RESUMO
Mammalian membranous and soluble adenylyl cyclases (mAC, sAC) and soluble guanylyl cyclases (sGC) generate cAMP and cGMP from ATP and GTP, respectively, as substrates. mACs (nine human isoenzymes), sAC, and sGC differ in their overall structures owing to specific membrane-spanning and regulatory domains but consist of two similarly folded catalytic domains C1 and C2 with high structure-based homology between the cyclase species. Comparison of available crystal structures - VC1:IIC2 (a construct of domains C1a from dog mAC5 and C2a from rat mAC2), human sAC and sGC, mostly in complex with substrates, substrate analogs, inhibitors, metal ions, and/or modulators - reveals that especially the nucleotide binding sites are closely related. An evolutionarily well-conserved catalytic mechanism is based on common binding modes, interactions, and structural transformations, including the participation of two metal ions in catalysis. Nucleobase selectivity relies on only few mutations. Since in all cases the nucleoside moiety is embedded in a relatively spacious cavity, mACs, sAC, and sGC are rather promiscuous and bind nearly all purine and pyrimidine nucleotides, including CTP and UTP, and many of their derivatives as inhibitors with often high affinity. By contrast, substrate specificity of mammalian adenylyl and guanylyl cyclases is high due to selective dynamic rearrangements during turnover.
Assuntos
Adenilil Ciclases/metabolismo , Guanilil Ciclase Solúvel/metabolismo , Adenilil Ciclases/química , Animais , Sítios de Ligação , Catálise , Domínio Catalítico , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Sistemas do Segundo Mensageiro , Guanilil Ciclase Solúvel/química , Relação Estrutura-Atividade , Especificidade por SubstratoRESUMO
Intact HEK293 cells and B103 neuroblastoma cells possess high basal concentrations of the established second messengers cAMP and cGMP and of the emerging second messengers cCMP and cUMP. We asked the question which nucleotidyl cyclase accounts for the high basal cNMP concentrations. Activators and inhibitors of soluble guanylyl cyclase had no major effects on cNMPs, and the activator of membranous adenylyl cyclase forskolin increased only cAMP. Addition of bicarbonate to medium increased, whereas removal of bicarbonate decreased levels of all four cNMPs. The inhibitor of soluble adenylyl cyclase, 2-(1H-benzo[d]imidazol-2-ylthio)-N'-(5-bromo-2-hydroxybenzylidene) propanehydrazide (KH7), reduced bicarbonate-stimulated cNMPs. In conclusion, bicarbonate-stimulated soluble adenylyl cyclase plays an important role in the regulation of basal cellular cNMP levels, most notably cCMP and cUMP.