Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Neurosci ; 44(29)2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38744530

RESUMO

Sleep disorders affect millions of people around the world and have a high comorbidity with psychiatric disorders. While current hypnotics mostly increase non-rapid eye movement sleep (NREMS), drugs acting selectively on enhancing rapid eye movement sleep (REMS) are lacking. This polysomnographic study in male rats showed that the first-in-class selective melatonin MT1 receptor partial agonist UCM871 increases the duration of REMS without affecting that of NREMS. The REMS-promoting effects of UCM871 occurred by inhibiting, in a dose-response manner, the firing activity of the locus ceruleus (LC) norepinephrine (NE) neurons, which express MT1 receptors. The increase of REMS duration and the inhibition of LC-NE neuronal activity by UCM871 were abolished by MT1 pharmacological antagonism and by an adeno-associated viral (AAV) vector, which selectively knocked down MT1 receptors in the LC-NE neurons. In conclusion, MT1 receptor agonism inhibits LC-NE neurons and triggers REMS, thus representing a novel mechanism and target for REMS disorders and/or psychiatric disorders associated with REMS impairments.


Assuntos
Locus Cerúleo , Ratos Sprague-Dawley , Receptor MT1 de Melatonina , Sono REM , Animais , Masculino , Locus Cerúleo/efeitos dos fármacos , Locus Cerúleo/metabolismo , Locus Cerúleo/fisiologia , Ratos , Receptor MT1 de Melatonina/agonistas , Receptor MT1 de Melatonina/metabolismo , Sono REM/fisiologia , Sono REM/efeitos dos fármacos , Norepinefrina/metabolismo , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/metabolismo , Neurônios Adrenérgicos/fisiologia , Neurônios/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia
2.
Plant Physiol Biochem ; 206: 108263, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38100887

RESUMO

The supply level of exogenous nitrogen has a very important influence on the growth and development of cucumber. Insufficient or excessive nitrogen application will lead to metabolic disorders in the body and affect the formation of yield. Therefore, it is of great scientific and practical significance to explore the corresponding mitigation measures. Melatonin (MT) is a multi-regulatory molecule with pleiotropic effects on plant growth and development. A large number of studies have shown that the appropriate amount of melatonin supplementation is beneficial to plant growth and development by promoting root development, delaying leaf senescence, and improving fruit yield. However, the study of MT function combined with a detailed physiological analysis of nitrogen (N) absorption and metabolism in cucumber plants needs further strengthening. We performed hydroponic tests at different nitrogen levels to determine the metabolic processes associated with the enhanced tolerance to nitrogen in melatonin-treated cucumber (Cucucumis sativus L.) seedlings. Cucumber seedlings were sprayed with 100 µM melatonin or water and treated with different nitrogen in the growth chamber for 7 days. Nitrogen deficiency significantly inhibited seedling growth, and this growth inhibition was partially alleviated by melatonin. The expression analysis of related carbon and nitrogen genes showed that the genes whose expression was significantly altered by melatonin were mainly related to carbon (C) and nitrogen (N) metabolism. By enzyme activity and reactive oxygen content data analysis, melatonin-treated cucumber seedlings showed relatively stable carbon and nitrogen levels compared to untreated ones. In conclusion, MT can repair the impaired growth and development situation by regulating the nitrogen assimilation capacity and the balance between oxidation and oxidative metabolism and carbon metabolism in the cucumber under different nitrogen levels.


Assuntos
Cucumis sativus , Melatonina , Plântula/metabolismo , Cucumis sativus/metabolismo , Melatonina/farmacologia , Melatonina/metabolismo , Nitrogênio/metabolismo , Carbono/metabolismo
3.
Biol Res ; 56(1): 62, 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38041171

RESUMO

BACKGROUND: Atherosclerosis (AS), a significant contributor to cardiovascular disease (CVD), is steadily rising with the aging of the global population. Pyroptosis and apoptosis, both caspase-mediated cell death mechanisms, play an essential role in the occurrence and progression of AS. The human pineal gland primarily produces melatonin (MT), an indoleamine hormone with powerful anti-oxidative, anti-pyroptotic, and anti-apoptotic properties. This study examined MT's anti-oxidative stress and anti-pyroptotic effects on human THP-1 macrophages treated with nicotine. METHODS: In vitro, THP-1 macrophages were induced by 1 µM nicotine to form a pyroptosis model and performed 30 mM MT for treatment. In vivo, ApoE-/- mice were administered 0.1 mg/mL nicotine solution as drinking water, and 1 mg/mL MT solution was intragastric administrated at 10 mg/kg/day. The changes in pyroptosis, apoptosis, and oxidative stress were detected. RESULTS: MT downregulated pyroptosis, whose changes were paralleled by a reduction in reactive oxygen species (ROS) production, reversal of sirtuin3 (SIRT3), and Forkhead box O3 (FOXO3α) upregulation. MT also inhibited apoptosis, mainly caused by the interaction of caspase-1 and caspase-3 proteins. Vivo studies confirmed that nicotine could accelerate plaque formation. Moreover, mice treated with MT showed a reduction in AS lesion area. CONCLUSIONS: MT alleviates pyroptosis by regulating the SIRT3/FOXO3α/ROS axis and interacting with apoptosis. Importantly, our understanding of the inhibitory pathways for macrophage pyroptosis will allow us to identify other novel therapeutic targets that will help treat, prevent, and reduce AS-associated mortality.


Assuntos
Aterosclerose , Melatonina , Sirtuína 3 , Camundongos , Humanos , Animais , Melatonina/farmacologia , Piroptose , Espécies Reativas de Oxigênio/metabolismo , Sirtuína 3/metabolismo , Sirtuína 3/farmacologia , Nicotina/farmacologia , Apoptose , Aterosclerose/tratamento farmacológico , Caspases/farmacologia
4.
Antioxidants (Basel) ; 12(11)2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-38001770

RESUMO

Antimony (Sb) is a hazardous metal element that is potentially toxic and carcinogenic. Melatonin (MT) is an indole compound with antioxidant properties that plays an essential role in plant growth and alleviates heavy metal stresses. Nevertheless, little is known about the effects and mechanisms of exogenous MT action on rice under Sb stress. The aim of this experiment was to explore the mechanism of MT reducing Sb toxicity in rice via hydroponics. The results showed that Sb stress significantly inhibited the growth of rice, including biomass, root parameters, and root viability. Exogenous MT obviously alleviated the inhibition of Sb stress on seedling growth and increased biomass, root parameters, and root viability by 15-55%. MT significantly reduced the total Sb content in rice and the subcellular Sb contents in roots by nearly 20-40% and 12.3-54.2% under Sb stress, respectively. MT significantly decreased the contents of malondialdehyde (MDA, by nearly 50%), ROS (H2O2 and O2·-, by nearly 20-30%), and RNS (NO and ONOO-) in roots under Sb stress, thus reducing oxidative stress and cell membrane damage. Furthermore, MT reversed Sb-induced phytotoxicity by increasing the activities of antioxidant enzymes (SOD, POD, CAT, and APX) by nearly 15% to 50% and by regulating the AsA-GSH cycle. In conclusion, this study demonstrates the potential of MT to maintain redox homeostasis and reduce Sb toxicity in rice cells, decreasing the content of Sb in rice and thereby alleviating the inhibition of Sb on rice growth. The results provided a feasible strategy for mitigating Sb toxicity in rice.

5.
Huan Jing Ke Xue ; 44(4): 2356-2364, 2023 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-37040984

RESUMO

To investigate the effect of exogenous application of melatonin (MT) on rice seedlings under antimony (Sb) stress, hydroponic experiments were carried out with rice seedlings (Huarun No.2). The fluorescent probe localization technology was used to locate the reactive oxygen species (ROS) in the root tips of rice seedlings, and the root viability, malondialdehyde (MDA) content, ROS (H2O2 and O2-·) content, antioxidant enzyme (SOD, POD, CAT, and APX) activities, and antioxidant (GSH, GSSG, AsA, and DHA) contents in the roots of rice seedlings were analyzed. The results showed that exogenous addition of MT could alleviate the adverse effects of Sb stress on the growth and increase the biomass of rice seedlings. Compared with the Sb treatment, the application of 100 µmol·L-1 MT increased rice root viability and total root length by 44.1% and 34.7% and reduced the content of MDA, H2O2, and O2-· by 30.0%, 32.7%, and 40.5%, respectively. Further, the MT treatment increased the activities of POD and CAT by 54.1% and 21.8%, respectively, and also regulated the AsA-GSH cycle. This research indicated that exogenous application of 100 µmol·L-1MT can promote the growth and antioxidant ability of rice seedlings and alleviate the damage of lipid peroxidation by Sb stress, thus improving the resistance of rice seedlings under Sb stress.


Assuntos
Melatonina , Oryza , Antioxidantes/metabolismo , Melatonina/farmacologia , Espécies Reativas de Oxigênio , Plântula , Oryza/metabolismo , Antimônio , Estresse Oxidativo , Peróxido de Hidrogênio/farmacologia
6.
J Hazard Mater ; 445: 130529, 2023 03 05.
Artigo em Inglês | MEDLINE | ID: mdl-37055957

RESUMO

Melatonin (MT) is participated in plants' response to cadmium (Cd) tolerance, although its work model remains elusive. Here, the function of MT in adjusting Cd accumulation in rice was investigated. 'Nipponbare' (Nip) was cultured in the -Cd (1/2 Kimura B), -Cd + MT (1/2 Kimura B with 1 µM MT), +Cd (1/2 Kimura B plus 1 µM Cd) and +Cd + MT (1/2 Kimura B with 1 µM Cd and 1 µM MT) nutrient solutions for 7 d. Cd markedly induced the endogenous MT accumulation in rice roots and shoots, even within 1 h. MT applied exogenously elevated the hemicelluloses level, which in turn increased the cell wall's binding capacity to Cd. Furthermore, MT applied exogenously down-regulated the transcription level of Natural Resistance-Associated Macrophage Protein 1 (OsNRAMP1), OsNRAMP5, a major facilitator superfamily gene (OsCd1), and IRON-REGULATED TRANSPORTER 1 (OsIRT1), all of which were responsible for Cd intake, thus less Cd was entered into roots. Moreover, MT applied exogenously also up-regulated transcription level of Cadmium accumulation in Leaf 1 (OsCAL1) and Heavy Metal ATPase 3 (OsHMA3), two genes both attributed to the decreased Cd accumulation in shoots through expelling Cd out of cells and chelating Cd in the vacuoles, respectively. In addition, MT applied exogenously further aggravated the production of nitric oxide (NO) that induced by Cd, while application of a NO donor-SNP mimicked this alleviatory effect of the MT, indicating MT decreased rice Cd accumulation relied on the accumulation of NO.


Assuntos
Melatonina , Oryza , Cádmio/metabolismo , Melatonina/farmacologia , Óxido Nítrico/metabolismo , Oryza/metabolismo , Parede Celular/metabolismo , Raízes de Plantas/metabolismo
7.
Eur J Med Chem ; 245(Pt 2): 114902, 2023 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-36403514

RESUMO

A series of new pyrimidine thioethers, recognized as the key intermediates in the synthesis of S-DABO antivirals, were prepared and evaluated both in vivo and in silico. The purpose of this evaluation was to find novel structural analogues of the known antihypoxic drug Isothiobarbamine endowed with improved pharmacological profile. The in vivo studies led to the identification of compounds 5c, 5e, and 5f endowed with antidepressant/anxiolytic, performance enhancing, and nootropic properties. Compounds 5c and 5f were further tested in mice affected by social depression and were able to increase motor and tentative search activity compared to control groups, along with higher interaction frequency and better results in a sucrose preference test. Overall, these data suggested a better psychoemotional state of the animals, treated with compounds 5c, and 5f. Moreover, 5c and 5f exhibited minimal acute toxicity, lower than Fluoxetine hydrochloride. Molecular modelling studies finally indicated the plausible biomolecular mechanism of action of compounds 5c, 5e, and 5f, which seem to bind GABA-A, melatonin, and sigma-1 receptors. Moreover, three-dimensional structure-activity relationships enabled to define a SAR model that will be of great utility for the design of further structurally optimized compounds of the above mentioned chemotype.


Assuntos
Ansiolíticos , Nootrópicos , Animais , Camundongos , Ansiolíticos/farmacologia , Sulfetos , Antidepressivos/farmacologia , Pirimidinas
8.
Environ Sci Pollut Res Int ; 30(3): 6454-6465, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35997876

RESUMO

Plant hormones play essential roles in plant growth regulation and resistance to environmental pressure. A hydroponic experiment was conducted using Zhongjiazao 17 rice to explore the effects of exogenous plant hormones on antioxidant response and As accumulation in rice under As stress. Melatonin (MT), 2,4-epibrassinolide (EBL), and jasmonic acid (JA) reduced the As content in seedlings significantly by 13.4% (MT)-32.5% (EBL) under 5 µM As stress. Three hormones increased superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, and glutathione (GSH) content significantly (2.2%-82.9%) in 5 µM As stress condition, whereas the levels of H2O2 and malondialdehyde (MDA) were reduced significantly (32.3%-78.1%). Plant hormone addition reduced the As content in seedlings significantly by 18.2% (JA)-33.3% (MT) under 25 µM As stress. SOD, POD, and CAT activities and GSH content in seedlings increased significantly (5.6-90.4%) with three hormones addition in 25 µM As stress, whereas the levels of H2O2, O2˙¯, and MDA reduced significantly (20.9-73.0%). Staining with 2',7'-dichlorodihydrofluorescein diacetate and nitroblue tetrazolium showed that green fluorescence and blue spots decreased gradually in hormone-treated seedlings, further confirming that the exogenous addition of hormones weakened the oxidative stress of As to seedlings. Oxidative damage by As stress was reduced more by EBL than by the other hormones MT or JA. Totally, exogenous plant hormone can alleviate As stress in rice by activating enzyme activity of antioxidant defense system and scavenging reactive oxygen species, thus reducing oxidative damage and As accumulation in rice seedlings.


Assuntos
Melatonina , Oryza , Antioxidantes/metabolismo , Reguladores de Crescimento de Plantas/farmacologia , Peróxido de Hidrogênio/farmacologia , Estresse Oxidativo , Glutationa/metabolismo , Peroxidase/metabolismo , Superóxido Dismutase/metabolismo , Oxirredutases , Melatonina/farmacologia , Peroxidases , Plântula
9.
Biosci Rep ; 42(7)2022 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-35771226

RESUMO

Sleep disorder caused by abnormal circadian rhythm is one of the main symptoms and risk factors of depression. As a known hormone regulating circadian rhythms, melatonin (MT) is also namely N-acetyl-5-methoxytryptamine. N-acetylserotonin methyltransferase (Asmt) is the key rate-limiting enzyme of MT synthesis and has been reportedly associated with depression. Although 50-90% of patients with depression have sleep disorders, there are no effective treatment ways in the clinic. Exercise can regulate circadian rhythm and play an important role in depression treatment. In the present study, we showed that Asmt knockout induced depression-like behaviors, which were ameliorated by swimming exercise. Moreover, swimming exercise increased serum levels of MT and 5-hydroxytryptamine (5-HT) in Asmt knockout mice. In addition, the microarray data identified 10 differentially expressed genes (DEGs) in KO mice compared with WT mice and 29 DEGs in KO mice after swimming exercise. Among the DEGs, the direction and magnitude of change in epidermal growth factor receptor pathway substrate 8-like 1 (Eps8l1) and phospholipase C-ß 2 (Plcb2) were confirmed by qRT-PCR partly. Subsequent bioinformatic analysis showed that these DEGs were enriched significantly in the p53 signaling pathway, long-term depression and estrogen signaling pathway. In the protein-protein interaction (PPI) networks, membrane palmitoylated protein 1 (Mpp1) and p53-induced death domain protein 1 (Pidd1) were hub genes to participate in the pathological mechanisms of depression and exercise intervention. These findings may provide new targets for the treatment of depression.


Assuntos
Acetilserotonina O-Metiltransferasa , Melatonina , Acetilserotonina O-Metiltransferasa/genética , Acetilserotonina O-Metiltransferasa/metabolismo , Animais , Depressão/genética , Hipotálamo/metabolismo , Melatonina/genética , Camundongos , Transcriptoma , Proteína Supressora de Tumor p53/genética
10.
Antioxidants (Basel) ; 11(4)2022 Apr 11.
Artigo em Inglês | MEDLINE | ID: mdl-35453443

RESUMO

The excessive accumulation of copper (Cu2+) has become a threat to worldwide crop production. Recently, it was revealed that melatonin (MT) could play a crucial role against heavy metal (HM) stresses in plants. However, the underlying mechanism of MT function acted upon by Cu2+ stress (CS) has not been substantiated in tomatoes. In the present work, we produced MT-rich tomato plants by foliar usage of MT, and MT-deficient tomato plants by employing a virus-induced gene silencing methodology and exogenous foliar application of MT synthesis inhibitor para-chlorophenylalanine (pCPA). The obtained results indicate that exogenous MT meaningfully alleviated the dwarf phenotype and impeded the reduction in plant growth caused by excess Cu2+. Furthermore, MT effectively restricted the generation of reactive oxygen species (ROS) and habilitated cellular integrity by triggering antioxidant enzyme activities, especially via CAT and APX, but not SOD and POD. In addition, MT increased nonenzymatic antioxidant activity, including FRAP and the GSH/GSSG and ASA/DHA ratios. MT usage improved the expression of several defense genes (CAT, APX, GR and MDHAR) and MT biosynthesis-related genes (TDC, SNAT and COMT). Taken together, our results preliminarily reveal that MT alleviates Cu2+ toxicity via ROS scavenging, enhancing antioxidant capacity when subjected to excessive Cu2+. These results build a solid foundation for developing new insights to solve problems related to CS.

11.
PeerJ ; 10: e13008, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35382008

RESUMO

Dwarfing is a typic breeding trait for mechanical strengthening and relatively high yield in modern apple orchards. Clarification of the mechanisms associated with dwarfing is important for use of molecular technology to breed apple. Herein, we identified four dwarfing apple germplasms in semi-arid area of Xinjiang, China. The internodal distance of these four germplasms were significantly shorter than non-dwarfing control. Their high melatonin (MT) contents are negatively associated with their malondialdehyde (MDA) levels and oxidative damage. In addition, among the detected hormones including auxin (IAA), gibberellin (GA), brassinolide (BR), zeatin-riboside (ZR), and abscisic acid (ABA), only ABA and ZR levels were in good correlation with the dwarfing phenotype. The qPCR results showed that the expression of melatonin synthetic enzyme genes MdASMT1 and MdSNAT5, ABA synthetic enzyme gene MdAAO3 and degradative gene MdCYP707A, ZR synthetic enzyme gene MdIPT5 all correlated well with the enhanced levels of MT, ABA and the reduced level of of ZR in the dwarfing germplasms. Furthermore, the significantly higher expression of ABA marker genes (MdRD22 and MdRD29) and the lower expression of ZR marker genes (MdRR1 and MdRR2) in all the four dwarf germplasms were consistent with the ABA and ZR levels. Considering the yearly long-term drought occurring in Xinjiang, China, it seems that dwarfing with high contents of MT and ABA may be a good strategy for these germplasms to survive against drought stress. This trait of dwarfing may also benefit apple production and breeding in this semi-arid area.


Assuntos
Malus , Melatonina , Ácido Abscísico/metabolismo , Malus/genética , Melhoramento Vegetal , Giberelinas/metabolismo
12.
Transl Androl Urol ; 11(1): 91-103, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35242644

RESUMO

BACKGROUND: Melatonin is a hormone naturally produced by the pineal gland in the brain. In addition to modulating circadian rhythms, it has pleiotropic biological effects including antioxidant, immunomodulatory, and anti-cancer effects. Herein, we report that melatonin has the ability to decrease the growth and metastasis of androgen-dependent prostate cancer. METHODS: To evaluate the anti-cancer effect of melatonin on androgen-sensitive prostate cancer in vitro or in vivo, the effects of cell proliferation, apoptosis, migration and invasion were analyzed by using 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT), colony formation, flow cytometry, Transwell assay, and immunohistochemistry (IHC), respectively. Next, the interaction between androgen receptor (AR) and SUMO specific protease 1 (SENP1) was detected by real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and western blotting, and confirmed by luciferase reporter assay. Furthermore, the Small Ubiquitin-like Modifier (SUMO) proteins are a group of small proteins that are covalently attached to and detached from other proteins in cells to modify their function. (SUMOylation) of histone deacetylases 1 (HDAC1) was measured by proximity ligation assay (PLA). RESULTS: The treatment of melatonin cripples the transcriptional activity of AR, which is essential for the growth of the androgen-dependent prostate cancer cell, LNCaP. The lower activity of AR was dependent on melatonin induced SUMOylation of HDAC1, which has been established as a key factor for the transcriptional activity of AR. Mechanistically, the effect of melatonin on AR was due to the decreased SENP1 protein level and the subsequent increased HDAC1 SUMOylation level. The overexpression of SENP1 abrogated the anti-cancer ability of melatonin on LNCaP cells. CONCLUSIONS: These findings indicate that melatonin is a suppressor of androgen-dependent prostate cancer tumorigenesis.

13.
Aging (Albany NY) ; 13(13): 17930-17947, 2021 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-34228638

RESUMO

Melatonin (MT) is an endogenous hormone mainly synthesized by pineal cells, which has strong endogenous effects of eliminating free radicals and resisting oxidative damages. Melatonin (MT) can not only regulate the body's seasonal and circadian rhythms; but also delay ovarian senescence, regulate ovarian biological rhythm, promote follicles formation, and improve oocyte quality and fertilization rate. This review aimd to provide evidence concerning the synthesis and distribution, ovarian function, and role of MT in development of follicles and oocytes. Moreover, the role of MT as antioxidative, participating in biological rhythm regulation, was also reviewed. Furthermore, the effects of MT on various ovarian related diseases were analyzed, particularly for the ovarian aging and polycystic ovary syndrome (PCOS).


Assuntos
Melatonina/farmacologia , Doenças Ovarianas/prevenção & controle , Ovário/efeitos dos fármacos , Envelhecimento/efeitos dos fármacos , Animais , Antioxidantes/farmacologia , Feminino , Humanos , Melatonina/uso terapêutico , Doenças Ovarianas/tratamento farmacológico , Estimulação Química
14.
Ann Transl Med ; 9(5): 413, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33842634

RESUMO

BACKGROUND: Melatonin (MT) has been shown to protect against various cardiovascular diseases. However, the effect of MT on lipopolysaccharide (LPS)-induced myocardial injury is poorly understood. This study aims to evaluate the effects of MT on LPS-induced myocardial injury in vitro. METHODS: H9C2 cells were divided into a control group, MT group, LPS group, and MT + LPS group. The control group was treated with sterile saline solution, the LPS group received 8 µg/mL LPS for 24 h, MT + LPS cells were pretreated with 200 µmol/L MT for 2 h then with 8 µg/mL LPS for 24 h, and the MT group received only 200 µmol/L MT for 2 h. The CCK-8 assay and lactate dehydrogenase (LDH) activity assay were used to analyze cell viability and LDH release, respectively. Intracellular reactive oxygen species (ROS) and the rate of pyroptosis were measured using the fluorescent probe dichloro-dihydro-fluorescein diacetate (DCFH-DA) and propidium iodide (PI) staining, respectively. The cell supernatants were used to measure the levels of inflammatory cytokines, including IL-6, TNF-α, and IL-1ß by enzyme-linked immunosorbent assay (ELISA). The protein levels of iNOS, COX-2, NF-κB, p-NF-κB, NLRP3, caspase-1, and GSDMD were detected by western blot. RESULTS: MT pretreatment significantly improved LPS-induced myocardial injury by inhibiting inflammation and pyroptosis in H9C2 cells. Moreover, MT inhibited the activation of the NF-κB pathway, and reduced the expression of inflammation-related proteins (iNOS and COX-2), and pyroptosis-related proteins (NLRP3, caspase-1, and GSDMD). CONCLUSIONS: Our data suggests that MT can alleviate LPS-induced myocardial injury, providing novel insights into the treatment of sepsis-induced myocardial dysfunction.

15.
Zhongguo Zhen Jiu ; 40(6): 591-5, 2020 Jun 12.
Artigo em Chinês | MEDLINE | ID: mdl-32538007

RESUMO

OBJECTIVE: To compare the infuences on circadian rhythm of blood pressure in the patients with non-dipper essential hypertension between the combined treatment of time acupuncture and western medication and the simple western medication. METHODS: A total of 70 patients with non-dipper essential hypertension were randomized into an acupuncture plus western medication group (35 cases, 2 cases dropped out) and a western medication group (35 cases). In the western medication group, levamlodipine maleate tablets were taken orally, 2.5 mg each time, once daily. In the acupuncture plus western medication group, on the base of the treatment as the western medication group, acupuncture was applied specially in the period of the day from 7:00 am to 9:00 am. The acupoints included Fengchi (GB 20), Zhongwan (CV 12), Tianshu (ST 25), Hegu (LI 4), Quchi (LI 11), Zusanli (ST 36), etc. Acupuncture was given once daily, 5 treatments a week. The duration of treatment in the two groups was 4 weeks. The clinic blood pressure before and after treatment, 24 h ambulatory blood pressure and the levels of serum melatonin (MT) and 5-serotonin (5-HT) were observed in the two groups. RESULTS: The total effective rate of anti-hypertension was 75.8% (25/33) in the acupuncture plus western medication group, better than 54.3% (19/35) in the western medication group (P<0.05). The 24 h average systolic blood pressure, the daytime average systolic blood pressure, the daytime average diastolic pressure, and the nighttime average systolic blood pressure were all reduced after treatment in the two groups (P<0.05). The reduction effect of the aforementioned 4 indexes in the acupuncture plus western medication group was much more obvious as compared with the western medication group (P<0.05). After treatment, the serum level of MT was increased and 5-HT decreased in the patients of two groups (P<0.05). The serum level of MT in the acupuncture plus western medication group was higher than that in the western medication group and the level of 5-HT was lower than the western medication group (P<0.05). CONCLUSION: Time acupuncture therapy in the period of the day from 7:00 am to 9:00 am, combined with western medication effectively reduce blood pressure and regulate the levels of serum MT and 5-HT so as to maintain the circadian rhythm of blood pressure in patients with non-dipper essential hypertension. The therapeutic effect of this combined treatment is superior to simple western medication.


Assuntos
Terapia por Acupuntura , Hipertensão Essencial/terapia , Periodicidade , Pontos de Acupuntura , Pressão Sanguínea , Monitorização Ambulatorial da Pressão Arterial , Ritmo Circadiano , Humanos
16.
Cells ; 9(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31936298

RESUMO

BACKGROUND: Experiments in the late nineties showed an inverse relationship in the eye levels of melatonin and dopamine, thereby constituting an example of eye parameters that are prone to circadian variations. The underlying mechanisms are not known but these relevant molecules act via specific cell surface dopamine and melatonin receptors. This study investigated whether these receptors formed heteromers whose function impact on eye physiology. We performed biophysical assays to identify interactions in heterologous systems. Particular heteromer functionality was detected using Gi coupling, MAPK activation, and label-free assays. The expression of the heteroreceptor complexes was assessed using proximity ligation assays in cells producing the aqueous humor and human eye samples. Dopamine D3 receptors (D3Rs) were identified in eye ciliary body epithelial cells. We discovered heteromers formed by D3R and either MT1 (MT1R) or MT2 (MT2R) melatonin receptors. Heteromerization led to the blockade of D3R-Gi coupling and regulation of signaling to the MAPK pathway. Heteromer expression was negatively correlated with intraocular hypertension. CONCLUSIONS: Heteromers likely mediate melatonin and dopamine actions in structures regulating intraocular pressure. Significant expression of D3R-MT1R and D3R-MT1R was associated with normotensive conditions, whereas expression diminished in a cell model of hypertension. A clear trend of expression reduction was observed in samples from glaucoma cases. The trend was marked but no statistical analysis was possible as the number of available eyes was 2.


Assuntos
Corpo Ciliar/metabolismo , Células Epiteliais/metabolismo , Glaucoma/patologia , Hipertensão Ocular/patologia , Receptor MT1 de Melatonina/metabolismo , Receptor MT2 de Melatonina/metabolismo , Receptores de Dopamina D3/metabolismo , Estudos de Casos e Controles , Glaucoma/metabolismo , Células HEK293 , Humanos , Hipertensão Ocular/metabolismo , Multimerização Proteica
17.
Eur Neuropsychopharmacol ; 27(8): 828-832, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28648552

RESUMO

We have reported that the anticonvulsant/mood stabilizer and histone deacetylase (HDAC) inhibitor valproate (VPA) induces expression of melatonin receptors both in vitro and in vivo, but the mechanisms involved were not known. Here we show that pharmacological inhibition of CREB, PKC, PI3K, or GSK3ß signaling pathways, which are known targets for VPA, do not prevent its upregulation of melatonin MT1 receptors in rat C6 glioma cells. M344, an HDAC inhibitor unrelated to VPA, mimics the effects of VPA on MT1 expression, whereas valpromide, a VPA derivative lacking HDAC inhibitory activity, does not. Furthermore, VPA, at a concentration which upregulates the MT1 receptor, induces histone H3 hyperacetylation along the length of the MT1 receptor promoter. These results show that an epigenetic mechanism involving histone acetylation underlies induction of MT1 receptor expression by VPA. Given the neuropsychiatric effects of melatonin coupled with evidence that VPA upregulates melatonin receptors in the rat brain, these findings suggest that the melatonergic system contributes to the psychotropic effects of VPA.


Assuntos
Anticonvulsivantes/farmacologia , Epigênese Genética/efeitos dos fármacos , Receptor MT1 de Melatonina/metabolismo , Ácido Valproico/farmacologia , Animais , Proteína de Ligação a CREB/metabolismo , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Glioma/patologia , Histonas/metabolismo , Ácidos Hidroxâmicos/farmacologia , RNA Mensageiro/metabolismo , Ratos , Receptor MT1 de Melatonina/genética , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Vorinostat
18.
Huan Jing Ke Xue ; 38(4): 1675-1682, 2017 Apr 08.
Artigo em Chinês | MEDLINE | ID: mdl-29965173

RESUMO

The alleviation effect of exogenous melatonin (MT) on Ni toxicity in rice seedings was investigated. The results showed that low concentration of Ni stress (10, 50 µmol·L-1) had little effect on the growth of root of rice seedings, while higher concentration of Ni stress (100-1000 µmol·L-1) significantly inhibited the growth of rice root. Compared with the control treatment, the addition of 100 and 1000 µmol·L-1 Ni would decrease the total length and surface area of root by 63.3%-98.0% and 56.9%-96.3%, respectively. The results showed that addition of exogenous melatonin had a positive effect on the growth of rice seedings under Ni stress. This kind of positive effect was even more obvious in the root of rice seedings. The total length of rice root decreased by 58.4%-83.8% at Ni concentration of 100 µmol·L-1, whereas it decreased by only 8.7%-29.1% when 100 µmol·L-1 Ni and 10 µmol·L-1 MT were added, compared with the control treatment. The addition of exogenous melatonin had significant alleviation effects on oxidative stress in rice seedings caused by Ni. Compared with the 100 µmol·L-1Ni treatment, addition of 10 µmol·L-1 exogenous MT could significantly decrease the production rate of O2-· by 43.2%-50.2% and the relative electrolytic leakage by 25.7%-31.6%, whereas increase the activities of CAT by 21.9%-33.7% and the soluble protein content by 82.6%-84.6%. The results suggested that application of exogenous melatonin could effectively alleviate the toxic effects of Ni on rice seedings.


Assuntos
Melatonina/farmacologia , Níquel/toxicidade , Oryza/efeitos dos fármacos , Estresse Oxidativo , Poluentes do Solo/toxicidade , Raízes de Plantas/efeitos dos fármacos , Plântula/efeitos dos fármacos
19.
Brain Res ; 1652: 89-96, 2016 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-27693415

RESUMO

The indoleamine hormone melatonin protects dopamine neurons in the rat nigrostriatal pathway following 6-hydroxydopamine lesioning, and an increase in striatal melatonin levels has been detected in this model of Parkinson's disease. Melatonin induces the expression of tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, in the ventral midbrain, where G protein-coupled melatonin receptors are present. Based on the interaction between the melatonergic and dopaminergic systems, we hypothesized that 6-hydroxydopamine-induced degeneration of dopamine neurons would affect the expression of melatonin receptors in the nigrostriatal pathway. Following unilateral injection of 6-hydroxydopamine into the rat striatum or medial forebrain bundle, there was a significant increase in apomorphine-induced contralateral rotations in lesioned animals as compared to sham controls. A loss of tyrosine hydroxylase immunoreactivity and/or immunofluorescence in the striatum and substantia nigra was seen in animals lesioned in either the striatum or medial forebrain bundle, indicating degeneration of dopamine neurons. There were no significant differences in melatonin MT1 receptor protein expression in the striatum or substantia nigra, between intrastriatally lesioned animals and sham controls. In contrast, lesions in the medial forebrain bundle caused a significant increase in MT1 receptor mRNA expression (p<0.03) on the lesioned side of the ventral midbrain, as compared with the contralateral side. Given the presence of MT1 receptors on neurons in the ventral midbrain, these results suggest that a compensatory increase in MT1 transcription occurs to maintain expression of this receptor and neuroprotective melatonergic signaling in the injured brain.


Assuntos
Corpo Estriado/metabolismo , Transtornos Parkinsonianos/metabolismo , Receptor MT1 de Melatonina/metabolismo , Substância Negra/metabolismo , Animais , Apomorfina/farmacologia , Western Blotting , Corpo Estriado/patologia , Agonistas de Dopamina/farmacologia , Neurônios Dopaminérgicos/metabolismo , Neurônios Dopaminérgicos/patologia , Imunofluorescência , Masculino , Feixe Prosencefálico Mediano , Atividade Motora/efeitos dos fármacos , Atividade Motora/fisiologia , Oxidopamina , Transtornos Parkinsonianos/patologia , Reação em Cadeia da Polimerase , RNA Mensageiro/metabolismo , Distribuição Aleatória , Ratos Sprague-Dawley , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo
20.
Artigo em Inglês | MEDLINE | ID: mdl-26938543

RESUMO

Individuals afflicted with occupational formaldehyde (FA) exposure often suffer from abnormal behaviors such as aggression, depression, anxiety, sleep disorders, and in particular, cognitive impairments. Coincidentally, clinical patients with melatonin (MT) deficiency also complain of cognitive problems associated with the above mental disorders. Whether and how FA affects endogenous MT metabolism and induces cognitive decline need to be elucidated. To mimic occupational FA exposure environment, 16 healthy adult male mice were exposed to gaseous FA (3 mg/m³) for 7 consecutive days. Results showed that FA exposure impaired spatial memory associated with hippocampal neuronal death. Biochemical analysis revealed that FA exposure elicited an intensive oxidative stress by reducing systemic glutathione levels, in particular, decreasing brain MT concentrations. Inversely, intraperitoneal injection of MT markedly attenuated FA-induced hippocampal neuronal death, restored brain MT levels, and reversed memory decline. At tissue levels, injection of FA into the hippocampus distinctly reduced brain MT concentrations. Furthermore, at cellular and molecular levels, we found that FA directly inactivated MT in vitro and in vivo. These findings suggest that MT supplementation contributes to the rescue of cognitive decline, and may alleviate mental disorders in the occupational FA-exposed human populations.


Assuntos
Encéfalo/efeitos dos fármacos , Transtornos Cognitivos/etiologia , Cognição/efeitos dos fármacos , Formaldeído/efeitos adversos , Hipocampo/efeitos dos fármacos , Melatonina/fisiologia , Memória/efeitos dos fármacos , Hipersensibilidade Respiratória/fisiopatologia , Adulto , Animais , Humanos , Masculino , Camundongos , Exposição Ocupacional , Estresse Oxidativo/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA