Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Funct Biomater ; 14(6)2023 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-37367280

RESUMO

The reconstruction of blood vessels plays a critical role in the tissue regeneration process. However, existing wound dressings in tissue engineering face challenges due to inadequate revascularization induction and a lack of vascular structure. In this study, we report the modification of mesoporous silica nanospheres (MSNs) with liquid crystal (LC) to enhance bioactivity and biocompatibility in vitro. This LC modification facilitated crucial cellular processes such as the proliferation, migration, spreading, and expression of angiogenesis-related genes and proteins in human umbilical vein endothelial cells (HUVECs). Furthermore, we incorporated LC-modified MSN within a hydrogel matrix to create a multifunctional dressing that combines the biological benefits of LC-MSN with the mechanical advantages of a hydrogel. Upon application to full-thickness wounds, these composite hydrogels exhibited accelerated healing, evidenced by enhanced granulation tissue formation, increased collagen deposition, and improved vascular development. Our findings suggest that the LC-MSN hydrogel formulation holds significant promise for the repair and regeneration of soft tissues.

2.
J Mol Recognit ; 36(6): e3013, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36999889

RESUMO

This paper presents the expansion of an optical, chemical sensor that can rapidly and reliably detect, quantify, and remove Ni(II) ions in oil products and electroplating wastewater sources. The sensor is based on mesoporous silica nanospheres (MSNs) that have an extraordinary surface area, uniform surface morphology, and capacious porosity, making them an excellent substrate for the anchoring of the chromoionophoic probe,3'-{(1E,1' E)-[(4-chloro-1,2 phenylene)bis (azaneylylidene)]-bis(methaneylylidene)}bis(2-hydroxybenzoic acid) (CPAMHP). The CPAMHP probe is highly selective and sensitive to Ni(II), enabling it to be used in naked-eye colorimetric recognition of Ni(II) ions. The MSNs provide several accessible exhibited sites for uniform anchoring of CPAMHP probe molecules, making it a viable chemical sensor even with the use of naked-eye sensing. The surface characters and structural analysis of the MSNs and CPAMHP sensor samples were examined using various techniques. The CPAMHP probe-anchored MSNs exhibit a clear and vivid color shift from pale yellow to green upon exposure to various concentrations of Ni(II) ions, with a reaction time down to approximately 1 minute. Furthermore, the MSNs can serve as a base to retrieve extremely trace amounts of Ni(II) ions, making the CPAMHP sensor a dual-functional device. The calculated limit of recognition for Ni(II) ions using the fabricated CPAMHP sensor samples is 0.318 ppb (5.43 × 10-9 M). The results suggest that the proposed sensor is a promising tool for the sensitive and reliable detection of Ni(II) ions in petroleum products and for removing Ni(II) ions in electroplating wastewater; the data indicate an excellent removal of Ni (II) up to 96.8%, highlighting the high accuracy and precision of our CPAMHP sensor.


Assuntos
Nanosferas , Petróleo , Dióxido de Silício/química , Galvanoplastia , Águas Residuárias , Nanosferas/química , Íons/química , Petróleo/análise
3.
Food Chem ; 396: 133675, 2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-35843003

RESUMO

Oxidation in food emulsions remains challenging to keep food quality and shelf-life. In this paper, a dual stabilization to both oil phase and antioxidant in Pickering emulsion is presented. Mesoporous silica nanospheres (MSN) were prepared to incorporate epigallocatechin gallate (EGCG), a typical plant-based antioxidant. EGCG loaded MSN were used to emulsify Litsea cubeba essential oil, a model oil, with olfactory investigation of the chemical stability. The emulsions improved the physical and chemical stabilization. The emulsions were uniformly stable with various parameters with one-month observation. Olfactory evaluation and GC-MS-O investigation reveal that the odors and odorous compounds of essential oil were well preserved in Pickering emulsions and much better than those in conventional emulsion with Tween 80. EGCG loaded MSN Pickering emulsion efficiently protect essential oil from oxidation. EGCG was also well retained in Pickering emulsion. This strategy could inspire new designs for food functional Pickering emulsions with efficient protective effect.


Assuntos
Nanopartículas , Óleos Voláteis , Antioxidantes/química , Catequina/análogos & derivados , Emulsões/química , Nanopartículas/química , Tamanho da Partícula , Dióxido de Silício
4.
ACS Nano ; 16(2): 2013-2023, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35041396

RESUMO

Multifunctional nanoprobes have attracted significant attention in a wide range of disciplines such as nanomedicine, precision medicine, and cancer diagnosis and treatment. However, integrating multifunctional ability in a nanoscale structure to precisely target, image, and deliver with cellular spatial/temporal resolution is still challenging in cellulo applications. This is because the development of such high-precision resolution needs to be carried out without labeling, photobleaching, and structurally segregating live cells. In this study, we present an integrated nanostructure of a mesoporous-silica nanosphere with an optical nanocrescent antenna (MONA) for multifunctional cellular targeting, drug delivery, and molecular imaging with spatiotemporal resolution. MONA comprises a systematically constructed Au nanocrescent (AuNC) antenna as a nanosensor and optical switch on a mesoporous-silica nanosphere as a cargo to molecular delivery. MONA made of antiepithelial cell adhesion molecules (anti-EpCAM)-conjugated AuNC facilitates the specific targeting of breast cancer cells, resulting in a highly focused photothermal gradient that functions as a molecular emitter. This light-driven molecular, doxorubicin (DOX) delivery function allows rapid apoptosis of breast cancer cells. Since MONA permits the tracking of quantum biological electron-transfer processes, in addition to its role as an on-demand optical switch, it enables the monitoring of the dynamic behavior of cellular cytochrome c pivoting cell apoptosis in response to the DOX delivery. Owing to the integrated functions of molecular actuation and direct sensing at the precisely targeted spot afforded by MONA, we anticipate that this multifunctional optical nanoantenna structure will have an impact in the fields of nanomedicine, cancer theranostics, and basic life sciences.


Assuntos
Nanopartículas , Neoplasias , Doxorrubicina/química , Sistemas de Liberação de Medicamentos/métodos , Humanos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamento farmacológico , Porosidade , Dióxido de Silício/química
5.
J Agric Food Chem ; 69(49): 14893-14905, 2021 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-34813315

RESUMO

Encapsulation of flavor and aromatic compounds in emulsions holds great potential for development of novel formulations in food applications. In this paper, supersmall dendritic mesoporous silica nanospheres (DMSNs) were fabricated by the one-pot strategy. The morphologies of DMSNs were directly tuned in terms of diameter from 35 ± 2 to 85 ± 4 nm. The obtained DMSNs are nanocarriers for hydrophilic or hydrophobic antioxidants with superior loading performance. Both DMSNs and antioxidant-loaded ones can emulsify the flavor and aromatic compounds yielding stable Pickering emulsions with droplets of approximately 2 µm in diameter. The emulsions possess excellent physical stability for at least half a year. More importantly, gas chromatography-mass spectrometry-olfactometry (GC-MS-O) analysis shows that antioxidant-loaded DMSNs provide outstanding protective functionalities to the encapsulated flavoring oil. A universality study reveals that DMSNs are an ideal platform for stable Pickering emulsions for aromatic compounds. Our design could provide a new path for flavor and sensitive bioactives for codelivery with excellent stability in food, medicine, cosmetics, etc.


Assuntos
Nanosferas , Dióxido de Silício , Antioxidantes , Emulsificantes , Emulsões
6.
Mikrochim Acta ; 186(7): 410, 2019 06 10.
Artigo em Inglês | MEDLINE | ID: mdl-31183622

RESUMO

Mesoporous silica nanospheres (MSNs) are used in a triple signal amplification chemiluminescent (CL) assay for microRNA-21. It is based on (a) the synergistic amplification via loading and controlled-release of signal reagents by MSNs, (b) target recycling amplification, and (c) the enhancement effect of graphene oxide quantum dots (GOQD). CL is generated by the bis(2,4,6-trichlorophenyl) oxalate (TCPO) and H2O2 reaction in the presence of the fluorophore rhodamine B (RB). RB is firstly loaded into the pores of MSNs modified with amino groupsand coupled with ssDNA. Then, the pores are capped by GOQD. Upon the addition of microRNA-21 into the system, the designed ssDNA assumes a double stranded structure. With the aid of duplex-specific nuclease, the double strand structure is cleaved and the free microRNA-21 enters into the next cycling process to combine with other ssDNA forming double strand structures. After several cycling process, amounts of GOQDs departing from the surface of MSNs cause the opening of the pores of MSNs and the release of RB causes the CL of TCPO-H2O2 reaction system. Free GOQDs can lead to a further CL enhancement. By this method, even a low amount of microRNA-21 leads to a large number of released RB molecules and triggers high-intensity CL. The method was applied in an assay where the CL signal increases linearly with the logarithm of the microRNA-21 concentration in the range of 0.005-50 pmol L-1 and the detection limit is 1.7 fmol L-1 (at 3σ). Graphical abstract Schematic presentation of a triple signal amplification chemiluminescence (CL) analysis platform based on rodamine B (RB) loading and controlled release, target recycling amplification and graphene oxide quantum dots (GOQD) as the enhancer for analysis of microRNA-21 in human serum.


Assuntos
Biomarcadores Tumorais/análise , Medições Luminescentes/métodos , MicroRNAs/análise , Técnicas de Amplificação de Ácido Nucleico/métodos , Técnicas Biossensoriais/métodos , DNA de Cadeia Simples/química , Corantes Fluorescentes/química , Grafite/química , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , MicroRNAs/sangue , Nanosferas/química , Conformação de Ácido Nucleico , Oxalatos/química , Pontos Quânticos/química , Rodaminas/química , Dióxido de Silício/química
7.
J Hazard Mater ; 318: 308-318, 2016 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-27434734

RESUMO

Manganese incorporated fibrous silica nanosphere (MnOx-0.013/KCC-1) was synthesized by one step hydrothermal method for the first time and its catalytic activity for ozonation of oxalic acid was studied. For comparison, manganese loaded MCM-41 (MnOx-0.013/MCM-41) was prepared by impregnation method. Various characterizations showed that the morphological, structural and textural properties of MnOx-0.013/KCC-1 were well preserved. Ozonation and catalytic ozonation by MnOx-0.013/KCC-1 and MnOx-0.013/MCM-41 led to 4, 85 and 60% reduction in TOC respectively. Furthermore, 0.05 and 1.2mgL(-1) leaching of Mn was detected from MnOx-0.013/KCC-1 and MnOx-0.013/MCM-41, which are approximately 2.0 and 42.0% of the total Mn present in MnOx-0.013/KCC-1 and MnOx-0.013/MCM-41 respectively. The high catalytic activity was attributed to the generation of hydroxyl radical. Surface hydroxyl groups investigated by using phosphates and ATR-FTIR were believed to be the active sites. Our proposed method of synthesis can be generalized for the synthesis of other metal oxides incorporated fibrous silica for environmental catalysis and other catalytic reactions.

8.
Mater Sci Eng C Mater Biol Appl ; 44: 262-7, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25280705

RESUMO

Novel core-shell dual-mesoporous silica nanospheres (DMSS) with a tunable pore size were synthesized successfully using a styrene monomer as a channel template for the core and cetyltrimethyl ammonium bromide (CTAB) as a channel template for the shell in order to improve the dissolution rate of poorly water-soluble drugs. Simvastatin was used as a model drug and loaded into DMSS and the mesoporous core without the shell (MSC) by the solvent evaporation method. The drug loading efficiency of DMSS and MSC were determined by thermogravimetric analysis (TGA) and ultraviolet spectroscopy (UV). Characterization, using scanning electron microscopy (SEM), transmission electron microscopy (TEM), nitrogen adsorption, powder X-ray diffraction (XRD), differential scanning calorimetry (DSC), and Fourier transform infrared spectroscopy (FTIR) showed that simvastatin adsorbed in DMSS and MSC was in an amorphous state, and in vitro release test results demonstrated that both DMSS and MSC increased the water solubility and dissolution rate of simvastatin. The shell structure of DMSS was able to regulate the release of simvastatin compared with MSC. It is worth noting that DMSS has significant potential as a carrier for improving the dissolution of poorly water-soluble drugs and reducing the rapid release.


Assuntos
Compostos de Cetrimônio/química , Nanosferas/química , Dióxido de Silício/química , Água/química , Adsorção , Varredura Diferencial de Calorimetria , Cetrimônio , Compostos de Cetrimônio/farmacologia , Microscopia Eletrônica de Varredura , Microscopia Eletrônica de Transmissão , Tamanho da Partícula , Porosidade , Sinvastatina/química , Sinvastatina/farmacologia , Solubilidade , Solventes/química , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA