Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 145
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 2024 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-39175442

RESUMO

Key neuronal functions have been successfully replicated in various hardware systems. Noticeable examples are neuronal networks constructed from memristors, which emulate complex electrochemical biological dynamics such as the efficacy and plasticity of a neuron. Neurons are highly active cells, communicating with chemical and electrical stimuli, but also emit light. These so-called biophotons are suspected to be a complementary vehicle to transport information across the brain. Here, we show that a memristor also releases photons during its operation akin to the production of neuronal light. Critical attributes of biophotons, such as self-generation, stochasticity, spectral coverage, sparsity, and correlation with the neuron's electrical activity, are replicated by our solid-state approach. Importantly, our time-resolved analysis of the correlated current transport and photon activity shows that emission takes place within a nanometer-sized active area and relies on electrically induced single-to-few active electroluminescent centers excited with moderate voltage (<3 V). Our findings further extend the emulating capability of a memristor to encompass neuronal optical activity and allow to construct memristive atomic-scale devices capable of handling simultaneously electrons and photons as information carriers.

2.
Chemphyschem ; : e202400265, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-39119992

RESUMO

Iontronic fluidic ionic/electronic components are emerging as promising elements for artificial brain-like computation systems. Nanopore ionic rectifiers can be operated as a synapse element, exhibiting conductance modulation in response to a train of voltage impulses, thus producing programmable resistive states. We propose a model that replicates hysteresis, rectification, and time domain response properties, based on conductance modulation between two conducting modes and a relaxation time of the state variable. We show that the kinetic effects observed in hysteresis loops govern the potentiation phenomena related to conductivity modulation. To illustrate the efficacy of the model, we apply it to replicate rectification, hysteresis and conductance modulation of two different experimental systems: a polymer membrane with conical pores, and a blind-hole nanoporous anodic alumina membrane with a barrier oxide layer. We show that the time transient analysis of the model develops the observed potentiation and depression phenomena of the synaptic properties.

3.
ACS Nano ; 18(33): 21685-21713, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39110686

RESUMO

Neuromorphic computing seeks to replicate the capabilities of parallel processing, progressive learning, and inference while retaining low power consumption by drawing inspiration from the human brain. By further overcoming the constraints imposed by the traditional von Neumann architecture, this innovative approach has the potential to revolutionize modern computing systems. Memristors have emerged as a solution to implement neuromorphic computing in hardware, with research based on developing functional materials for resistive switching performance enhancement. Recently, two-dimensional MXenes, a family of transition metal carbides, nitrides, and carbonitrides, have begun to be integrated into these devices to achieve synaptic emulation. MXene-based memristors have already demonstrated diverse neuromorphic characteristics while enhancing the stability and reducing power consumption. The possibility of changing the physicochemical properties through modifications of the surface terminations, bandgap, interlayer spacing, and oxidation for each existing MXene makes them very promising. Here, recent advancements in MXene synthesis, device fabrication, and characterization of MXene-based neuromorphic artificial synapses are discussed. Then, we focus on understanding the resistive switching mechanisms and how they connect with theoretical and experimental data, along with the innovations made during the fabrication process. Additionally, we provide an in-depth review of the neuromorphic performance, making a connection with the resistive switching mechanism, along with a compendium of each relevant performance factor for nonvolatile and volatile applications. Finally, we state the remaining challenges in MXene-based devices for artificial synapses and the next steps that could be taken for future development.

4.
ACS Nano ; 18(33): 21966-21974, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39115225

RESUMO

Beyond-Moore computing technologies are expected to provide a sustainable alternative to the von Neumann approach not only due to their down-scaling potential but also via exploiting device-level functional complexity at the lowest possible energy consumption. The dynamics of the Mott transition in correlated electron oxides, such as vanadium dioxide, has been identified as a rich and reliable source of such functional complexity. However, its full potential in high-speed and low-power operation has been largely unexplored. We fabricated nanoscale VO2 devices embedded in a broadband test circuit to study the speed and energy limitations of their resistive switching operation. Our picosecond time-resolution, real-time resistive switching experiments and numerical simulations demonstrate that tunable low-resistance states can be set by the application of 20 ps long, <1.7 V amplitude voltage pulses at 15 ps incubation times and switching energies starting from a few femtojoule. Moreover, we demonstrate that at nanometer-scale device sizes not only the electric field induced insulator-to-metal transition but also the thermal conduction limited metal-to-insulator transition can take place at time scales of 100s of picoseconds. These orders of magnitude breakthroughs can be utilized to design high-speed and low-power dynamical circuits for a plethora of neuromorphic computing applications from pattern recognition to numerical optimization.

5.
Cogn Neurodyn ; 18(4): 1989-2001, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104681

RESUMO

The functional neurons are basic building blocks of the nervous system and are responsible for transmitting information between different parts of the body. However, it is less known about the interaction between the neuron and the field. In this work, we propose a novel functional neuron by introducing a flux-controlled memristor into the FitzHugh-Nagumo neuron model, and the field effect is estimated by the memristor. We investigate the dynamics and energy characteristics of the neuron, and the stochastic resonance is also considered by applying the additive Gaussian noise. The intrinsic energy of the neuron is enlarged after introducing the memristor. Moreover, the energy of the periodic oscillation is larger than that of the adjacent chaotic oscillation with the changing of memristor-related parameters, and same results is obtained by varying stimuli-related parameters. In addition, the energy is proved to be another effective method to estimate stochastic resonance and inverse stochastic resonance. Furthermore, the analog implementation is achieved for the physical realization of the neuron. These results shed lights on the understanding of the firing mechanism for neurons detecting electromagnetic field.

6.
Cogn Neurodyn ; 18(4): 1943-1953, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39104706

RESUMO

In this paper, the exponential synchronization of quaternion-valued memristor-based Cohen-Grossberg neural networks with time-varying delays is discussed. By using the differential inclusion theory and the set-valued map theory, the discontinuous quaternion-valued memristor-based Cohen-Grossberg neural networks are transformed into an uncertain system with interval parameters. A novel controller is designed to achieve the control goal. With some inequality techniques, several criteria of exponential synchronization for quaternion-valued memristor-based Cohen-Grossberg neural networks are given. Different from the existing results using decomposition techniques, a direct analytical approach is used to study the synchronization problem by introducing an improved one-norm method. Moreover, the activation function is less restricted and the Lyapunov analysis process is simpler. Finally, a numerical simulation is given to prove the validity of the main results.

7.
Small ; : e2404177, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106238

RESUMO

The presence of neurons is crucial in neuromorphic computing systems as they play a vital role in modulating the strength of synapses through the release of either excitatory or inhibitory stimuli. Hence, the development of sensory neurons plays a pivotal role in broadening the scope of brain-inspired neural computing. The present study introduces an artificial sensory neuron, which is constructed using a temperature-sensitive volatile complementary resistance switch memristor based on the functional layer of the chitosan/PNIPAM bilayer. The resistive switching behavior arises from the formation and ionization of oxygen vacancy filaments, whereby the threshold voltage and low resistive resistance of the device exhibit a temperature-dependent increase within the range of 290-410 K. A functional replication of a neuron with leaky integration and firing has been successfully developed, effectively simulating essential biological functions such as firing triggered by threshold, refractory period implementation, and modulation of spiking frequency. The artificial sensory neuron exhibits characteristics similar to those of leaky integrated firing neurons that receive temperature inputs. It has the potential to control the output frequency and amplitude under varying temperature conditions, making it suitable for temperature-sensing applications. This study presents a potential hardware implementation for developing efficient artificial intelligence systems that can support temperature detections.

8.
Nano Lett ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39142648

RESUMO

Threshold switching (TS) memristors are promising candidates for artificial neurons in neuromorphic systems. However, they often lack biological plausibility, typically functioning solely in an excitation mode. The absence of an inhibitory mode limits neurons' ability to synergistically process both excitatory and inhibitory synaptic signals. To address this limitation, we propose a novel memristive neuron capable of operating in both excitation and inhibition modes. The memristor's threshold voltage can be reversibly tuned using voltages of different polarities because of its bipolar TS behavior, enabling the device to function as an electronically reconfigurable bi-mode neuron. A variety of neuronal activities such as all-or-nothing behavior and tunable firing probability are mimicked under both excitatory and inhibitory stimuli. Furthermore, we develop a self-adaptive neuromorphic vision sensor based on bi-mode neurons, demonstrating effective object recognition in varied lighting conditions. Thus, our bi-mode neuron offers a versatile platform for constructing neuromorphic systems with rich functionality.

9.
Artigo em Inglês | MEDLINE | ID: mdl-39114944

RESUMO

With the development of artificial intelligence systems, it is necessary to develop optoelectronic devices with photoresponse and storage capacity to simulate human visual perception systems. The key to an artificial visual perception system is to integrate components with both sensing and storage capabilities of illumination information. Although module integration components have made useful progress, they still face challenges such as multispectral response and high energy consumption. Here, we developed a light-adapted optoelectronic-memristive device integrated by an organic photodetector and ferroelectric-based memristor to simulate human visual perception. ITO/P3HT:PC71BM/Au as the light sensor unit shows a high on/off ratio (Iph/Id) reaching ∼5 × 104 at 0 V. The memristor unit, consisting of ITO/CBI@P(VDF-TrFE)/Cu, has a RON/ROFF ratio window of ∼106 under 0.05 V read voltage and ultralow power consumption of ∼1 pW. Moreover, the artificial visual perception unit shows stable light-adapted memory windows under different wavelengths of irradiation light (400, 500, and 600 nm; they meet the spectral range of human visual recognition) and can clearly identify the target image ("T" shape) because of the apparent contrast, which results from the high ROFF/RON ratio values. These results provide a potential design strategy for the development of intelligent artificial vision systems.

10.
Nano Lett ; 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-39116301

RESUMO

Memristors show promising features for neuromorphic computing. Here we report a soft memristor based on the liquid-vapor surface of a microbubble. The thickness of the liquid film was modulated by electrostatic and interfacial forces, enabling resistance switches. We found a pinched current hysteresis at scanning periods between 1.6 and 51.2 s, while representing a resistor below 1.6 s and a diode-like behavior above 51.2 s. We approximate the thickening/thinning dynamics of liquid film by pressure-driven flow at the interface and derived the impacts of salt concentration and voltage amplitude on the memory effects. Our work opens a new approach to building nanofluidic memristors by a soft interface, which may be useful for new types of neuromorphic computing in the future.

11.
Artigo em Inglês | MEDLINE | ID: mdl-39129500

RESUMO

We report on hybrid memristor devices consisting of germanium dioxide nanoparticles (GeO2 NP) embedded within a poly(methyl methacrylate) (PMMA) thin film. Besides exhibiting forming-free resistive switching and an uncommon "ON" state in pristine conditions, the hybrid (nanocomposite) devices demonstrate a unique form of mixed-mode switching. The observed stopping voltage-dependent switching enables state-of-the-art bifunctional synaptic behavior with short-term (volatile/temporal) and long-term (nonvolatile/nontemporal) modes that are switchable depending on the stopping voltage applied. The short-term memory mode device is demonstrated to further emulate important synaptic functions such as short-term potentiation (STP), short-term depression (STD), paired-pulse facilitation (PPF), post-tetanic potentiation (PTP), spike-voltage-dependent plasticity (SVDP), spike-duration-dependent plasticity (SDDP), and, more importantly, the "learning-forgetting-rehearsal" behavior. The long-term memory mode gives additional long-term potentiation (LTP) and long-term depression (LTD) characteristics for long-term plasticity applications. The work shows a unique coexistence of the two resistive switching modes, providing greater flexibility in device design for future adaptive and reconfigurable neuromorphic computing systems at the hardware level.

12.
Sensors (Basel) ; 24(15)2024 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-39124048

RESUMO

This study explores memristor-based true random number generators (TRNGs) through their evolution and optimization, stemming from the concept of memristors first introduced by Leon Chua in 1971 and realized in 2008. We will consider memristor TRNGs coming from various entropy sources for producing high-quality random numbers. However, we must take into account both their strengths and weaknesses. The comparison with CMOS-based TRNGs will serve as an illustration that memristor TRNGs stand out due to their simpler circuits and lower power consumption- thus leading us into a case study involving electroless YMnO3 (YMO) memristors as TRNG entropy sources that demonstrate good security properties by being able to produce unpredictable random numbers effectively. The end of our analysis sees us pinpointing challenges: post-processing algorithm optimization coupled with ensuring reliability over time for memristor-based TRNGs aimed at next-generation security applications.

13.
Angew Chem Int Ed Engl ; : e202413311, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39104289

RESUMO

Organic memristors based on covalent organic frameworks (COFs) exhibit significant potential for future neuromorphic computing applications. The preparation of high-quality COF nanosheets through appropriate structural design and building block selection is critical for the enhancement of memristor performance. In this study, a novel room-temperature single-phase method was used to synthesize Ta-Cu3 COF, which contains two redox-active units: trinuclear copper and triphenylamine. The resultant COF nanosheets were dispersed through acid-assisted exfoliation and subsequently spin-coated to fabricate a high-quality COF film on an indium tin oxide (ITO) substrate. The synergistic effect of the dual redox-active centers in the COF film, combined with its distinct crystallinity, significantly reduces the redox energy barrier, enabling the efficient modulation of 128 non-volatile conductive states in the Al/Ta-Cu3 COF/ITO memristor. Utilizing a convolutional neural network (CNN) based on these 128 conductance states, image recognition for ten representative campus landmarks was successfully executed, achieving a high recognition accuracy of 95.13% after 25 training epochs. Compared to devices based on binary conductance states, the memristor with 128 conductance states exhibits a 45.56% improvement in recognition accuracy and significantly enhances the efficiency of neuromorphic computing.

14.
Adv Sci (Weinh) ; : e2403150, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38952052

RESUMO

Traditional artificial vision systems built using separate sensing, computing, and storage units have problems with high power consumption and latency caused by frequent data transmission between functional units. An effective approach is to transfer some memory and computing tasks to the sensor, enabling the simultaneous perception-storage-processing of light signals. Here, an optical-electrical coordinately modulated memristor is proposed, which controls the conductivity by means of polarization of the 2D ferroelectric Ruddlesden-Popper perovskite film at room temperature. The residual polarization shows no significant decay after 109-cycle polarization reversals, indicating that the device has high durability. By adjusting the pulse parameters, the device can simulate the bio-synaptic long/short-term plasticity, which enables the control of conductivity with a high linearity of ≈0.997. Based on the device, a two-layer feedforward neural network is built to recognize handwritten digits, and the recognition accuracy is as high as 97.150%. Meanwhile, building optical-electrical reserve pool system can improve 14.550% for face recognition accuracy, further demonstrating its potential for the field of neural morphological visual systems, with high density and low energy loss.

15.
ACS Nano ; 18(26): 17007-17017, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952324

RESUMO

Neuromorphic computing promises an energy-efficient alternative to traditional digital processors in handling data-heavy tasks, primarily driven by the development of both volatile (neuronal) and nonvolatile (synaptic) resistive switches or memristors. However, despite their energy efficiency, memristor-based technologies presently lack functional tunability, thus limiting their competitiveness with arbitrarily programmable (general purpose) digital computers. This work introduces a two-terminal bilayer memristor, which can be tuned among neuronal, synaptic, and hybrid behaviors. The varying behaviors are accessed via facile control over the filament formed within the memristor, enabled by the interplay between the two active ionic species (oxygen vacancies and metal cations). This solution is unlike single-species ion migration employed in most other memristors, which makes their behavior difficult to control. By reconfiguring a single crossbar array of hybrid memristors, two different applications that usually require distinct types of devices are demonstrated - reprogrammable heterogeneous reservoir computing and arbitrary non-Euclidean graph networks. Thus, this work outlines a potential path toward functionally reconfigurable postdigital computers.

16.
Small ; : e2403737, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38949018

RESUMO

In next-generation neuromorphic computing applications, the primary challenge lies in achieving energy-efficient and reliable memristors while minimizing their energy consumption to a level comparable to that of biological synapses. In this work, hexagonal boron nitride (h-BN)-based metal-insulator-semiconductor (MIS) memristors operating is presented at the attojoule-level tailored for high-performance artificial neural networks. The memristors benefit from a wafer-scale uniform h-BN resistive switching medium grown directly on a highly doped Si wafer using metal-organic chemical vapor deposition (MOCVD), resulting in outstanding reliability and low variability. Notably, the h-BN-based memristors exhibit exceptionally low energy consumption of attojoule levels, coupled with fast switching speed. The switching mechanisms are systematically substantiated by electrical and nano-structural analysis, confirming that the h-BN layer facilitates the resistive switching with extremely low high resistance states (HRS) and the native SiOx on Si contributes to suppressing excessive current, enabling attojoule-level energy consumption. Furthermore, the formation of atomic-scale conductive filaments leads to remarkably fast response times within the nanosecond range, and allows for the attainment of multi-resistance states, making these memristors well-suited for next-generation neuromorphic applications. The h-BN-based MIS memristors hold the potential to revolutionize energy consumption limitations in neuromorphic devices, bridging the gap between artificial and biological synapses.

17.
Adv Mater ; : e2404177, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38973224

RESUMO

Sliding ferroelectricity in 2D materials, arising from interlayer sliding-induced interlayer hybridization and charge redistribution at the van der Waals interface, offers a means to manipulate spontaneous polarization at the atomic scale through various methods such as stacking order, interfacial contact, and electric field. However, the practical application of extending 2D sliding ferroelectricity remains challenging due to the contentious mechanisms and the complex device structures required for ferroelectric switching. Here, a sliding memristor based on a graphene/parallel-stacked hexagonal boron nitride/graphene tunneling device, featuring a stable memristive hysteresis induced by interfacial polarizations and barrier height modulations, is presented. As the tunneling current density increases, the memristive window broadens, achieving an on/off ratio of ≈103 and 2 order decrease of the trigger current density, attributed to the interlayer migration of positively charged boron ions and the formation of conductive filaments, as supported by the theoretical calculations. The findings open a path for exploring the sliding memristor via a tunneling device and bridge the gap between sliding ferroelectricity and memory applications.

18.
J Colloid Interface Sci ; 676: 249-260, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029251

RESUMO

Photoelectric artificial synapses based on memristors is an effective method to realize neuromorphic computation. This study presents an optoelectronic responsive artificial synapse made of a composite material consisting of gelatin and carbon nanotubes. The memristor demonstrates characteristics of analog resistive switching, the ability to store multiple memory states, and impressive retention properties. It has the capability to induce an excitatory post-synaptic current by means of electrical pulses or pulsed light exposure. The excitatory post-synaptic current can be modulated by the number, amplitude and interval of electrical pulses, as well as the action time, interval and light intensity of optical pulses. The artificial synapse showcases the emulation of fundamental Hebbian learning protocols, including spike timing dependent plasticity and spike amplitude dependent plasticity. In addition, the charge transfer in the carbon nanotube gelatin composite optoelectronic memristor is investigated through first-principles calculations, shedding light on its operational mechanism. Experimental results show that these devices have the potential to be utilized for processing image information, resulting in a significant reduction of input data and training expenses when recognizing handwritten numbers. Overall, the optoelectronic synapse exhibits promising image processing prospects in the field of neuromorphic computing.

19.
Adv Mater ; : e2403904, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39030848

RESUMO

Modern graph datasets with structural complexity and uncertainties due to incomplete information or data variability require advanced modeling techniques beyond conventional graph models. This study introduces a memristive crossbar array (CBA)-based probabilistic graph model (C-PGM) utilizing Cu0.3Te0.7/HfO2/Pt memristors, which exhibit probabilistic switching, self-rectifying, and memory characteristics. C-PGM addresses the complexities and uncertainties inherent in structural graph data across various domains, leveraging the probabilistic nature of memristors. C-PGM relies on the device-to-device variation across multiple memristive CBAs, overcoming the limitations of previous approaches that rely on sequential operations, which are slower and have a reliability concern due to repeated switching. This new approach enables the fast processing and massive implementation of probabilistic units at the expense of chip area. In this study, the hardware-based C-PGM feasibly expresses small-scale probabilistic graphs and shows minimal error in aggregate probability calculations. The probability calculation capabilities of C-PGM are applied to steady-state estimation and the PageRank algorithm, which is implemented on a simulated large-scale C-PGM. The C-PGM-based steady-state estimation and PageRank algorithm demonstrate comparable accuracy to conventional methods while significantly reducing computational costs.

20.
ACS Appl Mater Interfaces ; 16(29): 38355-38364, 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39011562

RESUMO

Chemical vapor deposition (CVD) is a widely used method for graphene synthesis, but it struggles to produce large-area uniform bilayer graphene (BLG). This study introduces a novel approach to meet the demands of large-scale integrated circuit applications, challenging the conventional reliance on uniform BLG over extensive areas. We developed a unique method involving the direct growth of bilayer graphene arrays (BLGA) on Cu foil substrates using patterned titanium (Ti) as a diffusion barrier. The use of the Ti layer can effectively control carbon atom diffusion through the Cu foil without altering the growth conditions or compromising the graphene quality, thereby showcasing its versatility. The approach allows for targeted BLG growth and achieved a yield of 100% for a 10 × 10 BLG units array. Then a 10 × 10 BLG memristor array was fabricated, and a yield of 96% was achieved. The performances of these devices show good uniformity, evidenced by the set voltages concentrated around 4 V, and a high resistance state (HRS) to low resistance state (LRS) ratio predominantly around 107, reflecting the spatial uniformity of the prepared BLGA. This study provides insight into the BLG growth mechanism and opens new possibilities for BLG-based electronics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA