw conclusions on the effectiveness of various antibacterial coatings of different compositions, including key characteristics such as thickness, morphology, and crystal structure. The use of ALD in the development of antibacterial coatings for various applications was analyzed. Furthermore, assumptions were made about the most promising areas of development. The final section provides a comparison of different coatings, as well as the advantages, disadvantages, and prospects of using ALD for the industrial production of antibacterial coatings.

17.
Biomimetics (Basel) ; 8(8)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38132512

RESUMO

With the rising demand for implantable orthopaedic medical devices and the dominance of device-associated infections, extensive research into the development of novel materials has been prompted. Among these, new-generation titanium alloys with biocompatible elements and improved stiffness levels have received much attention. Furthermore, the development of titanium-based materials that can impart antibacterial function has demonstrated promising results, where gallium has exhibited superior antimicrobial action. This has been evidenced by the addition of gallium to various biomaterials including titanium alloys. Therefore, this paper aims to review the antibacterial activity of gallium when incorporated into biomedical materials, with a focus on titanium-based alloys. First, discussion into the development of new-generation Ti alloys that possess biocompatible elements and reduced Young's moduli is presented. This includes a brief review of the influence of alloying elements, processing techniques and the resulting biocompatibilities of the materials found in the literature. The antibacterial effect of gallium added to various materials, including bioglasses, liquid metals, and bioceramics, is then reviewed and discussed. Finally, a key focus is given to the incorporation of gallium into titanium systems for which the inherent mechanical, biocompatible, and antibacterial effects are reviewed and discussed in more detail, leading to suggestions and directions for further research in this area.

18.
ACS Biomater Sci Eng ; 9(11): 6138-6145, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37803938

RESUMO

This paper presents the results of comprehensive in vivo studies into the osseointegration behavior of medical implants for maxillofacial surgery produced from nanostructured grade 4 titanium. Special attention is given to the phenomenology of bone tissue formation with consideration of its surface relief features and to evaluating the quantitative parameters of the morphological indicators of osteoblast and endothelial cells in the osseointegration zone. These parameters were compared with their measurement data for standard factory-made implants, and considerable acceleration in the fixation of nanotitanium implants due to osseointegation was found. The obtained results indicate a better osseointegration of implants made of nanotitanium in comparison to similar standard products.


Assuntos
Cirurgia Bucal , Titânio , Células Endoteliais , Propriedades de Superfície , Próteses e Implantes , Osseointegração
19.
J Mech Behav Biomed Mater ; 147: 106120, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37757617

RESUMO

In fracture fixation, biodegradable implant materials are an interesting alternative to conventional non-biodegradable materials as the latter often require a second implant removal surgery to avoid long-term complications. In this study, we present an in silico strategy to design/study biodegradable metal implants focusing on mandibular fracture fixation plates of WE43 (Mg alloy). The in silico strategy is composed of an orchestrated interaction between three separate computational models. The first model simulates the mass loss of the degradable implant based on the chemistry of Mg biodegradation. A second model estimates the loading on the jaw plate in the physiological environment, incorporating a phenomenological dynamic bone regeneration process. The third model characterizes the mechanical behavior of the jaw plate and the influence of material degradation on the mechanical behavior. A sensitivity analysis was performed on parameters related to choices regarding numerical implementation and parameter dependencies were implemented to guarantee robust and correct results. Different clinical scenarios were tested, related to the amount of screws used to fix the plate. The results showed a lower initial strength when more screw holes were left open, as well as a faster decrease over time in strength due to the increased area available for surface degradation. The obtained degradation results were found to be in accordance with previously reported data of in vivo studies with biodegradable plates. The combination of these three models allows for the design of patient-specific biodegradable fixation implants able to deliver the desired mechanical behavior tuned to the bone regeneration process.


Assuntos
Fixação Interna de Fraturas , Mandíbula , Humanos , Fixação Interna de Fraturas/métodos , Fenômenos Biomecânicos , Mandíbula/cirurgia , Placas Ósseas , Parafusos Ósseos , Implantes Absorvíveis
20.
ACS Biomater Sci Eng ; 9(9): 5418-5429, 2023 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-37691546

RESUMO

Research on additive manufacturing (AM) of high-performance polymers provides novel materials and technologies for advanced applications in different sectors, such as aerospace and biomedical engineering. The present article is contextualized in this research trend by describing a novel AM protocol for processing a polysulfone (PSU)/N-methyl-2-pyrrolidone (NMP) solution into medical implant prototypes. In particular, an AM technique involving the patterned deposition of the PSU/NMP mixture in a coagulation bath was employed to fabricate PSU implants with different predefined shape, fiber diameter, and macropore size. Scanning electron microscopy (SEM) analysis highlighted a fiber transversal cross-section morphology characterized by a dense external skin layer and an inner macroporous/microporous structure, as a consequence of the nonsolvent-induced polymer solidification process. Physical-chemical and thermal characterization of the fabricated samples demonstrated that PSU processing did not affect its macromolecular structure and glass-transition temperature, as well as that after post-processing PSU implants did not contain residual solvent or nonsolvent. Mechanical characterization showed that the developed PSU scaffold tensile and compressive modulus could be changed by varying the macroporous architecture. In addition, PSU scaffolds supported the in vitro adhesion and proliferation of the BALB/3T3 clone A31 mouse embryo cell line. These findings encourage further research on the suitability of the developed processing method for the fabrication of customized PSU implants.


Assuntos
Engenharia Biomédica , Próteses e Implantes , Animais , Camundongos , Linhagem Celular , Polímeros
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA