Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 7.209
Filtrar
1.
J Appl Microbiol ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38986506

RESUMO

AIMS: This study aimed to compare the effects of linear and branched fructooligosaccharides (FOS) extracted from chicory and grass (Lolium perenne) respectively on human microbiota composition, diversity, and metabolism. METHODS AND RESULTS: To test the effects of linear and branched FOS on human microbiota we used the artificial in vitro human colon model (TIM-2). Microbiota composition and diversity were assessed by V3-V4 16S rRNA metagenomic sequencing, followed by differential taxa abundance and alpha/beta diversity analyses. SCFA/BCFA production was evaluated by gas chromatography-mass spectrometry. As a result, branched FOS had the most beneficial effects on microbial diversity and metabolite production. Also, branched FOS significantly increased the abundance of commensal bacteria associated with maintaining healthy gut functions and controlling inflammation, such as Butyricicoccus, Erysipelotrichaceae, Phascolarctobacterium, and Sutterella. Linear FOS also significantly increased the abundance of some other commensal gut bacteria (Anaerobutyricum, Lachnospiraceae, Faecalibacterium), but there were no differences in diversity metrics compared to the control. CONCLUSIONS: The study revealed that branched FOS had the most beneficial effects compared to the linear FOS in vitro, concerning microbiota modulation, and metabolite production, making this a good candidate for further studies in food biotechnology.

2.
Int J Parasitol ; 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38992783

RESUMO

Tyrophagus putrescentiae (mould mite) is a global, microscopic trophic generalist that commonly occurs in various human-created habitats, causing allergies and damaging stored food. Its ubiquity and extraordinary ability to penetrate research samples or cultures through air currents or by active walking through tights spaces (such as treads of screw caps) may lead to sample contamination and introduction of its DNA to research materials in the laboratory. This prompts a thorough investigation into potential sequence contamination in public genomic databases. The trophic success of T. putrescentiae is primarily attributed to the symbiotic bacteria housed in specialized internal mite structures, facilitating adaptation to varied nutritional niches. However, recent work suggests that horizontal transfer of bacterial/fungal genes related to nutritional functionality may also contribute to the mite's trophic versatility. This aspect requires independent confirmation. Additionally, T. putrescentiae harbors an uncharacterized and genetically divergent bacterium, Wolbachia, displaying blocking and microbiome-modifying effects. The phylogenomic position and supergroup assignment of this bacterium are unknown. Here, we sequenced and assembled the T. putrescentiae genome, analyzed its microbiome, and performed detailed phylogenomic analyses of the mite-specific Wolbachia. We show that T. putrescentiae DNA is a substantial source of contamination of research samples. Its DNA may inadvertently be co-extracted with the DNA of the target organism, eventually leading to sequence contamination in public databases. We identified a diversity of bacterial species associated with T. putrescentiae, including those capable of rapidly developing antibiotic resistance, such as Escherichia coli. Despite the presence of diverse bacterial communities in T. putrescentiae, we did not detect any recent horizontal gene transfers in this mite species and/or in astigmatid (domestic) mites in general. Our phylogenomic analysis of Wolbachia recovered a basal, mite-specific lineage (supergroup Q) represented by two Wolbachia spp. from the mould mite and a gall-inducing plant mite. Fluorescence in situ hybridization confirmed the presence of Wolbachia inside the mould mite. The discovery of an early derivative Wolbachia lineage (supergroup Q) in two phylogenetically unrelated and ecologically dissimilar mites suggests that this endosymbiotic bacterial lineage formed a long-term association with mites. This finding provides a unique insight into the early evolution and host associations of Wolbachia. Further discoveries of Wolbachia diversity in acariform mites are anticipated.

3.
Environ Sci Technol ; 58(28): 12520-12531, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38953238

RESUMO

Sewage sludge, as a carbon-rich byproduct of wastewater treatment, holds significant untapped potential as a renewable resource. Upcycling this troublesome waste stream represents great promise in addressing global escalating energy demands through its wide practice of biochemical recovery concurrently. Here, we propose a biotechnological concept to gain value-added liquid bioproducts from sewage sludge in a self-sufficient manner by directly transforming sludge into medium-chain fatty acids (MCFAs). Our findings suggest that yeast, a cheap and readily available commercial powder, would involve ethanol-type fermentation in chain elongation to achieve abundant MCFA production from sewage sludge using electron donors (i.e., ethanol) and acceptors (i.e., short-chain fatty acids) produced in situ. The enhanced abundance and transcriptional activity of genes related to key enzymes, such as butyryl-CoA dehydrogenase and alcohol dehydrogenase, affirm the robust capacity for the self-sustained production of MCFAs. This is indicative of an effective metabolic network established between yeast and anaerobic microorganisms within this innovative sludge fermentation framework. Furthermore, life cycle assessment and techno-economic analysis evidence the sustainability and economic competitiveness of this biotechnological strategy. Overall, this work provides insights into sewage sludge upgrading independent of additional carbon input, which can be applied in existing anaerobic sludge fermentation infrastructure as well as to develop new applications in a diverse range of industries.


Assuntos
Fermentação , Esgotos , Biotecnologia/métodos , Ácidos Graxos/metabolismo
4.
J Hazard Mater ; 476: 135139, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981230

RESUMO

Neonicotinoids pose significant environmental risks due to their widespread use, persistence, and challenges in elimination. This study explores the effectiveness of Fe/Mn biochar in enhancing the removal efficiency of neonicotinoids in recirculating constructed wetlands (RCWs). Results demonstrated that incorporating Fe/Mn biochar into RCWs significantly improved the removal of COD, NH4+-N, TN, TP, imidacloprid (IMI), and acetamiprid (ACE). However, the simultaneous presence of IMI and ACE in the RCWs hindered the elimination of NH4+-N, TN, and TP from wastewater. The enhanced removal of nutrients and pollutants by Fe/Mn biochar was attributed to its promotion of carbon, nitrogen, and phosphorus cycling in RCWs, along with its facilitation of the adsorption and biodegradation of IMI and ACE. Metagenomics analysis demonstrated that Fe/Mn biochar altered the structure and diversity of microbial communities in RCWs. A total of 17 biodegradation genes (BDGs) and two pesticide degradation genes (PDGs) were identified within RCWs, with Fe/Mn biochar significantly increasing the abundance of BDGs such as cytochrome P450. The potential host genera for these BDGs/PDGs were identified as Betaproteobacteria, Acidobacteria, Nitrospiraceae, Gemmatimonadetes, and Bacillus. This study offers valuable insights into how Fe/Mn biochar enhances pesticide removal and its potential application in constructed wetland systems for treating pesticide-contaminated wastewater.

5.
Ecotoxicol Environ Saf ; 282: 116699, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38981389

RESUMO

Amidst the global antimicrobial resistance (AMR) crisis, antibiotic resistance has permeated even the most remote environments. To understand the dissemination and evolution of AMR in minimally impacted ecosystems, the resistome and mobilome of wetlands across the Qinghai-Tibetan Plateau and its marginal regions were scrutinized using metagenomic sequencing techniques. The composition of wetland microbiomes exhibits significant variability, with dominant phyla including Proteobacteria, Actinobacteria, Bacteroidetes, and Verrucomicrobia. Notably, a substantial abundance of Antibiotic Resistance Genes (ARGs) and Mobile Genetic Elements (MGEs) was detected, encompassing 17 ARG types, 132 ARG subtypes, and 5 types of MGEs (Insertion Sequences, Insertions Sequences, Genomic Islands, Transposons, and Integrative Conjugative Elements). No significant variance was observed in the prevalence of resistome and mobilome across different wetland types (i.e., the Yellow River, other rivers, lakes, and marshes) (R=-0.5882, P=0.607). The co-occurrence of 74 ARG subtypes and 22 MGEs was identified, underscoring the pivotal role of MGEs in shaping ARG pools within the Qinghai-Tibetan Plateau wetlands. Metagenomic binning and analysis of assembled genomes (MAGs) revealed that 93 out of 206 MAGs harbored ARGs (45.15 %). Predominantly, Burkholderiales, Pseudomonadales, and Enterobacterales were identified as the primary hosts of these ARGs, many of which represent novel species. Notably, a substantial proportion of ARG-carrying MAGs also contained MGEs, reaffirming the significance of MGEs in AMR dissemination. Furthermore, utilizing the arg_ranker framework for risk assessment unveiled severe contamination of high-risk ARGs across most plateau wetlands. Moreover, some prevalent human pathogens were identified as potential hosts for these high-risk ARGs, posing substantial transmission risks. This study aims to investigate the prevalence of resistome and mobilome in wetlands, along with evaluating the risk posed by high-risk ARGs. Such insights are crucial for informing environmental protection strategies and facilitating the management of water resources on the Qinghai-Tibetan Plateau.

6.
Cell ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38981480

RESUMO

Diet impacts human health, influencing body adiposity and the risk of developing cardiometabolic diseases. The gut microbiome is a key player in the diet-health axis, but while its bacterial fraction is widely studied, the role of micro-eukaryotes, including Blastocystis, is underexplored. We performed a global-scale analysis on 56,989 metagenomes and showed that human Blastocystis exhibits distinct prevalence patterns linked to geography, lifestyle, and dietary habits. Blastocystis presence defined a specific bacterial signature and was positively associated with more favorable cardiometabolic profiles and negatively with obesity (p < 1e-16) and disorders linked to altered gut ecology (p < 1e-8). In a diet intervention study involving 1,124 individuals, improvements in dietary quality were linked to weight loss and increases in Blastocystis prevalence (p = 0.003) and abundance (p < 1e-7). Our findings suggest a potentially beneficial role for Blastocystis, which may help explain personalized host responses to diet and downstream disease etiopathogenesis.

7.
Sci Total Environ ; : 174577, 2024 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-38981540

RESUMO

Microorganisms are ubiquitous, and those inhabiting plants have been the subject of several studies. Plant-associated bacteria exhibit various biological mechanisms that enable them to colonize host plants and, in some cases, enhance their fitness. In this study, we describe the genomic features predicted to be associated with plant growth-promoting traits in six bacterial communities isolated from sugarcane. The use of highly accurate single-molecule real-time sequencing technology for metagenomic samples from these bacterial communities allowed us to recover 17 genomes. The taxonomic assignments for the binned genomes were performed, revealing taxa distributed across three main phyla: Bacillota, Bacteroidota, and Pseudomonadota, with the latter being the most representative. Subsequently, we functionally annotated the metagenome-assembled genomes (MAGs) to characterize their metabolic pathways related to plant growth-promoting traits. Our study successfully identified the enrichment of important functions related to phosphate and potassium acquisition, modulation of phytohormones, and mechanisms for coping with abiotic stress. These findings could be linked to the robust colonization of these sugarcane endophytes.

8.
J Basic Microbiol ; : e2400303, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38988320

RESUMO

Polluted drains across the globe are affected due to reckless disposal of untreated industrial effluents resulting in significant water pollution affecting microbial community structure/dynamics. To elucidate this, polluted samples were collected from Budha Nala (BN) drain, Tung Dhab (TD) drain, and wastewater treatment plant (WWTP) receiving an inflow of organic pollutants as well as heavy metals due to anthropogenic activities. The sample of unpolluted pristine soil (PS) was used as control, as there is no history of usage of organic chemicals at this site. The bacterial diversity of these samples was sequenced using the Illumina MiSeq platform by amplifying the V3/V4 region of 16S rRNA. The majority of operational taxonomic unit (OTUs) at polluted sites belonged to phyla Proteobacteria specifically Gammaproteobacteria class, followed by Actinobacteria, Bacteriodetes, Chloroflexi, Firmicutes, Planctomycetes, WS6, and TM7, whereas unpolluted site revealed the prevalence of Proteobacteria followed by Actinobacteria, Planctomycetes, Firmicutes, Acidobacteria, Chloroflexi, Bacteroidetes, Verrucomicrobia, and Nitrospirae. The data sets decode unclassified species of the phyla Proteobacteria, Bacteriodetes, Chloroflexi, Firmicutes, and WS6, along with some unclassified bacterial species. The study provided a comparative study of changed microbial community structure, their possible functions across diverse geographical locations, and identifying specific bacterial genera as pollution bio-indicators of aged polluted drains.

9.
Artigo em Inglês | MEDLINE | ID: mdl-38949882

RESUMO

Oral Squamous cell carcinoma (OSCC) is the 14th most frequent cancer with 300,000 new cases and 100,000 deaths reported annually. Even with advanced therapy, the treatment outcomes are poor at advanced stages of the disease. The diagnosis of early OSCC is of paramount clinical value given the high mortality rate associated with the late stages of the disease. Recently, the role of microbiome in the disease manifestation, including oral cancer, has garnered considerable attention. But, to establish the role of bacteria in oral cancer, it is important to determine the differences in the colonization pattern in non-tumour and tumour tissues. In this study, 16S rRNA based metagenomic analyses of 13 tumorous and contralateral anatomically matched normal tissue biopsies, obtained from patients with advanced stage of OSCC were evaluated to understand the correlation between OSCC and oral microbiome. In this study we identified Fusobacterium, Prevotella, Capnocytophaga, Leptotrichia, Peptostreptococcus, Parvimonas and Bacteroidetes as the most significantly enriched taxa in OSCC lesions compared to the non-cancerous tissues. Further, PICRUSt2 analysis unveiled enhanced expression of metabolic pathways associated with L-lysine fermentation, pyruvate fermentation, and isoleucine biosynthesis in those microbes associated with OSCC tissues. These findings provide valuable insights into the distinctive microbial signatures associated with OSCC, offering potential biomarkers and metabolic pathways underlying OSCC pathogenesis. While our focus has primarily centred on microbial signatures, it is essential to recognize the pivotal role of host factors such as immune responses, genetic predisposition, and the oral microenvironment in shaping OSCC development and microbiome composition.

10.
Immunol Cell Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38952337

RESUMO

Microbial metabolites can be viewed as the cytokines of the microbiome, transmitting information about the microbial and metabolic environment of the gut to orchestrate and modulate local and systemic immune responses. Still, many immunology studies focus solely on the taxonomy and community structure of the gut microbiota rather than its functions. Early sequencing-based microbiota profiling approaches relied on PCR amplification of small regions of bacterial and fungal genomes to facilitate identification of the microbes present. However, recent microbiome analysis methods, particularly shotgun metagenomic sequencing, now enable culture-independent profiling of microbiome functions and metabolites in addition to taxonomic characterization. In this review, we showcase recent advances in functional metagenomics methods and applications and discuss the current limitations and potential avenues for future development. Importantly, we highlight a few examples of key areas of opportunity in immunology research where integrating functional metagenomic analyses of the microbiome can substantially enhance a mechanistic understanding of microbiome-immune interactions and their contributions to health and disease states.

11.
Archaeol Anthropol Sci ; 16(7): 108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38948161

RESUMO

Sedimentary ancient DNA (sedaDNA) has become one of the standard applications in the field of paleogenomics in recent years. It has been used for paleoenvironmental reconstructions, detecting the presence of prehistoric species in the absence of macro remains and even investigating the evolutionary history of a few species. However, its application in archaeology has been limited and primarily focused on humans. This article argues that sedaDNA holds significant potential in addressing key archaeological questions concerning the origins, lifestyles, and environments of past human populations. Our aim is to facilitate the integration of sedaDNA into the standard workflows in archaeology as a transformative tool, thereby unleashing its full potential for studying the human past. Ultimately, we not only underscore the challenges inherent in the sedaDNA field but also provide a research agenda for essential enhancements needed for implementing sedaDNA into the archaeological workflow.

12.
Environ Pollut ; 358: 124507, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38968984

RESUMO

Nitrate and Cr(VI) are the typical and prevalent co-contaminants in the groundwater, how to synchronously and effectively diminish them has received growing attention. The most problem that currently limits the nitrate and Cr(VI) reduction technology for groundwater remediation is with emphasis on exploring the optimal electron donors. This study investigated the feasibility of utilizing the synergistical effect of inorganic electron donors (pyrite, sulfur) and inherently limited organics to promote synchronous nitrate and Cr(VI) removal, which meets the requirement of naturally low-carbon and eco-friendly technologies. The NO3--N and Cr(VI) removal efficiencies in the pyrite and sulfur involved mixotrophic biofilter (PS-BF: approximately 90.8 ± 0.6% and 99.1 ± 2.1%) were substantially higher than that in a volcanic rock supported biofilter (V-BF: about 49.6% ± 2.8% and 50.0% ± 9.3%), which was consistent with the spatial variations of their concentrations. Abiotic and biotic batch tests directly confirmed the decisive role of pyrite and sulfur for NO3--N and Cr(VI) removal via chemical and microbial pathways. A server decline in sulfate production correlated with decreasing COD consumption revealed that there was sulfur disproportionation induced by limited organics. Metagenomic analysis suggested that chemoautotrophic microbes like Sulfuritalea and Thiobacillus were key players responsible for sulfur oxidation, nitrate and Cr(VI) reduction. The metabolic pathway analysis suggested that genes encoding functional enzymes related to complete denitrification, S oxidation, and dissimilatory sulfate reduction were upregulated, however, genes encoding Cr(VI) reduction enzymes (e.g. chrA, chrR, nemA, and azoR) were downregulated in PS-BF, which further explained the synergistical effect of multiple electron donors. These findings provide insights into their potential cooperative interaction of multiple electron donors on greatly promoting nitrate and Cr(VI) removal and have implications for the remediation technology of nitrate and Cr(VI) co-contaminated groundwater.

13.
Sci Total Environ ; : 174646, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986696

RESUMO

Although anthropogenic activities are the primary drivers of increased greenhouse gas (GHG) emissions, it is crucial to acknowledge that wetlands are a significant source of these gases. Brazil's Pantanal, the largest tropical inland wetland, includes numerous lacustrine systems with freshwater and soda lakes. This study focuses on soda lakes to explore potential biogeochemical cycling and the contribution of biogenic GHG emissions from the water column, particularly methane. Both seasonal variations and the eutrophic status of each examined lake significantly influenced GHG emissions. Eutrophic turbid lakes (ET) showed remarkable methane emissions, likely due to cyanobacterial blooms. The decomposition of cyanobacterial cells, along with the influx of organic carbon through photosynthesis, accelerated the degradation of high organic matter content in the water column by the heterotrophic community. This process released byproducts that were subsequently metabolized in the sediment leading to methane production, more pronounced during periods of increased drought. In contrast, oligotrophic turbid lakes (OT) avoided methane emissions due to high sulfate levels in the water, though they did emit CO2 and N2O. Clear vegetated oligotrophic turbid lakes (CVO) also emitted methane, possibly from organic matter input during plant detritus decomposition, albeit at lower levels than ET. Over the years, a concerning trend has emerged in the Nhecolândia subregion of Brazil's Pantanal, where the prevalence of lakes with cyanobacterial blooms is increasing. This indicates the potential for these areas to become significant GHG emitters in the future. The study highlights the critical role of microbial communities in regulating GHG emissions in soda lakes, emphasizing their broader implications for global GHG inventories. Thus, it advocates for sustained research efforts and conservation initiatives in this environmentally critical habitat.

14.
Infect Genet Evol ; : 105637, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38986824

RESUMO

Viral gastroenteritis is commonly reported in dogs and involves a great diversity of enteric viruses. In this research, viral diversity was investigated in dogs with diarrhea in Northern Brazil using shotgun metagenomics. Furthermore, the presence of norovirus (NoV) was investigated in 282 stool/rectal swabs of young/adult dogs with or without diarrhea from two public kennels, based on one-step reverse transcription polymerase chain reaction (RT-PCR) for genogroup VI and VII (GVI and GVII) and real-time RT-PCR for GI, GII, and GIV. Thirty-one viral families were identified, including bacteriophages. Phylogenetic analyses showed twelve complete or nearly complete genomes belonging to the species of Protoparvovirus carnivoran1, Mamastrovirus 5, Aichivirus A2, Alphacoronavirus 1 and Chipapillomavirus 1. This is the first description of the intestinal virome of dogs in Northern Brazil and the first detection of canine norovirus GVII in the country. These results are important for helping to understand the viral groups that circulate in the canine population.

15.
Front Microbiol ; 15: 1355396, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38983625

RESUMO

Mongolian people possess a unique dietary habit characterized by high consumption of meat and dairy products and fewer vegetables, resulting in the highest obesity rate in East Asia. Although obesity is a known cause of type 2 diabetes (T2D), the T2D rate is moderate in this population; this is known as the "Mongolian paradox." Since the gut microbiota plays a key role in energy and metabolic homeostasis as an interface between food and body, we investigated gut microbial factors involved in the prevention of the co-occurrence of T2D with obesity in Mongolians. We compared the gut microbiome and metabolome of Mongolian adults with obesity with T2D (DO: n = 31) or without T2D (NDO: n = 35). Dysbiotic signatures were found in the gut microbiome of the DO group; lower levels of Faecalibacterium and Anaerostipes which are known as short-chain fatty acid (SCFA) producers and higher levels of Methanobrevibacter, Desulfovibrio, and Solobacterium which are known to be associated with certain diseases. On the other hand, the NDO group exhibited a higher level of fecal SCFA concentration, particularly acetate. This is consistent with the results of the whole shotgun metagenomic analysis, which revealed a higher relative abundance of SCFA biosynthesis-related genes encoded largely by Anaerostipes hadrus in the NDO group. Multiple logistic regression analysis including host demographic parameters indicated that acetate had the highest negative contribution to the onset of T2D. These findings suggest that SCFAs produced by the gut microbial community participate in preventing the development of T2D in obesity in Mongolians.

16.
Microbiol Spectr ; : e0067524, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990026

RESUMO

Bats are natural hosts of multiple viruses, many of which have clear zoonotic potential. The search for emerging viruses has been aided by the implementation of metagenomic tools, which have also enabled the detection of unprecedented viral diversity. Currently, this search is mainly focused on RNA viruses, which are largely over-represented in databases. To compensate for this research bias, we analyzed fecal samples from 189 Spanish bats belonging to 22 different species using viral metagenomics. This allowed us to identify 52 complete or near-complete viral genomes belonging to the families Adenoviridae, Circoviridae, Genomoviridae, Papillomaviridae, Parvoviridae, Polyomaviridae and Smacoviridae. Of these, 30 could constitute new species, doubling the number of viruses currently described in Europe. These findings open the door to a more thorough analysis of bat DNA viruses and their zoonotic potential. IMPORTANCE: Metagenomics has become a fundamental tool to characterize the global virosphere, allowing us not only to understand the existing viral diversity and its ecological implications but also to identify new and emerging viruses. RNA viruses have a higher zoonotic potential, but this risk is also present for some DNA virus families. In our study, we analyzed the DNA fraction of fecal samples from 22 Spanish bat species, identifying 52 complete or near-complete genomes of different viral families with zoonotic potential. This doubles the number of genomes currently described in Europe. Metagenomic data often produce partial genomes that can be difficult to analyze. Our work, however, has characterized a large number of complete genomes, thus facilitating their taxonomic classification and enabling different analyses to be carried out to evaluate their zoonotic potential. For example, recombination studies are relevant since this phenomenon could play a major role in cross-species transmission.

17.
Crit Care ; 28(1): 225, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38978111

RESUMO

BACKGROUND: The precise identification of the underlying causes of infectious diseases, such as severe pneumonia, is essential, and the development of next-generation sequencing (NGS) has enhanced the effectiveness of pathogen detection. However, there is limited information on the systematic assessment of the clinical use of targeted next-generation sequencing (tNGS) in cases of severe pneumonia. METHODS: A retrospective analysis was conducted on 130 patients with severe pneumonia treated in the ICU from June 2022 to June 2023. The consistency of the results of tNGS, metagenomics next-generation sequencing (mNGS), and culture with the clinical diagnosis was evaluated. Additionally, the results for pathogens detected by tNGS were compared with those of culture, mNGS, and quantitative reverse transcription PCR (RT-qPCR). To evaluate the efficacy of monitoring severe pneumonia, five patients with complicated infections were selected for tNGS microbiological surveillance. The tNGS and culture drug sensitisation results were then compared. RESULTS: The tNGS results for the analysis of the 130 patients showed a concordance rate of over 70% with clinical diagnostic results. The detection of pathogenic microorganisms using tNGS was in agreement with the results of culture, mNGS, and RT-qPCR. Furthermore, the tNGS results for pathogens in the five patients monitored for complicated infections of severe pneumonia were consistent with the culture and imaging test results during treatment. The tNGS drug resistance results were in line with the drug sensitivity results in approximately 65% of the cases. CONCLUSIONS: The application of tNGS highlights its promise and significance in assessing the effectiveness of clinical interventions and providing guidance for anti-infection therapies for severe pneumonia.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Pneumonia , Humanos , Estudos Retrospectivos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pneumonia/diagnóstico , Pneumonia/tratamento farmacológico , Pneumonia/microbiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Unidades de Terapia Intensiva/organização & administração , Unidades de Terapia Intensiva/estatística & dados numéricos
18.
Gigascience ; 132024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38995144

RESUMO

BACKGROUND: In recent years, omics technologies have offered an exceptional chance to gain a deeper insight into the structural and functional characteristics of microbial communities. As a result, there is a growing demand for user-friendly, reproducible, and versatile bioinformatic tools that can effectively harness multi-omics data to provide a holistic understanding of microbiomes. Previously, we introduced gNOMO, a bioinformatic pipeline tailored to analyze microbiome multi-omics data in an integrative manner. In response to the evolving demands within the microbiome field and the growing necessity for integrated multi-omics data analysis, we have implemented substantial enhancements to the gNOMO pipeline. RESULTS: Here, we present gNOMO2, a comprehensive and modular pipeline that can seamlessly manage various omics combinations, ranging from 2 to 4 distinct omics data types, including 16S ribosomal RNA (rRNA) gene amplicon sequencing, metagenomics, metatranscriptomics, and metaproteomics. Furthermore, gNOMO2 features a specialized module for processing 16S rRNA gene amplicon sequencing data to create a protein database suitable for metaproteomics investigations. Moreover, it incorporates new differential abundance, integration, and visualization approaches, enhancing the toolkit for a more insightful analysis of microbiomes. The functionality of these new features is showcased through the use of 4 microbiome multi-omics datasets encompassing various ecosystems and omics combinations. gNOMO2 not only replicated most of the primary findings from these studies but also offered further valuable perspectives. CONCLUSIONS: gNOMO2 enables the thorough integration of taxonomic and functional analyses in microbiome multi-omics data, offering novel insights in both host-associated and free-living microbiome research. gNOMO2 is available freely at https://github.com/muzafferarikan/gNOMO2.


Assuntos
Biologia Computacional , Metagenômica , Microbiota , Proteômica , RNA Ribossômico 16S , Software , Metagenômica/métodos , RNA Ribossômico 16S/genética , Biologia Computacional/métodos , Proteômica/métodos , Humanos , Metagenoma , Multiômica
19.
PeerJ ; 12: e17303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39006020

RESUMO

Background: Anthropogenic mediations contribute a significant role in stimulating positive reactions in soil-plant interactions; however, methodical reports on how anthropogenic activities impact soil microorganism-induced properties and soil health are still inadequate. In this study, we evaluated the influence of anthropogenic fertilization of farmland soil on barley rhizosphere microbial community structure and diversity, and the significant impacts on agro-ecosystem productivity. This will help validate the premise that soil amendment with prolonged synthetic fertilizers can lead to a significant reduction in bacterial abundance and diversity, while soils amended with organic fertilizers elicit the succession of the native soil microbial community and favor the growth of copiotrophic bacteria. Methods: The total metagenomic DNA was extracted from soils obtained from the barley rhizosphere under chemical fertilization (CB), organic fertilization (OB), and bulk soil (NB). Subsequently, these samples were sequenced using an amplicon-based sequencing approach, and the raw sequence dataset was examined using a metagenomic rast server (MG-RAST). Results: Our findings showed that all environments (CB, OB, and NB) shared numerous soil bacterial phyla but with different compositions. However, Bacteroidetes, Proteobacteria, and Actinobacteria predominated in the barley rhizosphere under chemical fertilization, organic fertilization, and bulk soils, respectively. Alpha and beta diversity analysis showed that the diversity of bacteria under organic barley rhizosphere was significantly higher and more evenly distributed than bacteria under chemical fertilization and bulk soil. Conclusion: Understanding the impact of conventional and organic fertilizers on the structure, composition, and diversity of the rhizosphere microbiome will assist in soil engineering to enhance microbial diversity in the agroecosystem.


Assuntos
Fertilizantes , Hordeum , Rizosfera , Microbiologia do Solo , Hordeum/microbiologia , Fertilizantes/análise , Microbiota , Bactérias/genética , Bactérias/classificação , Solo/química
20.
mSphere ; : e0027824, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-39012103

RESUMO

In ruminants, the rumen is a specialized stomach that is adapted to the breakdown of plant-derived complex polysaccharides through the coordinated activities of a diverse microbial community. Bacteroidota is a major phylum in this bovine rumen microbiota. They contain several clusters of genes called polysaccharide utilization loci (PULs) that encode proteins working in concert to capture, degrade, and transport polysaccharides. Despite the critical role of SusD-like proteins for efficient substrate transport, they remain largely unexplored. Here, we present the biochemical characterization of a SusD-like protein encoded by a ß-glucan utilization locus from an Escherichia coli metagenomic clone previously isolated by functional screening of the bovine rumen microbiome. In this study, we show that clone 41O1 can grow on laminaritriose, cellotriose, and a mixture of cellobiosyl-cellobiose and glucosyl-cellotriose as sole carbon sources. Based on this, we used various in vitro analyses to investigate the binding ability of 41O1_SusD-like towards these oligosaccharides and the corresponding polysaccharides. We observed a clear binding affinity for ß-1,6 branched ß-1,3-glucans (laminarins, yeast ß-glucan) and laminaritriose. Comparison of the AlphaFold2 model of 41O1_SusD-like with its closest structural homologs highlights a similar pattern of substrate recognition. In particular, three tryptophan residues are shown to be crucial for laminarin recognition. In the context of the cow rumen, we discuss the possible substrates targeted by the 41O1_PUL, such as the (1,3;1,4)-ß-d-glucans present in cereal grains or the ß-1,3- and (1,3;1,6)-ß-d-glucans that are components of the cell wall of ruminal yeasts.IMPORTANCEThe rumen microbiota can majorly impact overall animal health, feed efficiency, and release of harmful substances into the environment. This microbiota is involved in the fermentation of organic matter to provide the host with valuable and assimilable nutrients. Bacteroidota efficiently captures, breaks down, and imports complex polysaccharides through the concerted action of proteins encoded by polysaccharide utilization loci (PULs). Within this system, SusD-like protein has proven necessary for the active internalization of the substrate. Nevertheless, the vast majority of SusD-like proteins characterized to date originate from cultured bacteria. With regard to the diversity and importance of uncultured bacteria in the rumen, further studies are required to better understand the role of polysaccharide utilization loci in ruminal polysaccharide degradation. Our detailed characterization of the 41O1_SusD-like therefore contributes to a better understanding of the carbohydrate metabolism of an uncultured Bacteroides from the cow rumen.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA