RESUMO
A magnetic molecularly imprinted polymer (MMIP) adsorbent incorporating amino-functionalized magnetite nanoparticles, nitrogen-doped graphene quantum dots and mesoporous carbon (MIP@MPC@N-GQDs@Fe3O4NH2) was fabricated to extract triazine herbicides from fruit juice. The embedded magnetite nanoparticles simplified the isolation of the adsorbent from the sample solution. The N-GQDs and MPC enhanced adsorption by affinity binding with triazines. The MIP layer provided highly specific recognition sites for the selective adsorption of three target triazines. The extracted triazines were determined by high-performance liquid chromatography (HPLC) coupled with diode-array detection (DAD). The developed method exhibited linearity from 1.5 to 100.0 µg L-1 with a detection limit of 0.5 µg L-1. Recoveries from spiked fruit juice samples were in the range of 80.1- 108.4 %, with a relative standard deviation of less than 6.0 %. The developed MMIP adsorbent demonstrated good selectivity, high extraction efficiency, ease of fabrication and use, and good stability.
Assuntos
Carbono , Sucos de Frutas e Vegetais , Herbicidas , Limite de Detecção , Polímeros Molecularmente Impressos , Pontos Quânticos , Triazinas , Pontos Quânticos/química , Triazinas/química , Triazinas/análise , Triazinas/isolamento & purificação , Herbicidas/análise , Herbicidas/isolamento & purificação , Herbicidas/química , Sucos de Frutas e Vegetais/análise , Adsorção , Polímeros Molecularmente Impressos/química , Carbono/química , Cromatografia Líquida de Alta Pressão/métodos , Nanopartículas de Magnetita/química , Microextração em Fase Sólida/métodos , Impressão Molecular/métodos , Porosidade , Grafite/químicaRESUMO
Porous carbons are important electrode materials for supercapacitors. One of the challenges associated with supercapacitors is improving their energy density without relying on pseudocapacitance, which is based on fast redox reactions that often shorten device lifetimes. A possible solution involves achieving high total capacitance (Ctot ), which comprises Helmholtz capacitance (CH ) and possibly quantum capacitance (CQ ), in high-surface carbon materials comprising minimally stacked graphene walls. In this work, a templating method is used to synthesize 3D mesoporous graphenes with largely identical pore structures (≈2100 m2 g-1 with an average pore size of ≈7 nm) but different concentrations of oxygen-containing functional groups (0.3-6.7 wt.%) and nitrogen dopants (0.1-4.5 wt.%). Thus, the impact of the heteroatom functionalities on Ctot is systematically investigated in an organic electrolyte excluding the effect of pore structures. It is found that heteroatom functionalities determine Ctot , resulting in the cyclic voltammetry curves being rectangular or butterfly-shaped. The nitrogen functionalities are found to significantly enhance Ctot owing to increased CQ .
RESUMO
A facile mechanochemical method was used for the synthesis of ordered mesoporous carbons (OMCs) with well-dispersed metal nanoparticles. The one-pot ball milling of tannins with a metal salt in the presence of a block copolymer followed by thermal treatment led to Ni- or Pt-embedded OMCs with high specific surface areas (up to 600 m2·g-1) and large pore volumes (up to ~0.5 cm3·g-1). The as-prepared OMC-based samples exhibited hexagonally ordered cylindrical mesopores with narrow pore size distributions (average pore size ~7 nm), which implies sufficient long-range copolymer-assisted self-assembly of the tannin-derived polymer upon milling even in the presence of a metal salt. The homogenous decoration of carbons with small-sized metal (Ni or Pt) particles was essential to provide H2 storage capacities up to 0.33 wt.% at 25 °C and under 100 bar. The presented synthesis strategy seems to have great potential in the practical uses of functionalized polymers and carbons for applications in adsorption and catalysis.
RESUMO
Electro-Fenton (EF) represents an eco-friendly and cost-effective advanced oxidation process that can remove highly persistent and hazardous pharmaceuticals, e.g., contrast media agents, from water bodies. However, up to date, EF modules incorporate a planar carbonaceous gas diffusion electrode (GDE) cathode containing fluorinated compounds as polymeric binders. Here, we introduce a novel flow-through module that deploys freestanding carbon microtubes (CMT) as microtubular GDEs, omitting any risks of secondary pollution by highly-persistent fluorinated compounds (e.g., Nafion). The flow-through module was characterized for electrochemical hydrogen peroxide (H2O2) generation and micropollutant removal via EF. H2O2 electro-generation experiments illustrated high production rates (1.1 ± 0.1-2.7 ± 0.1 mg cm-2 h-1) at an applied cathodic potential of - 0.6 V vs. SHE, depending on the porosity of CMTs. Diatrizoate (DTZ), as the model pollutant, with a high initial concentration of 100 mg L-1 was successfully oxidized (95-100 %), reaching mineralization (TOC-total organic carbon removal) efficiencies up to 69 %. Additionally, Electro-adsorption experiments demonstrated the capability of positively charged CMTs to remove negatively charged DTZ with a capacity of 11 mg g-1 from a 10 mg L-1 DTZ solution. These results reveal the potential of the as-designed module to serve as an oxidation unit coupled with other separation techniques, e.g., electro-adsorption or membrane processes.
RESUMO
In situ small-angle X-ray scattering (SAXS) was employed to identify critical parameters during thermal treatment for template removal of an ordered mesoporous carbon precursor synthesized via a direct soft-templating route. The structural parameters obtained from the SAXS data as a function of time were the lattice parameter of the 2D hexagonal structure, the diameter of the cylindrical mesostructures and a power-law exponent characterizing the interface roughness. Moreover, detailed information on contrast changes and pore lattice order was obtained from analysis of the integrated SAXS intensity of the Bragg and diffuse scattering separately. Five characteristic regions during heat treatment were identified and discussed regarding the underlying dominant processes. The influence of temperature and O2/N2 ratio on the final structure was analyzed, and parameter ranges were identified for an optimized template removal without strongly affecting the matrix. The results indicate that the final structure and controllability of the process are optimum for temperatures between 260 and 300°C with a gas flow containing 2â mol% of O2.
RESUMO
Ordered and disordered mesoporous structures were synthesized by a self-assembly method using a mixture of phenolic resin and petroleum-based mesophase pitch as the starting materials, amphiphilic triblock copolymer F127 as a soft template, hydrochloric acid as a catalyst, and distilled water as a solvent. Then, mesoporous carbons were obtained via autoclave method at low temperature (60 °C) and then carbonization at a relatively low temperature (600 °C), respectively. X-ray diffraction (XRD), small-angle X-ray scattering (SAXS), and transmission electron microscopy (TEM) analyses revealed that the porous carbons with a mesophase pitch content of approximately 10 wt% showed a highly ordered hexagonal mesostructure with a highly uniform pore size of ca. 5.0 nm. In addition, the mesoporous carbons prepared by self-assembly and low-temperature autoclave methods exhibited the amorphous or crystalline carbon structures with higher specific surface area (SSA) of 756 m2/s and pore volume of 0.63 cm3/g, depending on the synthesis method. As a result, mesoporous carbons having a high SSA were successfully prepared by changing the mixing ratio of mesophase pitch and phenolic resin. The electrochemical properties of as-obtained mesoporous carbon materials were investigated. Further, the OMC-meso-10 electrode delivered the maximum SC of about 241 F/g at an applied current density of 1 A/g, which was higher than those of the MC-10 (~104 F/g) and OMC-20 (~115 F/g).
RESUMO
Oxidized mesoporous carbon CSBA-15, obtained by the hard method, was applied to remove rhodamine B from the aqueous system. The process of carbon oxidation was performed using 0.5 and 5 M of nitric (V) acid solution at 70 and 100 °C. Functionalization of mesoporous carbon with HNO3 solutions led to reduction in the surface area, pore volume, and micropore area, however, it also led to an increased number of oxygen functional groups of acidic character. The functional groups probably are located at the entrance of micropores, in this way, reducing the values of textural parameters. Isotherms of rhodamine B adsorption indicate that the oxidation of mesoporous carbons resulted in an increase in the effectiveness of the removal of this dye from aqueous solutions. The influence of temperature, pH, and contact time of mesoporous material/rhodamine B on the effectiveness of dye removal was tested. The process of dye adsorption on the surfaces of the materials studied was established to be most effective at pH 12 and at 60 °C. Kinetic studies of the process of adsorption proved that the equilibrium state between the dye molecules and mesoporous carbon materials is reached after about 1 h. The adsorption kinetics were well fitted using a pseudo-second-order model. The most effective in rhodamine B removal was the sample CSBA-15-5-100, containing the greatest number of oxygen functional groups of acidic character. The Langmuir model best represented equilibrium data.
RESUMO
As typical ordered mesoporous carbons (OMCs) materials, CMK-3 and CMK-8 were proposed for catalyzing peroxydisulfate (PDS), and the OMCs/PDS process was combined with membrane filtration to remove algal extracellular organic matter and mitigate membrane fouling. The CMK-3/PDS process achieved substantial reduction of dissolved organic carbon and UV254, followed by CMK-8/PDS. The degradation behavior of fluorescent organics demonstrated the superior performance of OMCs/PDS, while the decomposition of high molecular weight (MW) compounds and generation of lower MW organics were observed. Generally, CMK-3 possessed higher catalytic activity on PDS compared with CMK-8 and powdered activated carbon. The CMK-3/PDS process distinctly decreased the fouling resistances for polyether sulfone and polyvinylidene fluoride membranes, with the reversible resistance reduced by 59.5-83.2% and irreversible resistance declined by 71.7-73.0%. In the meanwhile, CMK-3/PDS prolonged the volumes to the transition period, and postponed the cake layer's generation. The characterization of the membrane morphologies and chemical compositions also showed effective alleviation of fouling. The generated SO4-, OH, O2- and 1O2 as major active oxidation species provided radical as well as non-radical reaction ways for pollutants removal. Overall, our study provides some new ideas for membrane-based combined water purification processes.
Assuntos
Ultrafiltração , Purificação da Água , Catálise , Carvão Vegetal , Membranas ArtificiaisRESUMO
2D heterostructures provide a competitive platform to tailor electrical property through control of layer structure and constituents. However, despite the diverse integration of 2D materials and their application flexibility, tailoring synergistic interlayer interactions between 2D materials that form electronically coupled heterostructures remains a grand challenge. Here, the rational design and optimized synthesis of electronically coupled N-doped mesoporous defective carbon and nitrogen modified titanium carbide (Ti3 C2 ) in a 2D sandwiched heterostructure, is reported. First, a F127-polydopamine single-micelle-directed interfacial assembly strategy guarantees the construction of two surrounding mesoporous N-doped carbon monolayers assembled on both sides of Ti3 C2 nanosheets. Second, the followed ammonia post-treatment successfully introduces N elements into Ti3 C2 structure and more defective sites in N-doped mesoporous carbon. Finally, the oxygen reduction reaction (ORR) and theoretical calculation prove the synergistic coupled electronic effect between N-Ti3 C2 and defective N-doped carbon active sites in the 2D sandwiched heterostructure. Compared with the control 2D samples (0.87-0.88 V, 4.90-5.15 mA cm-2 ), the coupled 2D heterostructure possesses the best onset potential of 0.90 V and limited density current of 5.50 mA cm-2 . Meanwhile, this catalyst exhibits superior methanol tolerance and cyclic durability. This design philosophy opens up a new thought for tailoring synergistic interlayer interactions between 2D materials.
RESUMO
Adsorptive separation is an appealing technology for propylene and propane separation; however, the challenge lies in the design of efficient adsorbents which can distinguish the two molecules having very similar properties. Here we report a kinetically amplified separation by creating wiggling mesopores in structurally robust carbon monoliths. The wiggling mesopores with alternating wide and narrow segments afford a surface area of 413â m2 g-1 and a tri-modal pore size distribution centered at 1.5, 4.2 and 6.6â nm, respectively. The synergistically kinetic and equilibrium effects were observed and quantitatively assessed, which together ensured a remarkable propylene/propane selectivity up to 39. This selectivity outperformed not only the available carbon adsorbents but also highly competitive among the dominated crystalline porous adsorbents. In addition, the wiggling mesoporous carbon adsorbent showed excellent dynamical separation stability, which ensured its great potential in practical molecular separations.
RESUMO
The high drug loading capacity, cytocompatibility and easy functionalization of ordered mesoporous carbons (OMCs) make them attractive nanocarriers to treat several pathologies. OMCs' efficiency could be further increased by embedding them into a hydrogel phase for an in loco prolonged drug release. In this work, OMCs were embedded into injectable thermosensitive hydrogels. In detail, rod-like (diameter ca. 250 nm, length ca. 700 nm) and spherical (diameter approximately 120 nm) OMCs were synthesized by nanocasting selected templates and loaded with ibuprofen through a melt infiltration method to achieve complete filling of their pores (100% loading yield). In parallel, an amphiphilic Poloxamer® 407-based poly(ether urethane) was synthesized (Mn¯ 72 kDa) and solubilized at 15 and 20% w/v concentration in saline solution to design thermosensitive hydrogels. OMC incorporation into the hydrogels (10 mg/mL concentration) did not negatively affect their gelation potential. Hybrid systems successfully released ibuprofen at a slower rate compared to control gels (gels embedding ibuprofen as such), but with no significant differences between rod-like and spherical OMC-loaded gels. OMCs can thus work as effective drug reservoirs that progressively release their payload over time and also upon encapsulation in a hydrogel phase, thus opening the way to their application to treat many different pathological states (e.g., as topical medications).
RESUMO
Graphene oxide-containing ordered mesoporous carbon (OMC/GO) composites were synthesized by mechanochemical soft-templating of mimosa tannin and graphene oxide with triblock copolymer Pluronic F127. Graphene oxide was added to modify the surface properties of ordered mesoporous carbon. Next, copper containing MOF (CuBTC) was synthesized in the presence of the OMC/GO composite via dry milling to obtain a three-component composites with different compositions. The composite with 50 wt% of CuBTC exhibited high CO2 uptake capacity of 5.39 mmol·g-1 at 0 °C and 1 bar. This study showed that CuBTC was initially crystallized in mesopores of carbonaceous materials, and next on their external surface. Small OMC amounts (~1 and ~3 wt%) added during the mechanochemical synthesis of CuBTC resulted in the enhanced surface area of the obtained two-component composites reaching 1930 m2·g-1 as compared to those of parent materials. This paper reports a comprehensive study of carbon-CuBTC composites over a wide range of compositions, which may be interesting from the viewpoint of advancing and understanding the mechanochemical synthesis of composite materials with high surface areas, enhanced porosity and interfacial properties.
RESUMO
In this work, two types of mesoporous carbon particles with different morphology, size, and pore structure have been functionalized with a self-immolative polymer sensitive to changes in pH and tested as drug nanocarriers. It is shown that their textural properties allow significantly higher loading capacity compared to typical mesoporous silica nanoparticles. In vial release experiments of a model Ru dye at pH 7.4 and 5 confirm the pH-responsiveness of the hybrid systems, showing that only small amounts of the cargo are released at physiological pH, whereas at slightly acidic pH (e.g., that of lysosomes), self-immolation takes place and a significant amount of the cargo is released. Cytotoxicity studies using human osteosarcoma cells show that the hybrid nanocarriers are not cytotoxic by themselves but induce significant cell growth inhibition when loaded with a chemotherapeutic drug such as doxorubicin. In preparation of an in vivo application, in vial responsiveness of the hybrid system to short-term pH-triggering is confirmed. The consecutive in vivo study shows no substantial cargo release over a period of 96 h under physiological pH conditions. Short-term exposure to acidic pH releases an experimental fluorescent cargo during and continuously after the triggering period over 72 h.
Assuntos
Carbono/química , Portadores de Fármacos/química , Nanopartículas/química , Animais , Materiais Biocompatíveis/química , Materiais Biocompatíveis/farmacologia , Carbocianinas/química , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos/toxicidade , Liberação Controlada de Fármacos , Humanos , Concentração de Íons de Hidrogênio , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/toxicidade , Polímeros/química , Porosidade , Rutênio/química , Rutênio/metabolismo , Dióxido de Silício/químicaRESUMO
Ordered mesoporous carbons (OMCs) were synthesized in this study through a soft template method and then activated by employing different mass ratios of KOH/OMCs to obtain KOH-activated ordered mesoporous carbons (KOMCs) with hierarchical pore structures. To verify the adsorption capacity, the KOMCs have been subjected to toluene emission-reduction experiments. The KOMCs were characterized by TEM, XRD, N2 adsorption-desorption isotherms, and Raman spectroscopy. The pore structure of OMCs was found to be effectively optimized by the activation with KOH, with the BET-area and total pore volume values reaching as high as 2661 m2 g-1 and 2.14 cm3 g-1 respectively. Then, the dynamic adsorption capacity of toluene on KOMCs was investigated via breakthrough curves, which can be well described by the Yoon and Nelson (Y-N) model. The dynamic adsorption capacities of toluene exhibit the following order: OMC < KOMC-1 < KOMC-5 < KOMC-3. The sample activated by KOH/OMC with a mass ratio of 3:1 (KOMC-3) demonstrated the highest toluene adsorption capacity of 355.67 mg g-1, three times higher in comparison with the untreated carbon (104.61 mg g-1). The modified hierarchical porous carbons also exhibited good recyclability. The KOMCs with rich pore structure, high toluene adsorption capacity, and superior reusability thus display a huge potential for volatile organic compound (VOC) elimination.
RESUMO
Lead pollution in drinking water is one of the most common problems worldwide. In this research, sulfur and iron dual-doped mesoporous carbons are synthesized by soft-templating with sulfur content 4.4-6.1 atom% and iron content 7.8-9 atom%. Sulfur functionalities of the carbons are expected to enhance the affinity of the carbon toward lead whereas iron content is expected to separate the carbon from water owing to its magnetic properties. All the carbons were characterized by pore textural properties, x-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM) and energy dispersive x-ray (EDX). In order to study the Pb(II) removal efficiently of this carbon in competitive mode and to mimic the real-world use, one additional heavy-metal, including Cr(III), and four other commonly occurring metals-Na(I), K(I), Ca(II) and Fe (III)-are added with lead prior to adsorption experiments. It was observed that Pb(II) adsorption capacity of this carbon was not influenced by the presence of other metals. A highly elevated concentration of Na(I), K(I), Ca(II) and Fe(III) in the eluting solution compared to the initial dose suggested possible leaching of those metals from other salts as impurities, water source or even from the carbon itself, although the XPS analysis of the carbon confirmed negligible adsorption of those metals in carbon. From the equilibrium and kinetic data of adsorption, few parameters have been calculated, including distribution coefficient, diffusive time constant and pseudosecond order rate constant. The overall results suggest that these iron and sulfur dual-doped mesoporous carbons can serve as potential adsorbents for removal of lead from drinking water in the presence of other competing metals.
Assuntos
Carbono/química , Ferro/química , Chumbo/química , Fosfatidiletanolaminas/química , Enxofre/química , Adsorção , Nitrogênio/química , Porosidade , Poluentes Químicos da Água/químicaRESUMO
The adsorption of bisphenol-A (BPA) on ordered mesoporous carbon (CMK-3) and modified CMK-3 (MCMK-3) for decontamination of aqueous medium was investigated. The CMK-3 and MCMK-3 materials had uniform pore sizes of 3.60 and 3.70â¯nm and high Brunauer-Emmett-Teller (BET) surface areas of 751 and 564â¯m2â¯g-1, respectively. The maximum adsorption capacities of CMK-3 and MCMK-3 were 178.57 (0.24â¯mgâ¯m-2) and 238.01 (0.42â¯mgâ¯m-2) mg g-1, respectively at 298â¯K (pH 6.4). The difference in the adsorption capacities is attributed to the specific surface area and hydrophobicity of the adsorbents. The adsorption of BPA on CMK-3 and MCMK-3 may be influenced by π-π bonding and hydrophobic and electrostatic interactions, and the excellent adsorption capacity of MCMK-3 is attributed to its unique sp2-hybridized single-atom-layer structure. The kinetics and isotherm data were described by the pseudo-second order kinetic model and the Langmuir isotherm, respectively. This difference in the adsorption kinetics of CMK-3 and MCMK-3 is caused by the increase in the pore diameter of the latter. Further, CMK-3 and MCMK-3, with an open geometry consisting of interlinked nanorods, allow for faster intraparticle diffusion. Overall, CMK-3 and MCMK-3 could be promising adsorbents for the removal of chemicals containing benzene rings from wastewater.
Assuntos
Compostos Benzidrílicos/isolamento & purificação , Carbono/química , Fenóis/isolamento & purificação , Águas Residuárias/análise , Poluentes Químicos da Água/isolamento & purificação , Purificação da Água/métodos , Adsorção , Compostos Benzidrílicos/metabolismo , Cinética , Fenóis/metabolismo , Águas Residuárias/química , Poluentes Químicos da Água/metabolismoRESUMO
An ultrasensitive sandwich-type electrochemical immunosensor was developed for the amperometric determination of serum myeloperoxidase (MPO). The method is making use of (a) gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC); and (b) horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2) immobilized on AuNP@GMC. MPO capture antibody (Ab1) was immobilized on the electrode modified with an AuNP-graphene oxide nanocomposite. The sandwich immunoreaction leads to the formation of the complex composed of Ab1, MPO, and HRP@Ab2. An amplified electrochemical signal is produced by electrocatalytic reduction of H2O2 (at a typical voltage of -0.18 V vs. Ag/AgCl) in the presence of enzymatically oxidized thionine. The peak current of thionine was measured using differential pulse voltammetry. Under optimized steady-state conditions, the reduction peak increases in the 1 to 300 pg.mL-1 MPO concentration range, and the detection limit is 0.1 pg.mL-1 (at S/N = 3). Graphical abstract Schematic presentation of AuNP-GO based sandwich-type electrochemical immunoassay for the determination of myeloperoxidase by using gold nanoparticles encapsulated in graphitized mesoporous carbons (AuNP@GMC) as a carrier for horseradish peroxidase (HRP) labeled secondary antibody (HRP@Ab2).
Assuntos
Técnicas Biossensoriais/métodos , Grafite/química , Imunoensaio/métodos , Nanopartículas Metálicas/química , Peroxidase/sangue , Anticorpos Imobilizados/imunologia , Armoracia/enzimologia , Técnicas Eletroquímicas/instrumentação , Técnicas Eletroquímicas/métodos , Eletrodos , Ouro/química , Peroxidase do Rábano Silvestre/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Nanocompostos/química , Oxirredução , Peroxidase/imunologia , Reprodutibilidade dos TestesRESUMO
Among various photovoltaic devices, dye-sensitized solar cells (DSSCs) are one of the most potentially clean and renewable energy conversion devices because of their low fabrication cost, environmentally friendly nature, and high power conversion efficiency. However, the use of rare metals such as Pt counter electrodes (CEs) is one of the major drawbacks of DSSC devices for broad real-life applications. In this regard, alternative materials to Pt CEs have been long sought for DSSCs employing both cobalt and iodine redox couples. Therefore, in this study, soft-templated tellurium-doped mesoporous carbons (Te-SMCs) were synthesized for the first time by the simple pyrolysis of PAN- b-PBA block copolymer in the presence of a tellurium precursor for replacing the Pt CE. To confirm the chemical composition and porosity, the as-prepared Te-SMC materials were evaluated by elemental analysis (XPS and EDS) and nitrogen sorption isotherms measurement. The as-prepared Te-SMC materials contained mainly mesopores and retained the three-dimensional hierarchical graphite-like structure with many defect sites. They displayed doping levels with nitrogen of 9.15 atom % and tellurium of 0.15 atom % and had a specific surface area of 540 m2 g-1. Therefore, these characteristics enabled the development of a high-performance CE in DSSCs with cobalt and iodine redox couples. As a result of its catalytic performance, Te-SMC exhibited outstanding electrocatalytic activity as well as a significantly improved electrochemical stability than those of Pt CE for both redox couples even after 1000 potential cycles. The results show that a maximum conversion efficiency of 11.64 and 9.67% could be achieved under one sun illumination (AM 1.5G) for SGT-021/Co(bpy)32+/3+- and N719/I-/I3--based devices with Te-SMC CEs, and their power conversion efficiency is superior to the corresponding device with Pt CEs.
RESUMO
Comprehensive study to evaluate the ability of hydrogen uptake by disordered mesoporous hollow carbon spheres doped witch metal such as Pt, Pd or Pt/Pd was conducted. They were synthesized facilely using sonication and then calcination process under vacuum at the temperature of 550 °C. The effect on hydrogen sorption at neat-ambient conditions (40 °C, up to 45 bar) was thoroughly analyzed. The results clearly revealed that metal functionalization has a significant impact on the hydrogen storage capacity as the mechanism of gas uptake depends on two factors: metal type and certain size of particles. Thus, functionalized spheres adsorb hydrogen by physisorption forming metal hydrides or metal hydrides combined with hydrogen spillover effect. As a result, a sample with narrower distribution of nanoparticles and smaller specific size exhibited enhanced hydrogen uptake.
RESUMO
Although two-dimensional (2D) carbon materials are widely investigated, a well-defined 2D carbon nanosheet with an ordered mesostructure has rarely been realized. Monolayer-ordered mesoporous carbon nanosheets (OMCNS) were prepared through confinement assembly of resol and F127 in the interlayer of montmorillonite (MONT). The nanoscale distance of the interlayer space of MONT only allow the assembly of resol and F127 in the same plane, leading to ordered mesopores perpendicular to carbon nanosheets, and favor the formation of sp2 carbon, resulting in a high degree of graphitization. The mesopores on the carbon nanosheets provide efficient ion diffusion, and the high degree of graphitization provides a fast electron-transport route, enabling OMCNS as excellent electrode materials for electric double layer capacitors.