RESUMO
Alzheimer's disease is inflating worldwide and is combatted by only a few approved drugs. At best, these drugs treat symptomatic conditions by targeting cholinesterase and N-methyl- D-aspartate receptors. Most of the clinical trials in progress are focused on developing disease-modifying agents that aim at single targets. The 'one drug-one target' approach is failing in the case of Alzheimer's disease due to its labyrinth etiopathogenesis. Traditional medicinal systems like Ayurveda use a holistic approach encompassing the legion of medicinal plants exhibiting multimodal activity. Recent advances in high-throughput technologies have catapulted the research in the arena of Ayurveda, specifically in identifying plants with potent anti-Alzheimer's disease properties and their phytochemical characterization. Nonetheless, clinical trials of very few herbal medicines are in progress. This review is a compendium of Indian plants and ayurvedic medicines against Alzheimer's disease and their paraphernalia. A record of 230 plants that are found in India with anti-Alzheimer's disease potential and about 500 phytochemicals from medicinal plants have been solicited with the hope of exploring the unexplored. Further, the molecular targets of phytochemicals isolated from commonly used medicinal plants, such as Acorus calamus, Bacopa monnieri, Convolvulus pluricaulis, Tinospora cordifolia and Withania somnifera, have been reviewed with respect to their multidimensional property, such as antioxidant, anti-inflammation, anti-aggregation, synaptic plasticity modulation, cognition, and memory-enhancing activity. In addition, the strengths and challenges in ayurvedic medicine that limit its use as mainstream therapy are discussed, and a framework for the development of herbal medicine has been proposed.
Assuntos
Doença de Alzheimer , Plantas Medicinais , Doença de Alzheimer/tratamento farmacológico , Desenvolvimento de Medicamentos , Humanos , Compostos Fitoquímicos/uso terapêutico , Extratos Vegetais/farmacologia , Extratos Vegetais/uso terapêutico , Plantas Medicinais/químicaRESUMO
Memory, one of the most vital aspects of the human brain, is necessary for the effective survival of an individual. 'Memory' can be defined in various ways but in an overall view, memory is the retention of the information that the brain grasps. Different factors are responsible for the disbalance in the brain's hippocampus region and the acetylcholine level, which masters the memory and cognitive functions. Plants are a source of pharmacologically potent drug molecules of high efficacy. Recently herbal medicine has evolved rapidly, gaining great acceptance worldwide due to their natural origin and fewer side effects. In this review, the authors have discussed the mechanisms and pharmacological action of herbal bioactive compounds to boost memory. Moreover, this review presents an update of different herbs and natural products that could act as memory enhancers and how they can be potentially utilized in the near future for the treatment of severe brain disorders. In addition, the authors also discuss the differences in biological activity of the same herb and emphasize the requirement for a higher standardization in cultivation methods and plant processing. The demand for further studies evaluating the interactions of herbal drugs is mentioned.
RESUMO
Background: Diets rich in fruits, vegetables, and medicinal plants possess antioxidants potentially capable of mitigating cellular oxidative stress. This study investigated the antioxidant, anti-acetylcholinesterase (AChE), and total phenolic and flavonoids contents (TPC/TFC) of dietary sources traditionally used for memory enhancing in Niger Delta, Nigeria. Methods: Dacroydes edulis methanolic seed extract (DEMSE), Cola lepidota methanolic seed extract (CLMSE), Terminalia catappa methanolic seed extract (TeCMSE), Tricosanthes cucumerina methanolic seed extract (TrCMSE), Tetrapleura tetraptera methanolic seed extract (TTMSE), and defatted Moringa oleifera methanolic seed extract (DMOMSE); Dennettia tripetala methanolic fruit extract (DTMFE), Artocarpus communis methanolic fruit extract (ACMFE), Gnetum africana methanolic leaf extract (GAMLE), Musa paradisiaca methanolic stembark extract (MPMSE), and Mangifera indica methanolic stembark extract (MIMSE) were evaluated for free radical scavenging antioxidant ability using 2,2-Diphenyl-1-picrylhydrazyl (DPPH), reducing power capacity (reduction of ferric iron to ferrous iron), AChE inhibitory potential by Ellman assay, and then TPC/TFC contents determined by estimating milli-equivalents of Gallic acid and Quercetin per gram, respectively. Results: The radical scavenging percentages were as follows: MIMSE (58%), MPMSE (50%), TrCMSE (42%), GAMLE (40%), CLMSE (40%), DMOMSE (38%), and DEMFE (37%) relative to ß-tocopherol (98%). The highest iron reducing (antioxidant) capacity was by TrCMSE (52%), MIMSE (40%) and GAMLE (38%). Extracts of MIMSE, TrCMSE, DTMFE, TTMSE, and CLMSE exhibited concentration-dependent AChE inhibitory activity (p < 0.05â»0.001). At a concentration of 200 µg/mL, the AChE inhibitory activity and IC50 (µg/mL) exhibited by the most potent extracts were: MIMSE (≈50%/111.9), TrCMSE (≈47%/201.2), DTMFE (≈32%/529.9), TTMSE (≈26%/495.4), and CLMSE (≈25%/438.4). The highest TPC were from MIMSE (156.2), TrCMSE (132.65), GAMLE (123.26), and CLMSE (119.63) in mg gallic acid equivalents/g, and for TFC were: MISME (87.35), GAMLE (73.26), ACMFE (69.54), CLMSE (68.35), and TCMSE2 (64.34) mg quercetin equivalents/gram. Conclusions: The results suggest that certain inedible and edible foodstuffs, most notably MIMSE, MPMSE, TrCMSE, GAMLE, and CLMSE may be beneficial to ameliorate the potentially damaging effects of redox stress.
RESUMO
The present paper describes the synthesis, biological evaluation and molecular simulation studies of a series of N-(4-hydroxyphenyl)-3,4,5-trimethoxybenzamide derivatives with N,N-dialkylaminoethoxy/propoxy moiety as potential memory enhancers with acetylcholinesterase-inhibiting activity having IC50 in low micromolar range (4.0-16.5 µM). All the compounds showed a good degree of agreement between in vivo and in vitro results as most of these derivatives showed dose-dependent increase in percent retention. Compound 10a showed significant % retention of 84.73 ± 4.51 as compared to piracetam (46.88 ± 5.42) at 3 mg kg-1 and also exhibited a maximal percent inhibition of 97% at 50 µM. Molecular docking, MM-GBSA and molecular simulation studies were performed establishing a correlation between the experimental biology and in silico results. In silico results indicate that all the compounds have better docking scores and predicted binding free energies as compared to cocrystallized ligand with the best potent ligand retaining conserved hydrophobic interactions with residues of catalytic triad (HIS447), catalytic anionic site (CAS) (TRP86, TYR337, PHE338) and peripheral anionic site (PAS) (TYR72, TYR124, TRP286 and TYR341). Root mean square deviation (RMSD = 2.4 Å) and root mean square fluctuations of 10a-AChE complex during simulation proved its stable nature in binding toward acetylcholinesterase. The docked conformation of 10a and other analogs at the binding site have also been simulated with polar and nonpolar interactions interlining the gorge residues from PAS to catalytic triad.
Assuntos
Benzamidas/química , Benzamidas/farmacologia , Memória/efeitos dos fármacos , Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Animais , Sítios de Ligação , Domínio Catalítico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Feminino , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Masculino , Camundongos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Ligação ProteicaRESUMO
The present paper describes design, synthesis, and biological evaluation of a series of some 3-[3-(amino)propoxy]benzenamines as acetylcholinesterase inhibitors using mice as a model and piracetam as a reference drug. The structures of these compounds were confirmed by spectral analysis and compounds were tested for memory enhancing activity using elevated plus maze test and acetylcholinesterase inhibitory assay. The inhibitory range of synthesized compounds was from 8.99 to 28.31 µM. The synthesized compounds possessed higher or equivalent percent retention as compared to piracetam at 1 mg/kg with no other CNS-related activities (locomotor and muscle relaxant, analgesic and anticonvulsant activities). Compound 3-[3-(imidazolo)propoxy]benzenamine has shown significant dose-dependent (1 and 3 mg/kg) memory enhancing activity, while 3-[3-(pyrrolidino)propoxy]benzenamine also showed activity equivalent to reference drug piracetam at 1 mg/kg. Both compounds 3-[3-(pyrrolidino)propoxy]benzenamine and 3-[3-(imidazolo)propoxy]benzenamine were also found to show AChE inhibition with IC50 value of 8.99 and 17.87 µM. The molecular docking, MM-GBSA and molecular dynamics simulation studies were performed in order to establish a relationship between the biological results. RMSD, root-mean-square fluctuations, and interaction patterns of 10a-AChE and Sck-AChE complexes proved that the binding affinity of 10a toward AChE was highly stable with the proposed binding orientations.
Assuntos
Acetilcolinesterase/metabolismo , Derivados de Benzeno/metabolismo , Inibidores da Colinesterase/metabolismo , Acetilcolinesterase/química , Animais , Derivados de Benzeno/síntese química , Derivados de Benzeno/farmacologia , Biocatálise , Inibidores da Colinesterase/síntese química , Inibidores da Colinesterase/farmacologia , Relação Dose-Resposta a Droga , Desenho de Fármacos , Feminino , Masculino , Aprendizagem em Labirinto/efeitos dos fármacos , Camundongos , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Atividade Motora/efeitos dos fármacos , Ligação Proteica , Relação Estrutura-AtividadeRESUMO
Insulin-regulated aminopeptidase (IRAP or oxytocinase) is a membrane-bound zinc-metallopeptidase that cleaves neuroactive peptides in the brain and produces memory enhancing effects when inhibited. We have determined the crystal structure of human IRAP revealing a closed, four domain arrangement with a large, mostly buried cavity abutting the active site. The structure reveals that the GAMEN exopeptidase loop adopts a very different conformation from other aminopeptidases, thus explaining IRAP's unique specificity for cyclic peptides such as oxytocin and vasopressin. Computational docking of a series of IRAP-specific cognitive enhancers into the crystal structure provides a molecular basis for their structure-activity relationships and demonstrates that the structure will be a powerful tool in the development of new classes of cognitive enhancers for treating a variety of memory disorders such as Alzheimer's disease.