Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ChemSusChem ; 17(1): e202301015, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-37661194

RESUMO

Synthesizing benzyl skeleton derivatives via direct oxidation of functionalized benzylic C-H bonds has received extensive research attention. Herein, a method was developed to prepare carbonyl compounds via photoinduced aerobic oxidation of ubiquitous benzylic C-H bonds mediated by bromine radicals and tribromomethane radicals. This method employed commercially available CBr4 as a hydrogen atom transfer reagent precursor, air as an oxidant, water as a reaction solvent, and tetrabutylammonium perchlorate (TBAPC) as an additive under mild conditions. A series of substrates bearing different functional groups was converted to aromatic carbonyls in moderate to good yields. Moreover, a low environmental factor (E-factor value=0.45) showed that the proposed method is ecofriendly and environmentally sustainable.

2.
J Colloid Interface Sci ; 606(Pt 2): 1758-1766, 2022 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-34500173

RESUMO

Metal-free catalysts with environmental friendless, cost-competitiveness and less susceptibility to leaching and poisoning over metal-based catalysts, have revolutionized in the catalysis domain. In this respect, we herein report the first application of cheap and abundant pumpkin-derived N-doped porous carbon for the reduction of 2-methyl-4-nitrophenol assisted by NaBH4. The obtained catalyst is cost-competitive, efficient and robust, with an attractive mass-normalized rate constant of 4.73 s-1 g-1 and good recycling performance. Systematical analyses demonstrate that the 2-methyl-4-nitrophenol reduction reaction catalyzed by the N-doped carbon proceeds through the Langmuir-Hinshelwood kinetics and the performance enhancement benefits from the strong adsorption and activation of the substrates induced by the electronic modulation in the carbon framework via N-doping. This study opens up new avenues for the high-value use of pumpkin as well as the development of metal-free strategy in more catalytic applications.


Assuntos
Carbono , Cucurbita , Nitrogênio , Nitrofenóis , Porosidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA