Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
1.
Ecol Evol ; 14(9): e70308, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39296734

RESUMO

The effects of climate change on coastal biodiversity are a major concern because altered community compositions may change associated rates of ecosystem functioning and services. Whilst responses of single species or taxa have been studied extensively, it remains challenging to estimate responses to climate change across different levels of biological organisation. Studies that consider the effects of moderate realistic near-future levels of ocean warming and acidification are needed to identify and quantify the gradual responses of species to change. Also, studies including different levels of biological complexity may reveal opportunities for amelioration or facilitation under changing environmental conditions. To test experimentally for independent and combined effects of predicted near-future warming and acidification on key benthic species, we manipulated three levels of temperature (winter ambient, +0.8 and +2°C) and two levels of pco 2 (ambient at 450 ppm and elevated at 645 ppm) and quantified their effects on mussels and algae growing separately and together (to also test for inter-specific interactions). Warming increased mussel clearance and mortality rates simultaneously, which meant that total biomass peaked at +0.8°C. Surprisingly, however, no effects of elevated pco 2 were identified on mussels or algae. Moreover, when kept together, mussels and algae had mutually positive effects on each other's performance (i.e. mussel survival and condition index, mussel and algal biomass and proxies for algal productivity including relative maximum electron transport rate [rETRmax], saturating light intensity [I k] and maximum quantum yield [F v/F m]), independent of warming and acidification. Our results show that even moderate warming affected the functioning of key benthic species, and we identified a level of resistance to predicted ocean acidification. Importantly, we show that the presence of a second functional group enhanced the functioning of both groups (mussels and algae), independent of changing environmental conditions, which highlights the ecological and potential economic benefits of conserving biodiversity in marine ecosystems.

2.
Sci Total Environ ; 952: 176022, 2024 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-39236830

RESUMO

Pyrethroid insecticides are widely detected in aquatic ecosystems due to their extensive use in agriculture and horticulture, which could pose a potential risk to aquatic non-target organisms. While previous ecotoxicological studies have been conducted mainly with standard tests and local species under temperate conditions, scarce information is available on the effects of pyrethroid insecticides on communities and ecosystems under (sub-)tropical conditions. A single application of lambda-cyhalothrin at concentrations of 0, 9, 30, and 100 ng/L was evaluated in outdoor mesocosms under sub-tropical conditions. Lambda-cyhalothrin was found to dissipate rapidly in the water column, with only 11 % and 7 % of the remaining dose measured at 1 and 3 days after application, respectively. Lambda-cyhalothrin concentrations disappeared considerably faster from the water compartment compared to temperate conditions. Consistent decreases in abundance were observed for Lecane lunaris at the medium and higher treatments (NOEC = 9 ng/L) and at the highest treatment (NOEC = 30 ng/L) for Keratella tropica. On the contrary, two taxa belonging to Cladocera (i.e., Ceriodaphnia sp. and Diaphanosoma sp.) showed the most prominent increase in abundance related to the lambda-cyhalothrin treatments. At the community level, a consistent no observed effect concentrations (NOECs) of 9 ng/L could be calculated for the zooplankton community. A marginal significant overall treatment related effect was observed for the macroinvertebrate community. The results of species sensitivity distribution (SSD) analysis based on results of acute toxicity experiments conducted alongside the mesocosm experiment and obtained from the literature indicated that macroinvertebrates from temperate regions may be generally more sensitive than their counterparts in (sub-)tropical regions. Overall, these findings suggest that environmentally relevant concentrations of the pyrethroid insecticide lambda-cyhalothrin may lead to different ecological outcomes in freshwater ecosystems in the (sub-)tropics relative to temperate regions.


Assuntos
Ecossistema , Água Doce , Inseticidas , Nitrilas , Piretrinas , Poluentes Químicos da Água , Piretrinas/toxicidade , Nitrilas/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Monitoramento Ambiental
3.
Sci Total Environ ; 951: 175777, 2024 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-39182767

RESUMO

Mediterranean lakes are facing heightened exposure to multiple stressors, such as intensified Saharan dust deposition, temperature increases and fluctuations linked to heatwaves. However, the combined impact of dust and water temperature on the microbial community in freshwater ecosystems remains underexplored. To assess the interactive effect of dust deposition and temperature on aquatic microbes (heterotrophic bacteria and phytoplankton), a combination of field mesocosm experiments covering a dust gradient (five levels, 0-320 mg L-1), and paired laboratory microcosms with increased temperature at two levels (constant and fluctuating high temperature) were conducted in a high mountain lake in the Spanish Sierra Nevada, at three points in time throughout the ice-free period. Heterotrophic bacterial production (HBP) increased with dust load regardless of the temperature regime. However, temperature regime affected the magnitude and nature of the interactive Dust×T effect on HBP. Specifically, constant and fluctuating high temperature showed opposing interactive effects in the short term that became additive over time. The relationships between HBP and predictor variables (soluble reactive phosphorus (SRP), excreted organic carbon (EOC), and heterotrophic bacterial abundance (HBA)), coupled with an evaluation of the mechanistic variable photosynthetic carbon use efficiency by bacteria (%CUEb), revealed that bacteria depended on primary production in nearly all treatments when dust was added. The %CUEb increased with dust load in the control temperature treatment, but it was highest at intermediate dust loads under both constant and fluctuating high temperatures. Overall, our results suggest that while dust addition alone strengthens algae-bacteria coupling, high temperatures lead to decoupling in the long term at intermediate dust loads, potentially impacting ecosystem function.


Assuntos
Poeira , Lagos , Fitoplâncton , Poeira/análise , Lagos/microbiologia , Lagos/química , Fitoplâncton/fisiologia , Temperatura Alta , Bactérias , Microbiologia da Água , Espanha , Microbiota , África do Norte
4.
Environ Pollut ; 359: 124568, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39029864

RESUMO

The neonicotinoid acetamiprid is used as a foliar insecticide spray, which results in direct exposure of a wide variety of soil organisms. Laboratory testing indicated that acetamiprid is toxic to the Collembola (springtails) species Folsomia candida, while Acari (mites) seem relatively insensitive to neonicotinoids. Since such opposing effects on different soil arthropods might imbalance natural arthropod communities, this study determined: (i) if field-realistic doses of acetamiprid affect the abundance and diversity in soil arthropod communities, and (ii) whether these potential effects are short-term or persist after degradation of acetamiprid. Intact soil cores collected from an untreated grassland field were placed in the mesocosm set up 'CLIMECS', and the naturally sourced communities were exposed to a control and increasing field-realistic doses of acetamiprid (i.e. 0, 0.05, 0.2, 0.8 mg a.s./kg dry soil). Before and 7 and 54 days after spraying the insecticide, the abundance of mites and springtails and springtail diversity were assessed. Springtail and mite abundances were similar at the start of the experiment, but springtail abundance was significantly lowered while mite abundance increased shortly after exposure to increasing doses of acetamiprid. At the highest dose, springtail numbers decreased by 53% on average while the number of mites increased by 26%. This effect was no longer visible after 54 days, suggesting recovery of the community as a whole reflected by observed changes in community dissimilarity: shortly after application springtail communities clearly diverged from the control in terms of species composition, while communities converged again in the long-term. With our results, we are the first to show that field-realistic applications of N-nitroguanidine neonicotinoids can significantly impact natural soil fauna communities, which might have implications for soil ecosystem functioning.


Assuntos
Artrópodes , Biodiversidade , Inseticidas , Neonicotinoides , Poluentes do Solo , Solo , Animais , Neonicotinoides/toxicidade , Artrópodes/efeitos dos fármacos , Inseticidas/toxicidade , Poluentes do Solo/análise , Poluentes do Solo/toxicidade , Solo/química , Ácaros/efeitos dos fármacos
5.
Environ Monit Assess ; 196(8): 686, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38958830

RESUMO

Environmental contamination by chromium represents a serious public health problem. Therefore, it is crucial to develop and optimize remediation technologies to reduce its concentration in the environment. The aims of this study were to evaluate the uptake of chromium by live and complete microbial mats in experimental mesocosms under different pH and salinity conditions to understand how these factors affect the microphytobenthic community and, consequently, how chromium removal process is influenced. Microbial mats from the estuarine environment were exposed to 15 mg Cr/L under different pH (2, 4, and 8) and salinity (2, 15, and 33) conditions. Salinity, redox potential, and pH were measured throughout the trial in solutions and in microbial mats, while total Cr determinations were performed at the end of the assay. The results demonstrated that the removal efficiency of Cr by microbial mats was significantly improved in solutions at pH 2, remaining unaffected by variations in salinity. Notably, both cyanobacteria and diatoms showed remarkable resistance to Cr exposure under all conditions tested, highlighting their exceptional adaptability. Microbial mats have proved to be effective filters for reducing the concentration of chromium in aqueous solutions with varying pH and salinity levels.


Assuntos
Cromo , Salinidade , Poluentes Químicos da Água , Cromo/análise , Concentração de Íons de Hidrogênio , Poluentes Químicos da Água/análise , Cianobactérias , Diatomáceas , Biodegradação Ambiental
6.
Water Res ; 258: 121791, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38830291

RESUMO

Changes in rainfall patterns driven by climate change affect the transport of dissolved organic matter (DOM) and nutrients through runoff to freshwater systems. This presents challenges for drinking water providers. DOM, which is a heterogeneous mix of organic molecules, serves as a critical precursor for disinfection by-products (DBPs) which are associated with adverse health effects. Predicting DBP formation is complex due to changes in DOM concentration and composition in source waters, intensified by altered rainfall frequency and intensity. We employed a novel mesocosm approach to investigate the response of DBP precursors to variability in DOM composition and inorganic nutrients, such as nitrogen and phosphorus, export to lakes. Three distinct pulse event scenarios, mimicking extreme, intermittent, and continuous runoff were studied. Simultaneous experiments were conducted at two boreal lakes with distinct DOM composition, as reflected in their color (brown and clear lakes), and bromide content, using standardized methods. Results showed primarily site-specific changes in DBP precursors, some heavily influenced by runoff variability. Intermittent and daily pulse events in the clear-water mesocosms exhibited higher haloacetonitriles (HANs) formation potential linked to freshly produced protein-like DOM enhanced by light availability. In contrast, trihalomethanes (THMs), associated with humic-like DOM, showed no significant differences between pulse events in the brown-water mesocosms. Elevated bromide concentration in the clear mesocosms critically influenced THMs speciation and concentrations. These findings contribute to understanding how changing precipitation patterns impact the dynamics of DBP formation, thereby offering insights for monitoring the mobilization and alterations of DBP precursors within catchment areas and lake ecosystems.


Assuntos
Desinfecção , Lagos , Poluentes Químicos da Água , Lagos/química , Poluentes Químicos da Água/análise , Fósforo/análise , Purificação da Água , Nutrientes/análise , Trialometanos/análise , Nitrogênio/análise
7.
Water Res ; 260: 121903, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38875860

RESUMO

Ongoing global climate change will shift nature towards Anthropocene's unprecedented conditions by increasing average temperatures and the frequency and severity of extreme events, such as heatwaves. While such climatic changes pose an increased threat for freshwater ecosystems, other stressors like pesticides may interact with warming and lead to unpredictable effects. Studies that examine the underpinned mechanisms of multiple stressor effects are scarce and often lack environmental realism. Here, we conducted a multiple stressors experiment using outdoor freshwater mesocosms with natural assemblages of macroinvertebrates, zooplankton, phytoplankton, macrophytes, and microbes. The effects of the neonicotinoid insecticide imidacloprid (1 µg/L) were investigated in combination with three temperature scenarios representing ambient, elevated temperatures (+4 °C), and heatwaves (+0 to 8 °C), the latter two having similar energy input. We found similar imidacloprid dissipation patterns for all temperature treatments with lowest average dissipation half-lives under both warming scenarios (DT50: 3 days) and highest under ambient temperatures (DT50: 4 days) throughout the experiment. Amongst all communities, only the zooplankton community was significantly affected by the combined treatments. This community demonstrated low chemical sensitivity with lagged and significant negative imidacloprid effects only for cyclopoids. Heatwaves caused early and long-lasting significant effects on the zooplankton community as compared to elevated temperatures, with Polyarthra, Daphnia longispina, Lecanidae, and cyclopoids being the most negatively affected taxa, whereas Ceriodaphnia and nauplii showed positive responses to temperature. Community recovery from imidacloprid stress was slower under heatwaves, suggesting temperature-enhanced toxicity. Finally, microbial and macrofauna litter degradation were significantly enhanced by temperature, whereas the latter was also negatively affected by imidacloprid. A structural equation model depicted cascading food web effects of both stressors with stronger relationships and significant negative stressor effects at higher than at lower trophic levels. Our study highlights the threat of a series of heatwaves compared to elevated temperatures for imidacloprid-stressed freshwaters.


Assuntos
Ecossistema , Cadeia Alimentar , Água Doce , Inseticidas , Neonicotinoides , Animais , Zooplâncton/efeitos dos fármacos , Nitrocompostos , Temperatura Alta , Mudança Climática , Região do Mediterrâneo , Imidazóis , Fitoplâncton/efeitos dos fármacos
8.
Environ Pollut ; 357: 124459, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-38942275

RESUMO

Imidacloprid is a neonicotinoid insecticide that has received particular attention due to its widespread use and potential adverse effects for aquatic and terrestrial ecosystems. Its toxicity to aquatic organisms has been evaluated in central and southern Europe as well as in (sub-)tropical regions of Africa and Asia, showing high toxic potential for some aquatic insects and zooplankton taxa. However, its toxicity to aquatic organisms representative of tropical regions of Latin America has never been evaluated. To fill this knowledge gap, we carried out a mesocosm experiment to assess the short- and long-term effects of imidacloprid on freshwater invertebrate communities representative of the Ecuadorian Amazon. A mesocosm experiment was conducted with five weekly applications of imidacloprid at four nominal concentrations (0.01 µg/L, 0.1 µg/L, 1 µg/L and 10 µg/L). Toxic effects were evaluated on zooplankton and macroinvertebrate populations and communities, as well as on water quality parameters for 70 days. Given the climatic conditions prevailing in the study area, characterized by a high solar radiation and abundant rainfall that resulted in mesocosm overflow, there was a rapid dissipation of the test compound from the water column (half-life: 4 days). The macroinvertebrate taxa Callibaetis pictus (Ephemeroptera), Chironomus sp. (Diptera), and the zooplankton taxon Macrocyclops sp., showed population declines caused by the imidacloprid treatment, with a 21-d Time Weighted Average No Observed Effect Concentrations (21-d TWA NOEC) of 0.46 µg/L, except for C. pictus which presented a 21-d TWA NOEC of 0.05 µg/L. In general terms, the sensitivity of these taxa to imidacloprid was greater than that reported for surrogate taxa in temperate zones and similar to that reported in other (sub-)tropical regions. These results confirm the high sensitivity of tropical aquatic invertebrates to this compound and suggest the need to establish regulations for the control of imidacloprid contamination in Amazonian freshwater ecosystems.


Assuntos
Organismos Aquáticos , Inseticidas , Invertebrados , Neonicotinoides , Nitrocompostos , Poluentes Químicos da Água , Neonicotinoides/toxicidade , Animais , Nitrocompostos/toxicidade , Inseticidas/toxicidade , Poluentes Químicos da Água/toxicidade , Invertebrados/efeitos dos fármacos , Equador , Organismos Aquáticos/efeitos dos fármacos , Monitoramento Ambiental , Zooplâncton/efeitos dos fármacos , Ecossistema
9.
Environ Res ; 252(Pt 3): 118603, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38513752

RESUMO

In natural systems, organisms are embedded in complex networks where their physiology and community composition is shaped by both biotic and abiotic factors. Therefore, to assess the ecosystem-level effects of contaminants, we must pair complex, multi-trophic field studies with more targeted hypothesis-driven approaches to explore specific actors and mechanisms. Here, we examine aquatic microbiome responses to long-term additions of commercially-available metallic nanoparticles [copper-based (CuNPs) or gold (AuNPs)] and/or nutrients in complex, wetland mesocosms over 9 months, allowing for a full growth cycle of the aquatic plants. We found that both CuNPs and AuNPs (but not nutrient) treatments showed shifts in microbial communities and populations largely at the end of the experiment, as the aquatic plant community senesced. we examine aquatic microbiomes under chronic dosing of NPs and nutrients Simplified microbe-only or microbe + plant incubations revealed that direct effects of AuNPs on aquatic microbiomes can be buffered by plants (regardless of seasonal As mesocosms were dosed weekly, the absence of water column accumulation indicates the partitioning of both metals into other environmental compartments, mainly the floc and aquatic plants photosynthetically-derived organic matter. Overall, this study identifies the potential for NP environmental impacts to be either suppressed by or propagated across trophic levels via the presence of primary producers, highlighting the importance of organismal interactions in mediating emerging contaminants' ecosystem-wide impacts.


Assuntos
Cobre , Ouro , Nanopartículas Metálicas , Microbiota , Áreas Alagadas , Nanopartículas Metálicas/toxicidade , Microbiota/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Plantas/efeitos dos fármacos
10.
Water Res ; 255: 121500, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38554636

RESUMO

Microplastics (MPs) are ubiquitous pollutants of increasing concern in aquatic systems. However, little is still known about the impacts of weathered MPs on plankton at the community level after long-term exposure. In this study, we investigated the effects of weathered MPs on the structure and dynamics of a Baltic Sea planktonic community during ca. 5 weeks of exposure using a mesocosm approach (2 m3) mimicking natural conditions. MPs were obtained from micronized commercial materials of polyvinyl chloride, polypropylene, polystyrene, and polyamide (nylon) previously weathered by thermal ageing and sunlight exposure. The planktonic community was exposed to 2 µg L-1 and 2 mg L-1 of MPs corresponding to measured particle concentrations (10-120 µm) of 680 MPs L-1 and 680 MPs mL-1, respectively. The abundance and composition of all size classes and groups of plankton and chlorophyll concentrations were periodically analyzed throughout the experiment. The population dynamics of the studied groups showed some variations between treatments, with negative and positive effects of MPs exhibited depending on the group and exposure time. The abundance of heterotrophic bacteria, pico- and nanophytoplankton, cryptophytes, and ciliates was lower in the treatment with the higher MP concentration than in the control at the last weeks of the exposure. The chlorophyll concentration and the abundances of heterotrophic nanoflagellates, Astromoeba, dinoflagellate, diatom, and metazooplankton were not negatively affected by the exposure to MPs and, in some cases, some groups showed even higher abundances in the MP treatments. Despite these tendencies, statistical analyses indicate that in most cases there were no statistically significant differences between treatments over the exposure period, even at very high exposure concentrations. Our results show that weathered MPs of the studied conventional plastic materials have minimal or negligible impact on planktonic communities after long-term exposure to environmentally relevant concentrations.

11.
Aquat Toxicol ; 268: 106866, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38382184

RESUMO

Per- and polyfluorinated alkyl substances (PFAS) have raised international concerns due to their widespread use, environmental persistence and potential bioaccumulative and ecotoxicological effects. Therefore, the chemical industry has been dedicated to develop new generation fluorosurfactants which are aimed to replace the most concerning PFAS. Here we investigated the fate and effects of cyclic C6O4 (cC6O4), a compound used as alternative to long-chain perfluorocarboxylic acids, in freshwater mesocosms located in the Mediterranean region (Spain) over a period of 90 days. cC6O4 was applied as ammonium salt once at the following nominal concentrations: 0 µg/L (control), 1 µg/L, 20 µg/L, 400 µg/L, and 8,000 µg/L. The study shows that cC6O4 is relatively persistent in water (dissipation: 34-37 % after 90 days), has very low sorption capacity to sediments (sediment-water partition coefficient: 0.18-0.32 L/kg) and very limited bioconcentration (BCF: 0.09-0.94), bioaccumulation (BAF: 0.09-4.06) and biomagnification (BMF: 0.05-0.28) potential. cC6O4 did not result in significant adverse effects on aquatic populations and communities of phytoplankton and zooplankton at the tested concentrations. As for the macroinvertebrate community, the ephemeropteran Cloeon sp. showed a population decline at the highest test concentration on day 60 onwards, and a significant effect on the macroinvertebrate community was identified on the last sampling day at the same exposure level. Therefore, the calculated NOEC for cC6O4 in freshwater mesocosms exposed over a period of 90 days was 400 µg/L, which corresponded to a time weighted average concentration of 611 µg/L, given the water evaporation in the test systems. This concentration is about an order of magnitude higher than the highest exposure concentration monitored in freshwater ecosystems. Therefore, it can be concluded that cC6O4 poses insignificant ecological risks for freshwater plankton and macroinvertebrate communities given the current environmental exposure levels.


Assuntos
Fluorocarbonos , Poluentes Químicos da Água , Animais , Ecossistema , Poluentes Químicos da Água/toxicidade , Zooplâncton , Água Doce/química , Água/farmacologia
12.
Aquat Toxicol ; 267: 106828, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38176168

RESUMO

This paper investigates the effects of the fungicide azoxystrobin, a compound widely used in rice farming, on aquatic communities representative of two habitats characteristic of Mediterranean wetland ecosystems: water springs and eutrophic lake waters. The long-term effects of azoxystrobin were evaluated on several structural (phytoplankton, zooplankton, macroinvertebrate populations and communities) and functional (microbial decomposition, macrophyte and periphyton growth) parameters making use of freshwater mesocosms. Azoxystrobin was applied in two pulses of 2, 20, 200 µg/L separated by 14 d using the commercial product ORTIVA (23 % azoxystrobin w/w). The results show that these two habitats responded differently to the fungicide application due to their distinct physico-chemical, functional, and structural characteristics. Although overall sensitivity was found to be similar between the two (lowest NOEC < 2 µg/L), the taxa and processes that were affected differed substantially. In general, the most sensitive species to the fungicide were found in the water spring mesocosms, with some species of phytoplankton (Nitzschia sp.) or macrocrustaceans (Echinogammarus sp. and Dugastella valentina) being significantly affected at 2 µg/L. In the eutrophic lake mesocosms, effects were found on phytoplankton taxa (Desmodesmus sp. and Coelastrum sp.), on numerous zooplankton taxa, on chironomids and on the beetle Colymbetes fuscus, although at higher concentrations. The hemipteran Micronecta scholtzi was affected in both treatments. In addition, functional parameters such as organic matter decomposition or macrophyte growth were also affected at relatively low concentrations (NOEC 2 µg/L). Structural Equation Modelling was used to shed light on the indirect effects caused by azoxystrobin on the ecosystem. These results show that azoxystrobin is likely to pose structural and functional effects on Mediterranean wetland ecosystems at environmentally relevant concentrations. Moreover, it highlights the need to consider habitat-specific features when conducting ecotoxicological research at the population and community levels.


Assuntos
Fungicidas Industriais , Pirimidinas , Estrobilurinas , Poluentes Químicos da Água , Animais , Ecossistema , Fungicidas Industriais/toxicidade , Áreas Alagadas , Poluentes Químicos da Água/toxicidade , Fitoplâncton , Zooplâncton , Lagos , Água/farmacologia
13.
Biol Rev Camb Philos Soc ; 99(1): 85-109, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37621123

RESUMO

Freshwater fish are in a perilous state with more than 30% of species considered critically endangered. Yet significant ecological and methodological complexities constrain our ability to determine how disturbances are impacting native fish communities. We review current methods used to assess the responses of fish communities, especially native fish, to disturbances, with a focus on lakes. These methods include contemporary population surveys, manipulative experimental approaches, paleolimnological approaches and Indigenous Knowledge and social histories. We identify knowledge gaps, such as a lack of baseline data for native fish, an inability to assess the impact of historical disturbances, stressor response dynamics in contemporary multi-stressor environments, and natural disturbance regimes. Our assessment of the current methods highlights challenges to filling these knowledge gaps using the reviewed methods. We advocate strongly for the implementation of an integrative approach that combines emerging technologies (i.e. molecular-based techniques in contemporary surveys and paleolimnology) and underutilised knowledge streams (i.e. Indigenous Knowledge and social histories) which should be used in concert with conventional methods. This integrative approach will allow researchers to determine the key drivers of decline and the degree of change, which will enable more informed and successful management actions.


Assuntos
Ecossistema , Lagos , Animais , Peixes , Rios
14.
Sci Total Environ ; 912: 168836, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38016568

RESUMO

River ecosystems are heavily impacted by multiple stressors, where effects can cascade downstream of point sources. However, a spatial approach to assess the effects of multiple stressors is missing. We assessed the local and downstream effects on litter decomposition, and associated invertebrate communities of two stressors: flow reduction and artificial light at night (ALAN). We used an 18-flow-through mesocosm system consisting of two tributaries, where we applied the stressors, merging in a downstream section. We assessed the changes in decomposition rate and invertebrate community structure in leaf bags. We found no effect of ALAN or its interaction with flow reduction on the litter decomposition or the invertebrate community in the tributaries. Flow reduction alone led to a 14.8 % reduction in decomposition rate in the tributaries. We recorded no effect of flow reduction on the macroinvertebrates community composition in the litter bags. We also observed no effects of the spatial arrangement of the stressors on the litter decomposition and macroinvertebrate community structure downstream. Overall, our results suggest the impact of stressors on litter decomposition and macroinvertebrate communities remained local in our experiment. Our work thus calls for further studies to identify the mechanisms and the conditions under which spatial effects dominate over local processes.


Assuntos
Ecossistema , Poluição Luminosa , Animais , Invertebrados , Rios/química , Folhas de Planta/química
15.
Microb Pathog ; 186: 106501, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38122875

RESUMO

Antibiotic resistance is a critical topic worldwide with important consequences for public health. So considering the rising issue of antibiotic-resistance in bacteria, we explored the impact of nitrogen and phosphorus eutrophication on drug resistance mechanisms in Enterococcus faecalis, especially ciprofloxacin, oxytetracycline, and ampicillin. For this purpose we examined the antibiotic-resistance genes and biofilm formation of Enterococcus faecalis under different concentration of nitrogen and phosphorus along with mentioned antibiotics. Mesocosms were designed to evaluate the impact of influence of eutrophication on the underlying mechanism of drugn resistence in Enterococcus faecalis. For this purpose, we explored the potential relation to biofilm formation, adhesion ability, and the expression levels of the regulatory gene fsrA and the downstream gene gelEI. Our results demonstrated that the isolates of all treatments displayed high biofilm forming potential, and fsrA and gelE genes expression. Additionally, the experimental group demonstrated substantially elevated Enterococcus faecalis gelE expression. Crystal violet staining was applied to observe biofilm formation during bacterial development phase and found higher biofilm formation. In conclusion, our data suggest that E. faecalis resistance to ciprofloxacin, oxytetracycline, and ampicillin is related to biofilm development. Also, the high level of resistance in Enterococcus faecalis is linked to the expression of the fsrA and gelE genes. Understanding these pathways is vital in tackling the rising problem of bacterial resistance and its potential effect on human health.


Assuntos
Enterococcus faecalis , Oxitetraciclina , Humanos , Fósforo , Oxitetraciclina/farmacologia , Nitrogênio , Antibacterianos/farmacologia , Resistência Microbiana a Medicamentos/genética , Biofilmes , Ampicilina/farmacologia , Ciprofloxacina/farmacologia
16.
Plant Soil ; 490(1-2): 499-519, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37780069

RESUMO

Background and aims: Tree species worldwide suffer from extended periods of water limitation. These conditions not only affect the growth and vitality of trees but also feed back on the cycling of carbon (C) at the plant-soil interface. However, the impact of progressing water loss from soils on the transfer of assimilated C belowground remains unresolved. Methods: Using mesocosms, we assessed how increasing levels of water deficit affect the growth of Pinus sylvestris saplings and performed a 13C-CO2 pulse labelling experiment to trace the pathway of assimilated C into needles, fine roots, soil pore CO2, and phospholipid fatty acids of soil microbial groups. Results: With increasing water limitation, trees partitioned more biomass belowground at the expense of aboveground growth. Moderate levels of water limitation barely affected the uptake of 13C label and the transit time of C from needles to the soil pore CO2. Comparatively, more severe water limitation increased the fraction of 13C label that trees allocated to fine roots and soil fungi while a lower fraction of 13CO2 was readily respired from the soil. Conclusions: When soil water becomes largely unavailable, C cycling within trees becomes slower, and a fraction of C allocated belowground may accumulate in fine roots or be transferred to the soil and associated microorganisms without being metabolically used. Supplementary Information: The online version contains supplementary material available at 10.1007/s11104-023-06093-5.

17.
Environ Res ; 238(Pt 2): 117283, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37783333

RESUMO

Climate change threatens surface waters worldwide, especially shallow lakes where one of the expected consequences is a sharp increase in their water temperatures. Phytobenthos is an essential, but still less studied component of aquatic ecosystems, and it would be important to learn more about how global warming will affect this community in shallow lakes. In this research, the effects of different climate change scenarios (SSP2-4.5 and SSP5-8.5, as intermediate and high emission scenarios) on the structure and function of the entire phytobenthos community using species- and trait-based approaches were experimentally investigated in an outdoor mesocosm system. Our results show that the forecasted 3 °C increase in temperature will already exert significant impacts on the benthic algal community by (1) altering its species and (2) trait composition (smaller cell size, lower abundance of colonial and higher of filamentous forms); (3) decreasing Shannon diversity; and (4) enhancing the variability of the community. Higher increase in the temperature (+5 °C) will imply more drastic alterations in freshwater phytobenthos by (1) inducing very high variability in species composition and compositional changes even in phylum level (towards higher abundance of Cyanobacteria and Chlorophyta at the expense of Bacillariophyta); (2) continuing shift in trait composition (benefits for smaller cell volume, filamentous life-forms, non-motile and weakly attached taxa); (3) further reducing the functional diversity; (4) increasing biofilm thickness (1.4 µm/°C) and (5) decreasing maximum quantum yield of photosystem II. In conclusion, already the intermediate emission scenario will predictably induce high risk in biodiversity issues, the high emission scenario will imply drastic impacts on the benthic algae endangering even the function of the ecosystem.


Assuntos
Mudança Climática , Lagos , Ecossistema , Aquecimento Global , Biodiversidade
18.
Life (Basel) ; 13(10)2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37895386

RESUMO

The development of aquatic plant beds can obstruct boat traffic, hinder the practice of water activities, and impact the functioning of freshwaters. In order to mitigate their effects, mechanical removal is often the preferred management solution. The objective of this study was to test, in mesocosms, the effect of frequency (none, one, and two cuts) and cutting dates (May and/or July) on the regeneration and colonization capabilities of the aquatic plant Egeria densa, an invasive alien species in France. The cutting date had no effect on the capabilities of E. densa, but the two cuts significantly reduced the plant's biomass. Removal produced numerous fragments, which exhibited very high survival and anchoring rates. However, summer removal produced fragments with lower regeneration and colonization abilities compared to fragments from spring cutting. Mechanical removal only temporarily reduced the biomass of the aquatic plant beds and could promote the formation of new beds from the fragments generated by management and dispersed by water flow.

19.
Environ Pollut ; 337: 122511, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37689134

RESUMO

There is growing concern regarding the lack of evidence on the effects bioplastics may have on natural ecosystems, whilst their production continues to increase as they are considered as a greener alternative to conventional plastics. Most research is limited to investigations of the response of individual taxa under laboratory conditions, with few experiments undertaken at the community or ecosystem scale, either investigating microplastics independently or in combination with other pollutants, such as nutrient enrichment. The aim of this study is to experimentally compare the effects of oil-based (high density polyethylene - HDPE) with those of bio-based biodegradable (polylactic acid - PLA) microplastics and their interaction with nutrient enrichment on freshwater macroinvertebrate communities under seminatural conditions. There were no significant differences in total abundance, alpha and beta diversities, or community composition attributable to the type of microplastics, their concentration, or nutrient enrichment compared with the control. However, there was a significant difference in macroinvertebrate alpha diversity between high concentrations of both microplastic types under ambient nutrient conditions, with lower diversity in communities exposed to HDPE compared with PLA. Nutrient enrichment mediated the effect of microplastic type, such that the diversity of macroinvertebrate communities exposed to HDPE were similar to those communities exposed to PLA. These findings suggest that the effects of microplastic pollution on macroinvertebrate communities are very weak at large-scale settings under seminatural conditions and that these effects might be mediated by the nutrient status of freshwater ecosystems. More research under large-scale, long-term, seminatural settings are needed in order to elucidate the impact of both conventional plastics and bioplastics on natural environments and their interactive effect with other occurring stressors and pollutants.


Assuntos
Poluentes Ambientais , Poluentes Químicos da Água , Microplásticos , Plásticos/toxicidade , Ecossistema , Polietileno , Poliésteres , Nutrientes , Biopolímeros , Poluentes Químicos da Água/toxicidade , Poluentes Químicos da Água/análise
20.
Environ Monit Assess ; 195(10): 1228, 2023 Sep 19.
Artigo em Inglês | MEDLINE | ID: mdl-37725196

RESUMO

Surface oil sands mining and extraction in northern Alberta's Athabasca oil sands region produce large volumes of oil sands process-affected water (OSPW). OSPW is a complex mixture containing major contaminant classes including trace metals, polycyclic aromatic hydrocarbons, and naphthenic acid fraction compounds (NAFCs). Naphthenic acids (NAs) are the primary organic toxicants in OSPW, and reducing their concentrations is a priority for oil sands companies. Previous evidence has shown that constructed wetland treatment systems (CWTSs) are capable of reducing the concentration of NAs and the toxicity of OSPW through bioremediation. In this study, we constructed greenhouse mesocosms with OSPW or lab process water (LPW) (i.e., water designed to mimic OSPW minus the NAFC content) with three treatments: (1) OSPW planted with Carex aquatilis; (2) OSPW, no plants; and (3) LPW, no plants. The OSPW-C. aquatilis treatment saw a significant reduction in NAFC concentrations in comparison to OSPW, no plant treatments, but both changed the distribution of the NAFCs in similar ways. Upon completion of the study, treatments with OSPW saw fewer high-molecular-weight NAs and an increase in the abundance of O3- and O4-containing formulae. Results from this study provide invaluable information on how constructed wetlands can be used in future remediation of OSPW in a way that previous studies were unable to achieve due to uncontrollable environmental factors in field experiments and the active, high-energy processes used in CWTSs pilot studies.


Assuntos
Carex (Planta) , Oligoelementos , Áreas Alagadas , Campos de Petróleo e Gás , Monitoramento Ambiental , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA