Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 185
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-39404999

RESUMO

The incidence and mortality rates of colorectal cancer (CRC) are alarmingly high, and the scientific community is consistently engaged in developing newer therapeutic options for cancer cure or prevention. The fluoropyrimidine drug, 5-fluorouracil (5FU), remains the first line of treatment against CRC; nevertheless, relapses frequently occur since the cells gain resistance over time through various mechanisms. Studies have highlighted the significance of combinatorial treatment of a Wnt signaling inhibitor and 5FU as a better treatment strategy to overcome 5FU resistance. Small molecules that specifically target and disrupt ß-catenin-TCF interaction, a crucial step of the Wnt signaling, are promising in CRC treatment. In this study, we investigated the synergistic cytotoxic activity of menadione with 5FU as the former has previously been shown to downregulate Wnt signaling in CRC cells. Docking and experimental results suggest that the drug combination interfered with key protein-protein interactions in the ß-catenin-TCF complex, exerted synergistic anti-cancerous effects in CRC cells, and downregulated the expression of Wnt signaling proteins. Taken together, our data suggest that the simultaneous binding of 5FU and menadione to ß-catenin can block Wnt signaling by disrupting ß-catenin-TCF interaction and inhibit the proliferation of CRC cells.

2.
Spectrochim Acta A Mol Biomol Spectrosc ; 325: 125130, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39299070

RESUMO

Vitamin K is one of the most important fat-soluble vitamins and while there are two main types of vitamin K in nature, known as K1 (phylloquinone) and K2 (menaquinones), there is also a synthetic type of vitamin K known as K3 (menadione). Recent studies have shown that it is crucial to know the non-covalent interactions, ADME and molecular docking of molecules in different solvent media. Therefore, we have performed some quantum chemical calculations, ADME and intra-and intermolecular interaction calculations of a number of K1, K2 and K3 such as K1-water (K1 + W), K1-methanol (K1 + M), K1-triacetin (K1 + T), K2-water (K2 + W), K2-methanol (K2 + M), K2-triacetin (K2 + T), K3-water (K3 + W), K3-methanol (K3 + M), K3-triacetin (K3 + T) performed by Density Functional Theory (DFT) and Multiwfn: A multifunctional wavefunction analyzer. Molecular structures, HOMO-LUMO energies, MEP and electronic properties have been calculated and described using DFT at the level of B3LYP/6-311G (d,p) level. The nature of the molecular interactions between vitamin K and solvents such as water, methanol and triacetin were also investigated using topological analyses such as atoms in molecule (AIM), non-covalent interaction index (NCI), reduced density gradient (RDG), Localized orbital locator (LOL) and electron localization function (ELF). In addition, FMO for electronic transitions, MEP for electrophilic and nucleophilic attack, ADME to investigate how a chemical is processed by a living organism, and Fukui functions to determine electron density are explained. Finally, molecular docking was used to determine the biological activity of the vitamin K.

3.
Ultrastruct Pathol ; 48(5): 378-421, 2024 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-39105605

RESUMO

INTRODUCTION: Xenografts of androgen-independent human DU145 prostate metastatic carcinomas implanted in nu/nu male mice have revealed a significant survival after a prooxidant anticancer treatment consisting of a combination of menadione bisulfite and sodium ascorbate (VK3:VC). METHODS: Implanted samples of diaphragm carcinomas from longest survived mice from either oral, intraperitoneal (IP), or both oral and IP treatment groups were assessed with light, scanning, and transmission electron microscopy to analyze morphologic damages. RESULTS: Compared with previous fine structure data of in vitro untreated carcinomas, the changes induced by oral, IP, and oral with IP VK3:VC treatment dismantled those xenografts with autoschizis, and necrotic atrophy was accomplished by cell's oxidative stress whose injuries were consequent to reactivated deoxyribonucleases and ribonucleases. Tumor destructions resulted from irreversible damages of nucleus components, endoplasmic reticulum, and mitochondria there. Other alterations included those of the cytoskeleton that resulted in characteristic self-excisions named " autoschizis." All these injuries lead resilient cancer cells to necrotic cell death. CONCLUSION: The fine structure damages caused by VK3:VC prooxidant combination in the human DU145 prostate xenografts confirmed those shown in vitro and of other cell lines with histochemistry and biomolecular investigations. These devastations incurred without damage to normal tissues; thus, our data brought support for the above combination to assist in the treatment of prostate cancers and other cancers.


Assuntos
Ácido Ascórbico , Camundongos Nus , Neoplasias da Próstata , Vitamina K 3 , Masculino , Humanos , Animais , Neoplasias da Próstata/patologia , Neoplasias da Próstata/tratamento farmacológico , Ácido Ascórbico/farmacologia , Camundongos , Vitamina K 3/farmacologia , Linhagem Celular Tumoral , Ensaios Antitumorais Modelo de Xenoenxerto , Estresse Oxidativo/efeitos dos fármacos , Microscopia Eletrônica de Transmissão
4.
Mol Biochem Parasitol ; 259: 111620, 2024 09.
Artigo em Inglês | MEDLINE | ID: mdl-38653348

RESUMO

Kinetoplastids, a group of flagellated protists that are often insect intestinal parasites, encounter various sources of oxidative stress. Such stressors include reactive oxygen species, both internally produced within the protist, and induced externally by host immune responses. This investigation focuses on the role of a highly conserved aspartate-based protein phosphatase, PTP-Interacting protein (PIP39) in managing oxidative stress. In addition to its well accepted role in a Trypanosoma brucei life stage transition, there is evidence of PIP39 participation in the T. brucei oxidative stress response. To examine whether this latter PIP39 role may exist more broadly, we aimed to elucidate PIP39's contribution to redox homeostasis in the monoxenous parasite Leptomonas seymouri. Utilizing CRISPR-Cas9-mediated elimination of PIP39 in conjunction with oxidative stress assays, we demonstrate that PIP39 is required for cellular tolerance to oxidative stress in L. seymouri, positing it as a putative regulatory node for adaptive stress responses. We propose that future analysis of L. seymouri PIP39 enzymatic activity, regulation, and potential localization to a specialized organelle termed a glycosome will contribute to a deeper understanding of the molecular mechanisms by which protozoan parasites adapt to oxidative environments. Our study also demonstrates success at using gene editing tools developed for Leishmania for the related L. seymouri.


Assuntos
Estresse Oxidativo , Proteínas de Protozoários , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/genética , Sistemas CRISPR-Cas , Kinetoplastida/genética , Kinetoplastida/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Fosfoproteínas Fosfatases/genética , Espécies Reativas de Oxigênio/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Trypanosoma brucei brucei/fisiologia
5.
J Pharm Sci ; 113(8): 2258-2267, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38508340

RESUMO

Vitamin K derivatives such as menadione (MD) have been recognized as promising redox-modulating and chemosensitizing agents for anticancer therapy, however, their cellular activities in peptide-targeted nanocarriers have not been elucidated to date. This study provides the guidelines for developing MD-loaded solid lipid nanoparticles (SLN) modified with extracellular matrix (ECM)-derived peptides. Relationships between RGD peptide concentration and changes in DLS characteristics as well as accumulation of SLN in cancer cells were revealed to adjust the peptide-lipid ratio. SLN system maintained adequate nanoparticle concentration and low dispersity after introduction of MD and MD/RGD, whereas formulated MD was protected from immediate conjugation with reduced glutathione (GSH). RGD-modified MD-containing SLN showed enhanced prooxidant, GSH-depleting and cytotoxic activities toward PC-3 prostate cancer cells attributed to improved cellular pharmacokinetics of the targeted formulation. Furthermore, this formulation effectively sensitized PC-3 cells and OVCAR-4 ovarian cancer cells to free doxorubicin and cisplatin so that cell growth was inhibited by MD-drug composition at nontoxic concentrations of the ingredients. These results provide an important background for further improving chemotherapeutic methods based on combination of conventional cytostatics with peptide-targeted SLN formulations of MD.


Assuntos
Antineoplásicos , Doxorrubicina , Lipídeos , Nanopartículas , Oligopeptídeos , Vitamina K 3 , Humanos , Nanopartículas/química , Vitamina K 3/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Linhagem Celular Tumoral , Doxorrubicina/farmacologia , Doxorrubicina/administração & dosagem , Doxorrubicina/farmacocinética , Doxorrubicina/química , Oligopeptídeos/química , Oligopeptídeos/farmacologia , Lipídeos/química , Masculino , Portadores de Fármacos/química , Feminino , Glutationa/metabolismo , Cisplatino/farmacologia , Cisplatino/administração & dosagem , Células PC-3 , Lipossomos
6.
Anal Sci ; 40(5): 853-861, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38246930

RESUMO

To minimize background interference in electrochemical enzymatic biosensors employing electron mediators, it is essential for the electrochemical oxidation of electroactive interfering species (ISs), such as ascorbic acid (AA), to proceed slowly, and for the redox reactions between electron mediators and ISs to occur at a low rate. In this study, we introduce a novel combination of a working electrode and an electron mediator that effectively mitigates interference effects. Compared to commonly used electrodes such as Au, glassy carbon, and indium tin oxide (ITO), boron-doped diamond (BDD) electrodes demonstrate significantly lower anodic current (i.e., lower background levels) in the presence of AA. Additionally, menadione (MD) exhibits notably slower reactivity with AA compared to other electron mediators such as Ru(NH3)63+, 4-amino-1-naphthol, and 1,4-naphthoquinone, primarily due to the lower formal potential of MD compared to AA. This synergistic combination of BDD electrode and MD is effectively applied in three biosensors: (i) glucose detection using electrochemical-enzymatic (EN) redox cycling, (ii) glucose detection using electrochemical-enzymatic-enzymatic (ENN) redox cycling, and (iii) lactate detection using ENN redox cycling. Our developed approach significantly outperforms the combination of ITO electrode and MD in minimizing IS interference. Glucose in artificial serum can be detected with detection limits of ~ 20 µM and ~ 3 µM in EN and ENN redox cycling, respectively. Furthermore, lactate in human serum can be detected with a detection limit of ~ 30 µM. This study demonstrates sensitive glucose and lactate detection with minimal interference, eliminating the need for (bio)chemical agents to remove interfering species.


Assuntos
Boro , Diamante , Técnicas Eletroquímicas , Eletrodos , Glucose , Ácido Láctico , Vitamina K 3 , Diamante/química , Vitamina K 3/química , Boro/química , Glucose/análise , Glucose/química , Ácido Láctico/análise , Ácido Láctico/química , Técnicas Biossensoriais , Elétrons , Humanos , Oxirredução
7.
Arch Toxicol ; 98(3): 807-820, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38175295

RESUMO

The most important dose-limiting factor of the anthracycline idarubicin is the high risk of cardiotoxicity, in which the secondary alcohol metabolite idarubicinol plays an important role. It is not yet clear which enzymes are most important for the formation of idarubicinol and which inhibitors might be suitable to suppress this metabolic step and thus would be promising concomitant drugs to reduce idarubicin-associated cardiotoxicity. We, therefore, established and validated a mass spectrometry method for intracellular quantification of idarubicin and idarubicinol and investigated idarubicinol formation in different cell lines and its inhibition by known inhibitors of the aldo-keto reductases AKR1A1, AKR1B1, and AKR1C3 and the carbonyl reductases CBR1/3. The enzyme expression pattern differed among the cell lines with dominant expression of CBR1/3 in HEK293 and MCF-7 and very high expression of AKR1C3 in HepG2 cells. In HEK293 and MCF-7 cells, menadione was the most potent inhibitor (IC50 = 1.6 and 9.8 µM), while in HepG2 cells, ranirestat was most potent (IC50 = 0.4 µM), suggesting that ranirestat is not a selective AKR1B1 inhibitor, but also an AKR1C3 inhibitor. Over-expression of AKR1C3 verified the importance of AKR1C3 for idarubicinol formation and showed that ranirestat is also a potent inhibitor of this enzyme. Taken together, our study underlines the importance of AKR1C3 and CBR1 for the reduction of idarubicin and identifies potent inhibitors of metabolic formation of the cardiotoxic idarubicinol, which should now be tested in vivo to evaluate whether such combinations can increase the cardiac safety of idarubicin therapies while preserving its efficacy.


Assuntos
Cardiotoxicidade , Daunorrubicina/análogos & derivados , Idarubicina , Pirazinas , Compostos de Espiro , Humanos , Idarubicina/toxicidade , Idarubicina/metabolismo , Aldo-Ceto Redutases , Células HEK293 , Aldeído Redutase
8.
Protoplasma ; 261(1): 43-51, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37421536

RESUMO

When plants are exposed to water stress, photosynthesis is downregulated due to enhanced reactive oxygen species (ROS) and nitric oxide (NO). In contrast, photorespiratory metabolism protected photosynthesis and sustained yield. Modulation of photorespiration by ROS was established, but the effect of NO on photorespiratory metabolism was unclear. We, therefore, examined the impact of externally added NO by using S-nitrosoglutathione (GSNO), a natural NO donor, in leaf discs of pea (Pisum sativum) under dark or light: moderate or high light (HL). Maximum NO accumulation with GSNO was under high light. The presence of 2-4-carboxyphenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPTIO), a NO scavenger, prevented the increase in NO, confirming the release of NO in leaves. The increase in S-nitrosothiols and tyrosine-nitrated proteins on exposure to GSNO confirmed the nitrosative stress in leaves. However, the changes by GSNO in the activities and transcripts of five photorespiratory enzymes: glycolate oxidase, hydroxypyruvate reductase, catalase, glycerate kinase, and phosphoglycolate phosphatase activities were marginal. The changes in photorespiratory enzymes caused by GSNO were much less than those with HL. Since GSNO caused only mild oxidative stress, we felt that the key modulator of photorespiration might be ROS, but not NO.


Assuntos
Pisum sativum , S-Nitrosoglutationa , Óxido Nítrico/metabolismo , Doadores de Óxido Nítrico/metabolismo , Folhas de Planta/metabolismo , Espécies Reativas de Oxigênio/metabolismo , S-Nitrosoglutationa/farmacologia , S-Nitrosoglutationa/metabolismo
9.
Arch Biochem Biophys ; 751: 109840, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38040223

RESUMO

Osteosarcoma (OS) is a primary malignant bone tumor that has an abnormal expression of oncogenesis and tumor suppressors and causes dysregulation of various signaling pathways. Thus, novel therapeutic strategies for OS are needed to overcome the resistance of traditional treatments. This study evaluated the cytotoxic and anticancer effects of the association between menadione (MEN) and protocatechuic acid (PCA) in murine OS cells (UMR-106). The concentrations were 3.12 µM of isolated MEN, 500 µM of isolated PCA, and their associations. We performed cell viability assays, morphology modification analysis, cell migration by the wound-healing method, apoptosis by flow cytometry, reactive oxygen species (ROS) production, gene expression of NOX by RT-qPCR, and degradation of MMP-2 and 9 by zymography. Our results showed that the association of MEN+PCA was more effective in OS cells than the compounds alone. The association decreased cell viability, delayed cell migration, and decreased the expression of NOX-2 and ROS. In addition, the MEN+PCA association induced a slight increase in the apoptotic process. In summary, the association can enhance the compound's antitumor effects and establish a higher selectivity for tumor cells, possibly caused by significant mitochondrial damage and antioxidant properties.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Animais , Camundongos , Vitamina K 3/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Apoptose , Osteossarcoma/tratamento farmacológico , Osteossarcoma/genética , Combinação de Medicamentos , Linhagem Celular Tumoral , Neoplasias Ósseas/patologia , Proliferação de Células
10.
J Fungi (Basel) ; 9(11)2023 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-37998866

RESUMO

Manganese superoxide dismutases (MnSODs) play a pivotal role in the preservation of mitochondrial integrity and function in fungi under various endogenous and exogenous stresses. Deletion of Aspergillus nidulans mnSOD/SodB increased oxidative stress sensitivity and apoptotic cell death rates as well as affected antioxidant enzyme and sterigmatocystin productions, respiration, conidiation and the stress tolerance of conidiospores. The physiological consequences of the lack of sodB were more pronounced during carbon starvation than in the presence of glucose. Lack of SodB also affected the changes in the transcriptome, recorded by high-throughput RNA sequencing, in menadione sodium bisulfite (MSB)-exposed, submerged cultures supplemented with glucose. Surprisingly, the difference between the global transcriptional changes of the ΔsodB mutant and the control strain were relatively small, indicating that the SodB-dependent maintenance of mitochondrial integrity was not essential under these experimental conditions. Owing to the outstanding physiological flexibility of the Aspergilli, certain antioxidant enzymes and endogenous antioxidants together with the reduction in mitochondrial functions compensated well for the lack of SodB. The lack of sodB reduced the growth of surface cultures more than of the submerged culture, which should be considered in future development of fungal disinfection methods.

11.
Biomedicines ; 11(10)2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37893026

RESUMO

Glioblastoma multiforme (GBM) is the most lethal primary brain tumor in adults, characterized by a highly invasive nature and therapy resistance. Combination of menadione and ascorbic acid (AA+MD) exerts strong ROS-mediated anti-GBM activity in vitro. The objective of this study was to improve AA+MD anti-GBM potential by modulating the activity of Akt and c-Jun N-terminal kinase (JNK), molecules with an important role in GBM development. The effects of Akt and JNK modulation on AA+MD toxicity in U251 human glioblastoma cells were assessed by cell viability assays, flow cytometry, RNA interference and plasmid overexpression, and immunoblot analysis. The AA+MD induced severe oxidative stress, an early increase in Akt phosphorylation followed by its strong inhibition, persistent JNK activation, and U251 cell death. Small molecule Akt kinase inhibitor 10-DEBC enhanced, while pharmacological and genetic Akt activation decreased, AA+MD-induced toxicity. The U251 cell death potentiation by 10-DEBC correlated with an increase in the combination-induced autophagic flux and was abolished by genetic autophagy silencing. Additionally, pharmacological JNK inhibitor SP600125 augmented combination toxicity toward U251 cells, an effect linked with increased ROS accumulation. These results indicate that small Akt and JNK kinase inhibitors significantly enhance AA+MD anti-GBM effects by autophagy potentiation and amplifying deleterious ROS levels.

12.
ChemMedChem ; 18(24): e202300328, 2023 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-37874976

RESUMO

Antimicrobial resistance (AMR) interferes with the effective treatment of infections and increases the risk of microbial spread and infection-related illness and death. The synergistic activities of combinations of antimicrobial compounds offer satisfactory approaches to some extent. Structurally diverse naphthoquinones (NQs) including menadione (-CH3 group at C2) exhibit substantial antimicrobial activities against multidrug-resistant (MDR) pathogens. We explored the combinations of menadione with antibiotic ciprofloxacin or ampicillin against Staphylococcus aureus and its biofilms. We found an additive (0.590 %) were also observed. However, preformed biofilms were not affected. Dent formation was also evident in S. aureus treated with the test compounds. The structure-function relationship (SFR) of NQs was used to determine and predict their activity pattern against pathogens. Analysis of 10 structurally distinct NQs revealed that the compounds with -Cl, -Br, -CH3 , or -OH groups displayed the lowest MICs (32-256 µg/mL). Furthermore, 1,4-NQs possessing a halogen or -CH3 moiety showed elevated ROS activity, whereas molecules with an -OH group affected cell integrity. Improved activity of antimicrobial combinations and SFR approaches are significant in antimicrobial therapies.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Naftoquinonas , Infecções Estafilocócicas , Humanos , Antibacterianos/farmacologia , Staphylococcus aureus , Vitamina K 3/farmacologia , Naftoquinonas/farmacologia , Espécies Reativas de Oxigênio , Ampicilina/farmacologia , Ciprofloxacina/farmacologia , Testes de Sensibilidade Microbiana , Biofilmes
13.
J Oral Biosci ; 65(4): 273-279, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37660730

RESUMO

OBJECTIVES: Porphyromonas gingivalis is the etiological agent of chronic periodontitis. Menadione (vitamin K3) and phylloquinone (vitamin K1) are well-known growth factors for P. gingivalis, while menadione is widely used in growth experiments. Here we attempted to determine the differences in phylloquinone and menadione in P. gingivalis growth experiments, which have not been well studied to date. METHODS: We investigated the effects of menadione and phylloquinone on the growth of two W83 strains and seven ATCC 33277 strains of P. gingivalis. RESULTS: The ATCC 33277 strains grew well with phylloquinone at 2.9 µM in a complex medium (nutrient medium) and at 29 µM in two minimal media. In contrast, the W83 strains grew well without menadione or phylloquinone in three different culture media. Menadione at 2.9 µM, the conventionally used concentration for culturing P. gingivalis, supported the growth of most ATCC 33277 strains but inhibited the growth of some W83 and ATCC 33277 strains. Furthermore, menadione at 14.5 µM frequently inhibited cell growth, while phylloquinone at 145 µM promoted cell growth. CONCLUSIONS: These results indicate that menadione and phylloquinone act as growth factors for ATCC 33277 but that menadione also can inhibit P. gingivalis growth. Thus, we propose that phylloquinone be used instead of menadione in P. gingivalis growth experiments requiring vitamin K.


Assuntos
Periodontite Crônica , Vitamina K 3 , Humanos , Vitamina K 3/farmacologia , Vitamina K 3/metabolismo , Vitamina K 1/farmacologia , Vitamina K 1/metabolismo , Porphyromonas gingivalis/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/farmacologia
14.
J Med Microbiol ; 72(9)2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37707372

RESUMO

Introduction. Antibiotic resistance is a major threat to public health, particularly with methicillin-resistant Staphylococcus aureus (MRSA) being a leading cause of antimicrobial resistance. To combat this problem, drug repurposing offers a promising solution for the discovery of new antibacterial agents.Hypothesis. Menadione exhibits antibacterial activity against methicillin-sensitive and methicillin-resistant S. aureus strains, both alone and in combination with oxacillin. Its primary mechanism of action involves inducing oxidative stress.Methodology. Sensitivity assays were performed using broth microdilution. The interaction between menadione, oxacillin, and antioxidants was assessed using checkerboard technique. Mechanism of action was evaluated using flow cytometry, fluorescence microscopy, and in silico analysis.Aim. The aim of this study was to evaluate the in vitro antibacterial potential of menadione against planktonic and biofilm forms of methicillin-sensitive and resistant S. aureus strains. It also examined its role as a modulator of oxacillin activity and investigated the mechanism of action involved in its activity.Results. Menadione showed antibacterial activity against planktonic cells at concentrations ranging from 2 to 32 µg ml-1, with bacteriostatic action. When combined with oxacillin, it exhibited an additive and synergistic effect against the tested strains. Menadione also demonstrated antibiofilm activity at subinhibitory concentrations and effectively combated biofilms with reduced sensitivity to oxacillin alone. Its mechanism of action involves the production of reactive oxygen species (ROS) and DNA damage. It also showed interactions with important targets, such as DNA gyrase and dehydroesqualene synthase. The presence of ascorbic acid reversed its effects.Conclusion. Menadione exhibited antibacterial and antibiofilm activity against MRSA strains, suggesting its potential as an adjunct in the treatment of S. aureus infections. The main mechanism of action involves the production of ROS, which subsequently leads to DNA damage. Additionally, the activity of menadione can be complemented by its interaction with important virulence targets.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Oxacilina , Oxacilina/farmacologia , Vitamina K 3/farmacologia , Meticilina , Staphylococcus aureus , Espécies Reativas de Oxigênio , Antibacterianos/farmacologia , Biofilmes
15.
Int J Mol Sci ; 24(15)2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37569357

RESUMO

There are different estimates for the incidence of infertility. Its occurrence may vary from area to area, but on average, it affects 15% of couples and 10-12% of men worldwide. Many aspects of infertility can be linked to reactive oxygen species (ROS) and the process of oxidative stress (OS). The association between poor semen quality and OS is well known. Unfortunately, there is no accepted protocol for the diagnosis and treatment of OS in andrology. Oxido-reduction potential (ORP) measurement is a new method for determining the ratio between oxidant and antioxidant molecules. Currently, ORP measurement is one of the fastest and most user-friendly methods of andrological OS determination and our goals were to confirm published correlations between ORP values and sperm parameters, examine how sperm concentration influences these results, and investigate whether intracellular ROS formations are also manifested in the ORP values or not after artificial ROS induction. Intracellular ROS formations were induced by menadione (superoxide anion inducer), hydrogen peroxide, and tert-butyl hydroperoxide (lipid peroxidation inducer) treatments; sperm parameters like motility and viability were determined with an SCA Scope system, and ORP changes were recorded by the Mioxsys system. Significant correlations were noticed among the ORP, spermatozoa concentration, motility, progressive motility, and viability. Nevertheless, only the ORP value after normalization with the sperm count correlated with these parameters. Due to normalization, very low and very high sperm concentrations can give misleading results. The means of the non-normalized ORP values were almost the same. All of the applied treatments resulted in decreases in the viability, motility, and progressive motility, and interestingly, altered ORP levels were detected. In addition, it was determined that seminal plasma had a significant protective effect on spermatozoa. The elimination of seminal plasma caused higher sensitivity of spermatozoa against used OS inducers, and higher ORP levels and decreased viabilities and motilities were measured. The ORP level could be a good indicator of male OS; however, in cases of low and high sperm counts, its result can be misleading. Overall, the conclusion can be drawn that ORP determination is a suitable method for detecting intracellular ROS accumulation, but it has limitations that still need to be clarified.


Assuntos
Infertilidade Masculina , Análise do Sêmen , Masculino , Humanos , Análise do Sêmen/métodos , Sêmen , Espécies Reativas de Oxigênio/metabolismo , Infertilidade Masculina/metabolismo , Motilidade dos Espermatozoides , Oxirredução , Estresse Oxidativo , Espermatozoides/metabolismo
16.
Redox Rep ; 28(1): 2220531, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37581329

RESUMO

Objectives: The present study describes a pharmacological strategy for the treatment of glioblastoma by redoxcycling 'mitocans' such as quinone/ascorbate combination drugs, based on their tumor-selective redox-modulating effects and tolerance to normal cells and tissues.Methods: Experiments were performed on glioblastoma mice (orthotopic model) treated with coenzyme Q0/ascorbate (Q0/A). The drug was injected intracranially in a single dose. The following parameters were analyzed in vivo using MRI orex vivo using conventional assays: tumor growth, survival, cerebral and tumor perfusion, tumor cell density, tissue redox-state, and expression of tumor-associated NADH oxidase (tNOX).Results: Q0/A markedly suppressed tumor growth and significantly increased survival of glioblastoma mice. This was accompanied by increased oxidative stress in the tumor but not in non-cancerous tissues, increased tumor blood flow, and downregulation of tNOX. The redox-modulating and anticancer effects of Q0/A were more pronounced than those of menadione/ascorbate (M/A) obtained in our previous study. No adverse drug-related side-effects were observed in glioblastoma mice treated with Q0/A.Discussion: Q0/A differentiated cancer cells and tissues, particularly glioblastoma, from normal ones by redox targeting, causing a severe oxidative stress in the tumor but not in non-cancerous tissues. Q0/A had a pronounced anticancer activity and could be considered safe for the organism within certain concentration limits. The results suggest that the rate of tumor resorption and metabolism of toxic residues must be controlled and maintained within tolerable limits to achieve longer survival, especially at intracranial drug administration.


Assuntos
Glioblastoma , Camundongos , Animais , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Glioblastoma/patologia , Linhagem Celular Tumoral , Ácido Ascórbico/farmacologia , Oxirredução , Estresse Oxidativo
17.
Free Radic Biol Med ; 206: 50-62, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37356777

RESUMO

Oxidative stress can be induced in the testes by a wide range of factors, including scrotal hyperthermia, varicocele, environmental toxicants, obesity and infection. The clinical consequences of such stress include the induction of genetic damage in the male germ line which may, in turn, have serious implications for the health and wellbeing of the progeny. In order to confirm the transgenerational impact of oxidative stress in the testes, we sought to develop an animal model in which this process could be analysed. Our primary approach to this problem was to induce Sertoli cells (robust, terminally differentiated, tissue-specific testicular cells whose radioresistance indicates significant resistance to oxidative stress) to generate high levels of reactive oxygen species (ROS) within the testes. To achieve this aim, six follicle-stimulating hormone (FSH) peptides were developed and compared for selective targeting to Sertoli cells both in vitro and in vivo. Menadione, a redox-cycling agent, was then conjugated to the most promising FSH candidate using a linker that had been optimised to enable maximum production of ROS in the targeted cells. A TM4 Sertoli cell line co-incubated with the FSH-menadione conjugate in vitro exhibited significantly higher levels of mitochondrial ROS generation (10-fold), lipid peroxidation (2-fold) and oxidative DNA damage (2-fold) than the vehicle control. Additionally, in a proof-of-concept study, ten weeks after a single injection of the FSH-menadione conjugate in vivo, injected male mice were found to exhibit a 1.6 fold increase in DNA double strand breaks and 13-fold increase in oxidative DNA damage to their spermatozoa while still retaining their ability to initiate a pregnancy. We suggest this model could now be used to study the influence of chronic oxidative stress on testicular function with emphasis on the impact of DNA damage in the male germ line on the mutational profile and health of future generations.


Assuntos
Naftoquinonas , Células de Sertoli , Gravidez , Feminino , Masculino , Camundongos , Animais , Células de Sertoli/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Vitamina K 3/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo , Testículo , Estresse Oxidativo , Hormônio Foliculoestimulante/farmacologia , Oxirredução , Dano ao DNA
18.
J Photochem Photobiol B ; 244: 112720, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37186990

RESUMO

Cutaneous bacterial wound infections typically involve gram-positive cocci such as Staphylococcus aureus (SA) and usually become biofilm infections. Bacteria in biofilms may be 100-1000-fold more resistant to an antibiotic than the clinical laboratory minimal inhibitory concentration (MIC) for that antibiotic, contributing to antimicrobial resistance (AMR). AMR is a growing global threat to humanity. One pathogen-antibiotic resistant combination, methicillin-resistant SA (MRSA) caused more deaths globally than any other such combination in a recent worldwide statistical review. Many wound infections are accessible to light. Antimicrobial phototherapy, and particularly antimicrobial blue light therapy (aBL) is an innovative non-antibiotic approach often overlooked as a possible alternative or adjunctive therapy to reduce antibiotic use. We therefore focused on aBL treatment of biofilm infections, especially MRSA, focusing on in vitro and ex vivo porcine skin models of bacterial biofilm infections. Since aBL is microbicidal through the generation of reactive oxygen species (ROS), we hypothesized that menadione (Vitamin K3), a multifunctional ROS generator, might enhance aBL. Our studies suggest that menadione can synergize with aBL to increase both ROS and microbicidal effects, acting as a photosensitizer as well as an ROS recycler in the treatment of biofilm infections. Vitamin K3/menadione has been given orally and intravenously worldwide to thousands of patients. We conclude that menadione/Vitamin K3 can be used as an adjunct to antimicrobial blue light therapy, increasing the effectiveness of this modality in the treatment of biofilm infections, thereby presenting a potential alternative to antibiotic therapy, to which biofilm infections are so resistant.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Infecções Estafilocócicas , Infecção dos Ferimentos , Humanos , Vitamina K 3/farmacologia , Vitamina K 3/uso terapêutico , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Espécies Reativas de Oxigênio/farmacologia , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Anti-Infecciosos/farmacologia , Biofilmes , Infecções Estafilocócicas/tratamento farmacológico , Testes de Sensibilidade Microbiana
19.
Environ Res ; 227: 115794, 2023 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-37011790

RESUMO

An innovative sensor is prepared by electrode modification through a nano-ranged electrode modifier composed of LaNbO4 nano caviars decorated on the enmeshed carbon nanofibers to identify excess vitamins in animal feed. Menadione (Vitamins K3) is a micronutrient fundamentally required in precise quantities for animal health upkeep. Still, its exploitation has recently resulted in water reservoir contamination through waste generated from animal husbandry. Sustainable prevention of water contamination makes menadione detection highly imperative and flickered the attention of researchers. Considering these aspects, a novel menadione sensing platform is designed by interdisciplinary incorporation of nanoscience and electrochemical engineering. The structural and crystallographic features and the electrode modifier's morphological insights were keenly investigated. The hierarchal arrangement of individual constituents in nanocomposite is benefited through hybrid heterojunction and quantum confinement that synchronously activate the menadione detection with a LOD of 68.5 nM and 67.49 nM for oxidation and reduction, respectively. The as-prepared sensor has a wide linear range (0.1-173.6 µM), high sensitivity, good selectivity, and stability. The application of this sensor is extended to a water sample to monitor the consistency of the proposed sensor.


Assuntos
Nanocompostos , Nanofibras , Carbono/química , Vitamina K 3 , Lantânio/química , Técnicas Eletroquímicas/métodos , Limite de Detecção , Vitaminas , Água , Nanocompostos/química
20.
J Agric Food Chem ; 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36758115

RESUMO

Biostimulants are an interesting strategy to increase crop tolerance to water deficits, and there is an extensive bibliography on them. However, most of them need to be treated continuously to increase protection throughout the growth cycle. In this context, we chose menadione sodium bisulfite, whose protective effect against water deficit has been previously demonstrated but only for a short period of time. Nanoencapsulation seems to be an interesting way to improve the properties of biostimulants. Our results show that menadione sodium bisulfite (MSB) encapsulated in chitosan/tripolyphosphate nanoparticles can increase the system's tolerance against an imposed water deficit and delay the need for retreatment by at least 1 week, accelerating plant recovery after rehydration. This highlights the positive properties of nanoencapsulation and shows how a simple encapsulation process can significantly improve the biostimulant protective properties, opening up new possibilities to be explored under field conditions to cope with water-deficit stress.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA