Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(9)2022 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-35563452

RESUMO

We investigated the feasibility of detecting the presence of specific autoantibodies against potential tumor-associated peptide antigens by enriching these antibody-peptide complexes using Melon Gel resin and mass spectrometry. Our goal was to find tumor-associated phospho-sites that trigger immunoreactions and raise autoantibodies that are detectable in plasma of glioma patients. Such immunoglobulins can potentially be used as targets in immunotherapy. To that aim, we describe a method to detect the presence of antibodies in biological samples that are specific to selected clinically relevant peptides. The method is based on the formation of antibody-peptide complexes by mixing patient plasma with a glioblastoma multiforme (GBM) derived peptide library, enrichment of antibodies and antibody-peptide complexes, the separation of peptides after they are released from immunoglobulins by molecular weight filtration and finally mass spectrometric quantification of these peptides. As proof of concept, we successfully applied the method to dinitrophenyl (DNP)-labeled α-casein peptides mixed with anti-DNP. Further, we incubated human plasma with a phospho-peptide library and conducted targeted analysis on EGFR and GFAP phospho-peptides. As a result, immunoaffinity against phospho-peptide GSHQIS[+80]LDNPDYQQDFFPK (EGFR phospho-site S1166) was detected in high-grade glioma (HGG) patient plasma but not in healthy donor plasma. For the GFAP phospho-sites selected, such immunoaffinity was not observed.


Assuntos
Anticorpos , Receptores ErbB , Glioma , Peptídeos , Anticorpos/química , Autoanticorpos , Bioensaio , Receptores ErbB/química , Receptores ErbB/metabolismo , Glioma/imunologia , Glioma/metabolismo , Humanos , Imunoglobulinas/química , Imunoglobulinas/metabolismo , Biblioteca de Peptídeos , Peptídeos/química , Fosfopeptídeos/química , Ligação Proteica
2.
Front Immunol ; 10: 2415, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31681303

RESUMO

Evaluating the biophysical and functional nature of IgG is key to defining correlates of protection in infectious disease, and autoimmunity research cohorts, as well as vaccine efficacy trials. These studies often require small quantities of IgG to be purified from plasma for downstream analysis with high throughput immunoaffinity formats which elute IgG at low-pH, such as Protein G and Protein A. Herein we sought to compare Protein G purification of IgG with an immunoaffinity method which elutes at physiological pH (Melon Gel). Critical factors impacting Fc functionality with the potential to significantly influence FcγR binding, such as IgG subclass distribution, N-glycosylation, aggregation, and IgG conformational changes were investigated and compared. We observed that transient exposure of IgG to the low-pH elution buffer, used during the Protein G purification process, artificially enhanced recognition of Fcγ Receptors (FcγRs) as demonstrated by Surface Plasmon Resonance (SPR), FcγR dimer ELISA, and a functional cell-based assay. Furthermore, low-pH exposed IgG caused conformational changes resulting in increased aggregation and hydrophobicity; factors likely to contribute to the observed enhanced interaction with FcγRs. These results highlight that methods employed to purify IgG can significantly alter FcγR-binding behavior and biological activity and suggest that the IgG purification approach selected may be a previously overlooked factor contributing to the poor reproducibility across current assays employed to evaluate Fc-mediated antibody effector functions.


Assuntos
Concentração de Íons de Hidrogênio , Fragmentos Fc das Imunoglobulinas/metabolismo , Imunoglobulina G/isolamento & purificação , Imunoglobulina G/metabolismo , Receptores de IgG/metabolismo , Afinidade de Anticorpos , Cromatografia Líquida , Glicosilação , Humanos , Interações Hidrofóbicas e Hidrofílicas , Fragmentos Fc das Imunoglobulinas/imunologia , Imunoglobulina G/química , Imunoglobulina G/imunologia , Isotipos de Imunoglobulinas , Cinética , Espectrometria de Massas , Fagocitose , Ligação Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA