Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Mol Ther ; 32(7): 2113-2129, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38788710

RESUMO

Sepsis-associated encephalopathy (SAE) is a frequent complication of severe systemic infection resulting in delirium, premature death, and long-term cognitive impairment. We closely mimicked SAE in a murine peritoneal contamination and infection (PCI) model. We found long-lasting synaptic pathology in the hippocampus including defective long-term synaptic plasticity, reduction of mature neuronal dendritic spines, and severely affected excitatory neurotransmission. Genes related to synaptic signaling, including the gene for activity-regulated cytoskeleton-associated protein (Arc/Arg3.1) and members of the transcription-regulatory EGR gene family, were downregulated. At the protein level, ARC expression and mitogen-activated protein kinase signaling in the brain were affected. For targeted rescue we used adeno-associated virus-mediated overexpression of ARC in the hippocampus in vivo. This recovered defective synaptic plasticity and improved memory dysfunction. Using the enriched environment paradigm as a non-invasive rescue intervention, we found improvement of defective long-term potentiation, memory, and anxiety. The beneficial effects of an enriched environment were accompanied by an increase in brain-derived neurotrophic factor (BDNF) and ARC expression in the hippocampus, suggesting that activation of the BDNF-TrkB pathway leads to restoration of the PCI-induced reduction of ARC. Collectively, our findings identify synaptic pathomechanisms underlying SAE and provide a conceptual approach to target SAE-induced synaptic dysfunction with potential therapeutic applications to patients with SAE.


Assuntos
Fator Neurotrófico Derivado do Encéfalo , Disfunção Cognitiva , Proteínas do Citoesqueleto , Modelos Animais de Doenças , Hipocampo , Plasticidade Neuronal , Encefalopatia Associada a Sepse , Animais , Camundongos , Disfunção Cognitiva/etiologia , Disfunção Cognitiva/metabolismo , Disfunção Cognitiva/terapia , Disfunção Cognitiva/genética , Encefalopatia Associada a Sepse/metabolismo , Encefalopatia Associada a Sepse/etiologia , Encefalopatia Associada a Sepse/terapia , Encefalopatia Associada a Sepse/genética , Hipocampo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dependovirus/genética , Masculino , Potenciação de Longa Duração , Receptor trkB/metabolismo , Receptor trkB/genética , Vetores Genéticos/administração & dosagem , Vetores Genéticos/genética , Sinapses/metabolismo
2.
Mol Neurobiol ; 2024 May 27.
Artigo em Inglês | MEDLINE | ID: mdl-38801629

RESUMO

Dementia is a syndrome exhibiting progressive impairments on cognition and behavior beyond the normal course of aging, and Alzheimer's disease (AD) is one of the neurodegenerative diseases known to cause dementia. We investigated the effect of KGC07EH, the 30% ethanol extract of Euonymus hamiltonianus, against amyloid-ß (Aß) production and cognitive dysfunction in dementia models. KGC07EH was treated on Hela cells expressing the Swedish mutant form of amyloid precursor protein (APP), and the AD triple transgenic (3× TG) mice were given KGC07EH orally during 11-14 months of age (100 and 300 mg/kg/day). SH-SY5Y cell line was used to test KGC07EH on scopolamine-induced elevation of acetylcholinesterase (AChE) activity. ICR mice were intraperitoneally injected with scopolamine, and KGC07EH was administered orally (50, 100, and 200 mg/kg/day) for 4 weeks. KGC07EH treatment decreased Aß, sAPPß-sw, and sAPPß-wt levels and APP protein expressions while sAPPα was increased in Swedish mutant-transfected HeLa cells. KGC07EH treatment also significantly reduced the accumulation of Aß plaques and tau tangles in the brain of 3× TG mice as well as improving the cognitive function. In SH-SY5Y cells cultured with scopolamine, KGC07EH dose-dependently attenuated the increase of AChE activity. KGC07EH also improved scopolamine-induced learning and memory impairment in scopolamine-injected mice, and in their cerebral cortex and hippocampus, the expression levels of p-ERK, p-CREB, p-Akt, and BDNF were attenuated. KGC07EH inhibits APP processing and Aß production both in vitro and in vivo, while enhancing acetylcholine signaling and cognitive dysfunction which are the major symptoms of dementia.

3.
Brain Behav ; 14(5): e3502, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38680072

RESUMO

OBJECTIVE: Orofacial pain with high prevalence is one of the substantial human health issues. The importance of this matter became more apparent when it was revealed that orofacial pain, directly and indirectly, affects cognition performances. Currently, researchers have focused on investigating pharmaceutics to alleviate pain and ameliorate its subsequent cognitive impairments. DESIGN: In this study, the rats were first treated with the central administration of methyl jasmonate (MeJA), which is an antioxidant and anti-inflammatory bio-compound. After 20 min, orofacial pain was induced in the rats by the injection of capsaicin in their dental pulp. Subsequently, the animals' pain behaviors were analyzed, and the effects of pain and MeJA treatments on rats learning and memory were evaluated/compared using the Morris water maze (MWM) test. In addition, the expression of tumor necrosis factor-α (TNF-α), IL-1ß, BDNF, and COX-2 genes in the rats' hippocampus was evaluated using real-time polymerase chain reaction. RESULTS: Experiencing orofacial pain resulted in a significant decline in the rats learning and memory. However, the central administration of 20 µg/rat of MeJA effectively mitigated these impairments. In the MWM, the performance of the MeJA-treated rats showed a two- to threefold improvement compared to the nontreated ones. Moreover, in the hippocampus of pain-induced rats, the expression of pro-inflammatory factors TNF-α, IL-1ß, and COX-2 significantly increased, whereas the BDNF expression decreased. In contrast, MeJA downregulated the pro-inflammatory factors and upregulated the BDNF by more than 50%. CONCLUSIONS: These findings highlight the notable antinociceptive potential of MeJA and its ability to inhibit pain-induced learning and memory dysfunction through its anti-inflammatory effect.


Assuntos
Acetatos , Ciclopentanos , Hipocampo , Doenças Neuroinflamatórias , Oxilipinas , Animais , Oxilipinas/farmacologia , Oxilipinas/administração & dosagem , Ciclopentanos/farmacologia , Ciclopentanos/administração & dosagem , Acetatos/farmacologia , Acetatos/administração & dosagem , Ratos , Masculino , Doenças Neuroinflamatórias/tratamento farmacológico , Hipocampo/metabolismo , Hipocampo/efeitos dos fármacos , Dor Facial/tratamento farmacológico , Transtornos da Memória/tratamento farmacológico , Transtornos da Memória/etiologia , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/administração & dosagem , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Aprendizagem em Labirinto/efeitos dos fármacos , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/genética , Ratos Wistar
4.
Cell Biosci ; 14(1): 48, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627830

RESUMO

BACKGROUND: Stress is a recognized risk factor for cognitive decline, which triggers neuroinflammation involving microglial activation. However, the specific mechanism for microglial activation under stress and affects learning and memory remains unclear. METHODS: The chronic stress mouse model was utilized to explore the relationship between microglial activation and spatial memory impairment. The effect of hippocampal hyperglycemia on microglial activation was evaluated through hippocampal glucose-infusion and the incubation of BV2 cells with high glucose. The gain-and loss-of-function experiments were conducted to investigate the role of GLUT1 in microglial proinflammatory activation. An adeno-associated virus (AAV) was employed to specifically knockdown of GLUT1 in hippocampal microglia to assess its impact on stressed-mice. RESULTS: Herein, we found that chronic stress induced remarkable hippocampal microglial proinflammatory activation and neuroinflammation, which were involved in the development of stress-related spatial learning and memory impairment. Mechanistically, elevated hippocampal glucose level post-stress was revealed to be a key regulator of proinflammatory microglial activation via specifically increasing the expression of microglial GLUT1. GLUT1 overexpression promoted microglial proinflammatory phenotype while inhibiting GLUT1 function mitigated this effect under high glucose. Furthermore, specific downregulation of hippocampal microglial GLUT1 in stressed-mice relieved microglial proinflammatory activation, neuroinflammation, and spatial learning and memory injury. Finally, the NF-κB signaling pathway was demonstrated to be involved in the regulatory effect of GLUT1 on microglia. CONCLUSIONS: We demonstrate that elevated glucose and GLUT1 expression induce microglia proinflammatory activation, contributing to stress-associated spatial memory dysfunction. These findings highlight significant interplay between metabolism and inflammation, presenting a possible therapeutic target for stress-related cognitive disorders.

5.
Metab Brain Dis ; 38(8): 2773-2796, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37821784

RESUMO

Diabetes-associated cognitive dysfunction is linked to chronic hyperglycemia, oxidative stress, inflammation, cholinergic dysfunction, and neuronal degeneration. We investigated the antidiabetic and neuroprotective activity of a mixture of Sclerocarya birrea, Nauclea latifolia, and Piper longum (SNP) in type 2 diabetic (T2D) rat model-induced memory impairment. Fructose (10%) and streptozotocin (35 mg/kg) were used to induce T2D in male Wistar rats. Diabetic animals received distilled water, metformin (200 mg/kg), or SNP mixture (75, 150, or 300 mg/kg). HPLC-MS profiling of the mixture was performed. Behavioral testing was conducted using the Y-maze, NORT, and Morris water mazes to assess learning and memory. Biochemical markers were evaluated, including carbohydrate metabolism, oxidative/nitrative stress, pro-inflammatory markers, and acetylcholinesterase activity. Histopathological examination of the pancreas and hippocampus was also performed. Fructose/STZ administration resulted in T2D, impaired short- and long-term memory, significantly increased oxidative/nitrative stress, pro-inflammatory cytokine levels, acetylcholinesterase activity (AChE), hippocampal neuronal loss and degeneration in CA1 and CA3 subfields, and neuronal vacuolation in DG. SNP mixture at 150 and 300 mg/kg significantly improved blood glucose and memory function in diabetic rats. The mixture reduced oxidative/nitrative stress and increased endogenous antioxidant levels. It also reduced serum IL-1ß, INF-γ and TNF-α levels and ameliorated AChE activity. Histologically, SNP protected hippocampus neurons against T2D-induced neuronal necrosis and degeneration. We conclude that the aqueous extract of SNP mixture has antidiabetic and neuroprotective activities thanks to active metabolites identified in the plant mixture, which consequently normalized blood glucose, protected hippocampus neurons, and improved memory function in diabetic rats.


Assuntos
Anacardiaceae , Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Rubiaceae , Ratos , Animais , Ratos Wistar , Acetilcolinesterase/metabolismo , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/induzido quimicamente , Glicemia , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/metabolismo , Hipoglicemiantes/efeitos adversos , Estresse Oxidativo , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Anacardiaceae/metabolismo , Rubiaceae/metabolismo , Frutose/efeitos adversos , Estreptozocina/farmacologia , Aprendizagem em Labirinto , Hipocampo/metabolismo
6.
BMC Complement Med Ther ; 23(1): 294, 2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37608290

RESUMO

BACKGROUND: Amyloid-ß1-42 (Aß1-42) plays an essential role in the development of the early stage of Alzheimer's disease (AD). Asiatic acid (AA), an active compound in Centella asiatica L, exhibit neuroprotective properties in previous studies. Due to its low bioavailability, the nose-to-brain delivery technique was used to enhance AA penetration in the brain. In this study, AA was also loaded in solid lipid nanoparticles (SLNs) as a strategy to increase its absorption in the nasal cavity. METHODS: Memory impairment was induced via direct intracerebroventricular injection of Aß1-42 oligomer into mouse brain. The neuroprotective effect and potential underlying mechanisms were investigated using several memory behavioral examinations and molecular techniques. RESULTS: The intranasal administration of AA in SLNs attenuated learning and memory impairment induced by Aß1-42 in Morris water maze and novel object recognition tests. AA significantly inhibited tau hyperphosphorylation of pTau-S396 and pTau-T231 and prevented astrocyte reactivity and microglial activation in the hippocampus of Aß1-42-treated mice. It is also decreased the high levels of IL-1ß, TNF-α, and malondialdehyde (MDA) in mouse brain. CONCLUSIONS: These results suggested that nose-to-brain delivery of AA in SLNs could be a promising strategy to treat the early stage of AD.


Assuntos
Doença de Alzheimer , Fármacos Neuroprotetores , Animais , Camundongos , Peptídeos beta-Amiloides/toxicidade , Fármacos Neuroprotetores/farmacologia , Encéfalo , Doença de Alzheimer/tratamento farmacológico
7.
Ecotoxicol Environ Saf ; 259: 115035, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37224779

RESUMO

Approximately 400 million people work and live in high-altitude areas and suffer from memory dysfunction worldwide. Until now, the role of the intestinal flora in plateau-induced brain damage has rarely been reported. To address this, we investigated the effect of intestinal flora on spatial memory impairment induced by high altitudes based on the microbiome-gut-brain axis theory. C57BL/6 mice were divided into three groups: control, high-altitude (HA), and high-altitude antibiotic treatment (HAA) group. The HA and HAA groups were exposed to a low-pressure oxygen chamber that simulated an altitude of 4000 m above sea level (m. a. s.l.) for 14 days, with the air pressure in the chamber set at 60-65 kPa. The results showed that spatial memory dysfunction induced by the high-altitude environment was aggravated by antibiotic treatment, manifesting as lowered escape latency and hippocampal memory-related proteins (BDNF and PSD-95). 16 S rRNA sequencing showed a remarkable separation of the ileal microbiota among the three groups. Antibiotic treatment exacerbated the reduced richness and diversity of the ileal microbiota in mice in the HA group. Lactobacillaceae were the main target bacteria and were significantly reduced in the HA group, which was exacerbated by antibiotic treatment. Meanwhile, reduced intestinal permeability and ileal immune function in mice exposed high-altitude environment was also aggravated by antibiotic treatment, as indicated by the lowered tight junction proteins and IL-1ß and IFN-γ levels. Furthermore, indicator species analysis and Netshift co-analysis revealed that Lactobacillaceae (ASV11) and Corynebacteriaceae (ASV78, ASV25, and ASV47) play important roles in high-altitude exposure-induced memory dysfunction. Interestingly, ASV78 was negatively correlated with IL-1ß and IFN-γ levels, indicating that ASV78 may be induced by reduced ileal immune function, which mediates high-altitude environment exposure-induced memory dysfunction. This study provides evidence that the intestinal flora is effective in preventing brain dysfunction caused by exposure to high-altitude environments, suggesting a relationship between the microbiome-gut-brain axis and altitude exposure.


Assuntos
Microbioma Gastrointestinal , Animais , Camundongos , Eixo Encéfalo-Intestino , Altitude , Memória Espacial , Camundongos Endogâmicos C57BL , Antibacterianos/farmacologia
8.
Cent Nerv Syst Agents Med Chem ; 22(3): 214-227, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36305148

RESUMO

BACKGROUND: Ellagic acid (EA) has various pharmacological effects such as antiinflammatory and anti-oxidant effects. OBJECTIVE: This study aimed to investigate the effects of EA on learning and memory dysfunction as well as oxidative stress in scopolamine-induced amnesic rats. METHODS: The studied rats were treated according to the following protocol: Control (group 1) and scopolamine (group 2) groups received saline (intraperitoneal injection (i.p.)) while the treatment groups (group 3-5) were given EA (25, 50, and 100 mg/kg, i.p.) for 3 weeks. Thereafter, their behavioral performance was evaluated using Morris water maze (MWM) and passive avoidance (PA) tasks. Notably, scopolamine was injected (into groups II-V at a dose of 2 mg/kg, i.p.) before conducting the tasks. Finally, the oxidative stress indicators in the brain were measured. RESULTS: EA reduced the escape latencies and distances during the learning phase of MWM. The results of probe trials also indicated that EA improved memory retrieval and helped animals recall the platform. Moreover, EA increased delay and light time, while decreasing the frequency of entries to the dark area of PA. In the EA-treated groups, the level of malondialdehyde was decreased, while the levels of total thiol groups, superoxide dismutase, and catalase were increased. CONCLUSION: EA prevented the negative effects of scopolamine on learning and memory which is probably mediated via modulating oxidative stress. Hence, EA could be considered as a potential alternative therapy for dementia.


Assuntos
Doença de Alzheimer , Escopolamina , Ratos , Animais , Escopolamina/toxicidade , Ácido Elágico/efeitos adversos , Doença de Alzheimer/induzido quimicamente , Doença de Alzheimer/tratamento farmacológico , Aprendizagem em Labirinto , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Estresse Oxidativo , Hipocampo
9.
Front Cell Neurosci ; 16: 971100, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36072565

RESUMO

This study aimed to explore the mechanism underlying cognitive dysfunction mediated by the lateral hypothalamic area (LHA) in a hypothalamic-hippocampal circuit in rats with lesion-induced hypothalamic obesity (HO). The HO model was established by electrically lesioning the hypothalamic nuclei. The open field (OP) test, Morris water maze (MWM), novel object recognition (NOR), and novel object location memory (NLM) tests were used to evaluate changes in cognition due to alterations in the hypothalamic-hippocampal circuit. Western blotting, immunohistochemical staining, and cholera toxin subunit B conjugated with Alexa Fluor 488 (CTB488) reverse tracer technology were used to determine synaptophysin (SYN), postsynaptic density protein 95 (PSD95), ionized calcium binding adaptor molecule 1 (Iba1), neuronal nuclear protein (NeuN), and Caspase3 expression levels and the hypothalamic-hippocampal circuit. In HO rats, severe obesity was associated with cognitive dysfunction after the lesion of the hypothalamus. Furthermore, neuronal apoptosis and activated microglia in the downstream of the lesion area (the LHA) induced microglial infiltration into the intact hippocampus via the LHA-hippocampal circuit, and the synapses engulfment in the hippocampus may be the underlying mechanism by which the remodeled microglial mediates memory impairments in HO rats. The HO rats exhibited microglial infiltration and synapse loss into the hippocampus from the lesioned LHA via the hypothalamic-hippocampal circuit. The underlying mechanisms of memory function may be related to the circuit.

10.
Metab Brain Dis ; 37(7): 2375-2388, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35781592

RESUMO

Cognitive impairment is considered as a typical feature of neurodegenerative diseases in diabetes mellitus (DM). However, the exact link between cognitive dysfunction and diabetes mellitus is still vague. This study aims to investigate some of the mechanisms underlying cognitive impairment that associates diabetes mellitus and insulin resistance. We investigated the role of resveratrol as well on cognitive function in experimentally induced type 2 diabetes highlighting on its influence on the expression of brain miRNA 21. Resveratrol is a naturally occurring, biologically active compound that has numerous significant impacts on the body. Type 2 diabetes mellitus was induced by high fat diet followed a single dose of streptozotocin. Diabetic rats were treated with resveratrol for four weeks. Rats were sacrificed after neurobehavioral testing. Hippocampal tissues were used to assess expression of miRNA 21, GSK and oxidative stress markers. Serum samples were obtained to determine glucose levels, lipid profile and insulin levels. Hippocampal and serum AGEs were measured as well and HOMA IR was calculated. We detected memory impairment and disturbed insulin signaling in diabetic rats. These derangements were reversed by resveratrol treatment partially due to increased expression of miRNA-21. Our study pins the role of miRNA-21 in modulating brain insulin signaling and hence alleviating cognitive dysfunction accompanying diabetes mellitus.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , MicroRNAs , Ratos , Animais , Estreptozocina , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Diabetes Mellitus Tipo 2/complicações , Diabetes Mellitus Tipo 2/tratamento farmacológico , Diabetes Mellitus Experimental/complicações , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/metabolismo , Disfunção Cognitiva/tratamento farmacológico , Disfunção Cognitiva/complicações , Insulina/uso terapêutico , Glucose , Lipídeos
11.
Transl Neurosci ; 13(1): 104-115, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-35734308

RESUMO

Objective: Several lines of evidence demonstrated the role of anesthetic drugs in cognitive functions. Some anesthetic agents have been confirmed to be associated with long-term spatial memory and learning in aged animal models. Methods: C57BL/6 mice were divided into four different groups based on different concentrations of remimazolam treatments. Behavioral phenotype was observed by open field, rota rod, Morris water maze, and elevated plus maze test. Western blot was performed to see the expression pattern of different proteins. Confocal microscopy images were taken for neuronal and glial cells to see the effect of remimazolam on CNS cells. Results: We showed that remimazolam, a new anesthetic drug, impaired cognitive behavior. Repetitive doses of remimazolam have been found to induce neuronal loss with a significant change in morphology. Here, we showed that a higher concentration of remimazolam had a significant effect on CNS cell activation. We showed that remimazolam caused memory dysfunction by inducing neuronal apoptosis via glutamate excitotoxicity. It also exhibited amyloid ß plaque in the brain via abnormal phosphorylation of tau protein. Remimazolam-mediated regulation of glial cells in mouse cortex was observed and robust activation of astrocytes and microglial cells was found. Finally, we assessed the behavioral phenotype of mice and found that treatment with remimazolam induced significant behavioral changes and memory dysfunction. Conclusions: This study provides insight into the mechanism of anesthetic drug-induced memory deficits and may help improve the therapeutic effects of anesthesia agents in clinical applications.

12.
ESC Heart Fail ; 9(4): 2626-2634, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35611842

RESUMO

AIMS: Cognitive dysfunction occurs frequently in patients with heart failure (HF), but early detection remains challenging. Serum glial fibrillary acidic protein (GFAP) is an emerging biomarker of cognitive decline in disorders of primary neurodegeneration such as Alzheimer's disease. We evaluated the utility of serum GFAP as a biomarker for cognitive dysfunction and structural brain damage in patients with stable chronic HF. METHODS AND RESULTS: Using bead-based single molecule immunoassays, we quantified serum levels of GFAP in patients with HF participating in the prospective Cognition.Matters-HF study. Participants were extensively phenotyped, including cognitive testing of five separate domains and magnetic resonance imaging (MRI) of the brain. Univariable and multivariable models, also accounting for multiple testing, were run. One hundred and forty-six chronic HF patients with a mean age of 63.8 ± 10.8 years were included (15.1% women). Serum GFAP levels (median 246 pg/mL, quartiles 165, 384 pg/mL; range 66 to 1512 pg/mL) did not differ between sexes. In the multivariable adjusted model, independent predictors of GFAP levels were age (T = 5.5; P < 0.001), smoking (T = 3.2; P = 0.002), estimated glomerular filtration rate (T = -4.7; P < 0.001), alanine aminotransferase (T = -2.1; P = 0.036), and the left atrial end-systolic volume index (T = 3.4; P = 0.004). NT-proBNP but not serum GFAP explained global cerebral atrophy beyond ageing. However, serum GFAP levels were associated with the cognitive domain visual/verbal memory (T = -3.0; P = 0.003) along with focal hippocampal atrophy (T = 2.3; P = 0.025). CONCLUSIONS: Serum GFAP levels are affected by age, smoking, and surrogates of the severity of HF. The association of GFAP with memory dysfunction suggests that astroglial pathologies, which evade detection by conventional MRI, may contribute to memory loss beyond ageing in patients with chronic HF.


Assuntos
Insuficiência Cardíaca , Transtornos da Memória , Idoso , Atrofia , Biomarcadores , Feminino , Proteína Glial Fibrilar Ácida/metabolismo , Insuficiência Cardíaca/complicações , Insuficiência Cardíaca/diagnóstico , Humanos , Masculino , Transtornos da Memória/diagnóstico , Transtornos da Memória/etiologia , Pessoa de Meia-Idade , Estudos Prospectivos
13.
Front Aging Neurosci ; 14: 823535, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35517055

RESUMO

Background and Purpose: Patients with subcortical ischemic vascular disease (SIVD) suffer from memory disorders that are thought to be associated with the hippocampus. We aimed to explore changes in hippocampal subfields and the relationship between different hippocampal subfield volumes and different types of memory dysfunction in SIVD patients. Methods: A total of 77 SIVD patients with cognitive impairment (SIVD-CI, n = 39) or normal cognition (HC-SIVD, n = 38) and 41 matched healthy controls (HCs) were included in this study. Memory function was measured in all subjects, and structural magnetic resonance imaging (MRI) was performed. Then, the hippocampus was segmented and measured by FreeSurfer 6.0 software. One-way ANOVA was used to compare the volume of hippocampal subfields among the three groups while controlling for age, sex, education and intracranial volume (ICV). Then, post hoc tests were used to evaluate differences between each pair of groups. Finally, correlations between significantly different hippocampal subfield volumes and memory scores were tested in SIVD patients. Results: Almost all hippocampal subfields were significantly different among the three groups except for the bilateral hippocampal fissure (p = 0.366, p = 0.086, respectively.) and left parasubiculum (p = 0.166). Furthermore, the SIVD-CI patients showed smaller volumes in the right subiculum (p < 0.001), CA1 (p = 0.002), presubiculum (p = 0.002) and molecular layer of the hippocampus (p = 0.017) than the HC-SIVD patients. In addition, right subiculum volumes were positively related to Rey's Auditory Verbal Learning Test (RAVLT) word recognition (r = 0.230, p = 0.050), reverse digit span test (R-DST) (r = 0.326, p = 0.005) and Rey-Osterrieth Complex Figure Test (ROCF) immediate recall (r = 0.247, p = 0.035) scores, right CA1 volumes were positively correlated with RAVLT word recognition (r = 0.261, p = 0.026), and right presubiculum volumes showed positive relationships with R-DST (r = 0.254, p = 0.030) and ROCF immediate recall (r = 0.242, p = 0.039) scores. Conclusion: SIVD might lead to general reductions in volume in multiple hippocampal subfields. However, SIVD-CI patients showed atrophy in specific subfields, which might be associated with memory deficits.

14.
Drug Metab Bioanal Lett ; 15(1): 2-11, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35379162

RESUMO

BACKGROUND: Herbal products are derived from different natural sources, mainly used as a source of food material and medicine in the health sectors since ancient times. Herbal products have gained popularity in modern medicine due to their beneficial health properties and pharmacological activities. Flavonoids are an important class of secondary metabolites found to be present in medicinal plants and their derived products. Flavonoids have been known for their anti-allergic, anti-bacterial, anti-diabetic, anti-inflammatory, anti-viral, anti-proliferative, anti-mutagenic, antithrombotic, anti-carcinogenic, anti-oxidant and hepatoprotective activities in the medicine. Nicotiflorin is a flavonoidal class phytochemical, found in medicinal plants, including Traditional Chinese medicine. METHODS: Scientific data on the medicinal importance and pharmacological activities of nicotiflorin have been collected and analyzed in the present work in order to know the therapeutic importance of nicotiflorin in medicine. Scientific data have been collected from Google, Google Scholar, Science Direct, PubMed and Scopus and analyzed in the present work. Analytical techniques data of separation, isolation and identification of nicotiflorin have also been collected and presented in the current work. Further biological importance of flavonoidal class phytochemicals was also discussed in the present work to understand the biological importance of nicotiflorin in medicine as it belongs to the flavonoid class. RESULTS: Scientific data analysis revealed the therapeutic importance and pharmacological activities of nicotiflorin. Nicotiflorin has significant biological potential against coronavirus, ischemia, renal impairment, hepatic complication, memory dysfunction and myocardial infarction. The biological potential of nicotiflorin against α-glucosidase and α-amylase enzymes, multiple myeloma cells and insulin secretion has also been discussed in the present work. Analytical data revealed the significance of modern analytical tools in medicine for the isolation, separation and quantification of nicotiflorin. CONCLUSION: Scientific data analysis of different research works revealed the biological importance and therapeutic potential of nicotiflorin in medicine.


Assuntos
Glicosídeos Cardíacos , Plantas Medicinais , Flavonoides/farmacologia , Glicosídeos/farmacologia , Compostos Fitoquímicos/farmacologia , Fitoterapia , Plantas Medicinais/química
15.
Epilepsia ; 63(5): 1104-1114, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35243619

RESUMO

OBJECTIVE: Hippocampal dentation (HD) is a "toothlike" morphological feature observed on the inferior aspect of the human hippocampus. It has been found that HD varies dramatically in healthy adults and is positively associated with verbal and visual memory. In this work, we evaluate the loss of HD and its association with memory dysfunction in patients with temporal lobe epilepsy (TLE) who have hippocampal sclerosis (HS). METHODS: Fifty-eight unilateral HS patients with neuropsychological data were identified from a retrospective database. T1-weighted magnetization-prepared rapid acquisition gradient echo images (~1 mm resolution) were upsampled to .25 mm and were processed using ASHS software to obtain ultra-high-resolution segmentations and three-dimensional renderings. Dentes were counted on the epileptic and contralateral sides, and associations were tested between dentation on the epileptic versus contralateral sides and measures of verbal and visuospatial memory with respect to the dominant versus nondominant hemisphere. RESULTS: The median number of dentes in epileptic hippocampi was significantly lower than in contralateral hippocampi (p < .0001). Among cases with HS in the dominant hemisphere, verbal memory was significantly correlated with contralateral nondominant hemisphere dentation (r = .43, p = .04). Similarly, among cases of HS in the nondominant hemisphere, visual memory was significantly correlated with contralateral dominant hemisphere dentation (r = .48, p = .04). All other analyses were not significant. SIGNIFICANCE: This is the first study characterizing dentation in TLE patients with HS and its memory correlates. There is marked loss of dentation in sclerotic hippocampi compared to the unaffected contralateral hippocampi. Material-specific measures of memory performance are paradoxically correlated with dentation contralateral to the side with HS, suggesting that contralateral functional capacity explains some of the variation in memory across TLE patients. HD is an important variable to consider in understanding memory loss in TLE.


Assuntos
Epilepsia do Lobo Temporal , Doenças Neurodegenerativas , Adulto , Atrofia/patologia , Epilepsia do Lobo Temporal/complicações , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/patologia , Gliose/patologia , Hipocampo/diagnóstico por imagem , Hipocampo/patologia , Humanos , Imageamento por Ressonância Magnética/métodos , Transtornos da Memória/complicações , Transtornos da Memória/etiologia , Estudos Retrospectivos , Esclerose/complicações
16.
Pharmaceutics ; 14(3)2022 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-35335952

RESUMO

Impaired memory and cognitive function are the main features of Alzheimer's disease (AD). Unfortunately, currently available treatments cannot cure or delay AD progression. Moreover, the blood-brain barrier hampers effective delivery of treatment to the brain. Therefore, we aimed to evaluate the impact of intranasally delivered luteolin on AD using bile-salt-based nano-vesicles (bilosomes). Different bilosomes were prepared using 23-factorial design. The variables were defined by the concentration of surfactant, the molar ratio of cholesterol:phospholipid, and the concentration of bile salt. Results demonstrated optimized luteolin-loaded bilosomes with particle size (153.2 ± 0.98 nm), zeta potential (-42.8 ± 0.24 mV), entrapment efficiency% (70.4 ± 0.77%), and % drug released after 8 h (80.0 ± 1.10%). In vivo experiments were conducted on an AD mouse model via intracerebroventricular injection of 3 mg/kg streptozotocin. We conducted behavioral, biochemical marker, histological, and immune histochemistry assays after administering a luteolin suspension or luteolin bilosomes (50 mg/kg) intranasally for 21 consecutive days. Luteolin bilosomes improved short-term and long-term spatial memory. They also exhibited antioxidant properties and reduced levels of proinflammatory mediators. They also suppressed both amyloid ß aggregation and hyperphosphorylated Tau protein levels in the hippocampus. In conclusion, luteolin bilosomes are an effective, safe, and non-invasive approach with superior cognitive function capabilities compared to luteolin suspension.

17.
Biomedicines ; 10(2)2022 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-35203655

RESUMO

Patients with vascular dementia, caused by cerebral ischemia, experience long-term cognitive impairment due to the lack of effective treatment. The mechanisms of and treatments for vascular dementia have been investigated in various animal models; however, the insufficient information on gene expression changes that define pathological conditions hampers progress. To investigate the underlying mechanism of and facilitate treatment development for vascular dementia, we established a mouse model of chronic cerebral hypoperfusion, including bilateral carotid artery stenosis, by using microcoils, and elucidated the molecular pathway underlying vascular dementia development. Rho-associated protein kinase (ROCK) 1/2, which regulates cellular structure, and inflammatory cytokines (IL-1 and IL-6) were upregulated in the vascular dementia model. However, expression of claudin-5, which maintains the blood-brain barrier, and MAP2 as a nerve cell-specific factor, was decreased in the hippocampal region of the vascular dementia model. Thus, we revealed that ROCK pathway activation loosens the tight junction of the blood-brain barrier and increases the influx of inflammatory cytokines into the hippocampal region, leading to neuronal death and causing cognitive and emotional dysfunction. Our vascular dementia model allows effective study of the vascular dementia mechanism. Moreover, the ROCK pathway may be a target for vascular dementia treatment development in the future.

18.
Life Sci ; 294: 120376, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-35123998

RESUMO

AIMS: We aimed to investigate putative neuroprotective effects of nesfatin-1 on oxidative brain injury and memory dysfunction induced by a single epileptic seizure and to compare these effects with those of antiepileptic phenytoin. MAIN METHODS: Wistar albino rats were randomly divided into a control group and pentylenetetrazole (PTZ)-seizure groups pretreated intraperitoneally (ip) with saline or nesfatin-1 (NES-1; 0.3, 1 or 3 µg/kg/day) or phenytoin (PHE; 40 mg/kg/day) or PHE + NES-1 (0.3 µg/kg/day) at 30 min before the single-dose PTZ injection (45 mg/kg; ip). All treatments were repeated at the 24th and 48th h of the provoked epileptic seizure. Passive-avoidance test was performed to assess memory function. The rats were decapitated at the 72nd hour of seizures and brain tissues were analyzed for histopathological changes and for measuring levels of malondialdehyde, glutathione, myeloperoxidase activity and reactive oxygen/nitrogen species. KEY FINDINGS: In parallel to the effects of phenytoin, NES-1 reduced seizure score, elevated antioxidant glutathione content, depressed generation of nitric oxide and protected against seizure-induced neuronal damage. Additionally, increased malondialdehyde levels and elevated glial fibrillary acidic protein immunoreactivity in the cortex and hippocampus were decreased and memory dysfunction was improved by NES-1. However, NES-1 had no impact on myeloperoxidase activity or production of reactive oxygen species in the brain. SIGNIFICANCE: The findings of the present study demonstrate that nesfatin-1 treatment provides neuroprotection against seizure-induced oxidative damage and memory dysfunction by inhibiting reactive nitrogen species and upregulating antioxidant capacity, indicating its potential in alleviating memory deficits and increasing the effectiveness of conventional anti-convulsant therapies.


Assuntos
Lesões Encefálicas/prevenção & controle , Epilepsia/complicações , Transtornos da Memória/prevenção & controle , Fármacos Neuroprotetores/farmacologia , Nucleobindinas/metabolismo , Estresse Oxidativo , Convulsões/complicações , Animais , Anticonvulsivantes/farmacologia , Lesões Encefálicas/etiologia , Lesões Encefálicas/metabolismo , Lesões Encefálicas/patologia , Epilepsia/patologia , Glutationa/metabolismo , Masculino , Transtornos da Memória/etiologia , Transtornos da Memória/metabolismo , Transtornos da Memória/patologia , Óxido Nítrico/metabolismo , Nucleobindinas/genética , Fenitoína/farmacologia , Ratos , Ratos Wistar , Espécies Reativas de Oxigênio/metabolismo , Convulsões/patologia
19.
Front Neurosci ; 15: 665757, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34354558

RESUMO

Sepsis-associated encephalopathy (SAE) is a risk factor for cognitive and memory dysfunction; however, the mechanism remains unclear. Brain-derived neurotrophic factor (BDNF) was reported to have a positive effect on cognition and emotion regulation, but the study of its precursor, proBDNF, has been limited. This study aimed to elucidate the effects and associated mechanisms of hippocampal proBDNF in a lipopolysaccharide (LPS)-induced SAE mouse model. In this study, we found that the mice exhibited cognitive dysfunction on day 7 after LPS injection. The expression of proBDNF and its receptor, p75 NTR , was also increased in the hippocampus, while the levels of BDNF and its receptor, TrkB, were decreased. A co-localization study showed that proBDNF and p75 NTR were mainly co-localized with neurons. Furthermore, LPS treatment reduced the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, and NR2B in the hippocampus of SAE mice. Furthermore, an intrahippocampal or intraperitoneal injection of anti-proBDNF antibody was able to ameliorate LPS-induced cognitive dysfunction and restore the expression of NeuN, Nissl bodies, GluR4, NR1, NR2A, NR2B, and PSD95. These results indicated that treatment with brain delivery by an intrahippocampal and systemic injection of mAb-proBDNF may represent a potential therapeutic strategy for treating patients with SAE.

20.
Front Pharmacol ; 12: 662148, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34122081

RESUMO

Though the underlying mechanism remains elusive, a close relationship between psychological stress and intestinal inflammation has been widely accepted. Such a link is very important to set the basis for our understanding of the critical role of gut-brain axis (GBA) in homeostatic processes in health and disease. Probiotics that could confer benefits to mental health through GBA are referred to as "psychobiotics". This study aimed to further determine whether a potential psychobiotic strain, Lactobacillus johnsonii BS15 could prevent memory dysfunction in mice induced by psychological stress through modulating the gut environment, including intestinal inflammation and permeability. Memory dysfunction in mice was induced by restraint stress (RS), one of the most commonly utilized models to mimic psychological stress. The mice were randomly categorized into three groups including no stress (NS), restraint stress (RS), and probiotic (RS-P) and administered with either phosphate buffered saline (NS and RS groups) or L. johnsonii BS15 (RS-P group) every day from day 1-28. From days 22-28, the mice in RS and RS-P groups were subjected to RS each day. Results revealed that BS15-pretreatment enhanced the performance of RS-induced mice during three different behavioral tests for memory ability and positively modulated the hypothalamic-pituitary-adrenal axis by attenuating the serum corticosterone level. In the hippocampus, L. johnsonii BS15 positively modulated the memory-related functional proteins related to synaptic plasticity, increased neurotransmitter levels, and prevented RS-induced oxidative stress and mitochondria-mediated apoptosis. In the intestines, L. johnsonii BS15 protected the RS-induced mice from damaged gut barrier by enhancing the mRNA levels of tight junction proteins and exerted beneficial effects on the anti-inflammatory cytokine levels reduced by RS. These findings provided more evidence to reveal the psychoactive effect of L. johnsonii BS15 against memory dysfunction in RS-induced mice by modulating intestinal inflammation and permeability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA