Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
1.
Int J Mol Sci ; 25(17)2024 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-39273288

RESUMO

Cellular metabolism is crucial for various physiological processes, with folate-dependent one-carbon (1C) metabolism playing a pivotal role. Folate, a B vitamin, is a key cofactor in this pathway, supporting DNA synthesis, methylation processes, and antioxidant defenses. In dividing cells, folate facilitates nucleotide biosynthesis, ensuring genomic stability and preventing carcinogenesis. Additionally, in neurodevelopment, folate is essential for neural tube closure and central nervous system formation. Thus, dysregulation of folate metabolism can contribute to pathologies such as cancer, severe birth defects, and neurodegenerative diseases. Epidemiological evidence highlights folate's impact on disease risk and its potential as a therapeutic target. In cancer, antifolate drugs that inhibit key enzymes of folate-dependent 1C metabolism and strategies targeting folate receptors are current therapeutic options. However, folate's impact on cancer risk is complex, varying among cancer types and dietary contexts. In neurodegenerative conditions, including Alzheimer's and Parkinson's diseases, folate deficiency exacerbates cognitive decline through elevated homocysteine levels, contributing to neuronal damage. Clinical trials of folic acid supplementation show mixed outcomes, underscoring the complexities of its neuroprotective effects. This review integrates current knowledge on folate metabolism in cancer and neurodegeneration, exploring molecular mechanisms, clinical implications, and therapeutic strategies, which can provide crucial information for advancing treatments.


Assuntos
Ácido Fólico , Neoplasias , Doenças Neurodegenerativas , Humanos , Ácido Fólico/metabolismo , Ácido Fólico/uso terapêutico , Neoplasias/metabolismo , Neoplasias/tratamento farmacológico , Doenças Neurodegenerativas/metabolismo , Doenças Neurodegenerativas/tratamento farmacológico , Animais , Carbono/metabolismo , Antagonistas do Ácido Fólico/uso terapêutico , Antagonistas do Ácido Fólico/farmacologia
2.
Biomolecules ; 14(7)2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-39062531

RESUMO

DZNep (3-deazaneplanocin A) is commonly used to reduce lysine methylation. DZNep inhibits S-adenosyl-l-homocysteine hydrolase (AHCY), preventing the conversion of S-adenosyl-l-homocysteine (SAH) into L-homocysteine. As a result, the SAM-to-SAH ratio decreases, an indicator of the methylation potential within a cell. Many studies have characterized the impact of DZNep on histone lysine methylation or in specific cell or disease contexts, but there has yet to be a study looking at the potential downstream impact of DZNep treatment on proteins other than histones. Recently, protein thermal stability has provided a new dimension for studying the mechanism of action of small-molecule inhibitors. In addition to ligand binding, post-translational modifications and protein-protein interactions impact thermal stability. Here, we sought to characterize the protein thermal stability changes induced by DZNep treatment in HEK293T cells using the Protein Integral Solubility Alteration (PISA) assay. DZNep treatment altered the thermal stability of 135 proteins, with over half previously reported to be methylated at lysine residues. In addition to thermal stability, we identify changes in transcript and protein abundance after DZNep treatment to distinguish between direct and indirect impacts on thermal stability. Nearly one-third of the proteins with altered thermal stability had no changes at the transcript or protein level. Of these thermally altered proteins, CDK6 had a stabilized methylated peptide, while its unmethylated counterpart was unaltered. Multiple methyltransferases were among the proteins with thermal stability alteration, including DNMT1, potentially due to changes in the SAM/SAH levels. This study systematically evaluates DZNep's impact on the transcriptome, the proteome, and the thermal stability of proteins.


Assuntos
Adenosina , Estabilidade Proteica , Humanos , Células HEK293 , Adenosina/análogos & derivados , Adenosina/farmacologia , Adenosina/química , Estabilidade Proteica/efeitos dos fármacos , Metilação , Adenosil-Homocisteinase/antagonistas & inibidores , Adenosil-Homocisteinase/metabolismo , Temperatura
3.
Artigo em Inglês | MEDLINE | ID: mdl-38925992

RESUMO

One-carbon metabolism (1CM), comprising folate metabolism and methionine metabolism, serves as an important mechanism for cellular energy provision and the production of vital signaling molecules, including single-carbon moieties. Its regulation is instrumental in sustaining the proliferation of cancer cells and facilitating metastasis; in addition, recent research has shed light on its impact on the efficacy of T cell-mediated immunotherapy. In this review, we consolidate current insights into how 1CM affects T cell activation, differentiation, and functionality. Furthermore, we delve into the strategies for modulating 1CM in both T cells and tumor cells to enhance the efficacy of adoptively transferred T cells, overcome metabolic challenges in the tumor microenvironment (TME), and maximize the benefits of T cell-mediated immunotherapy.

4.
Mol Cell Biol ; 44(6): 245-258, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38804232

RESUMO

Betaine-homocysteine S-methyltransferase (BHMT) is one of the most abundant proteins in the liver and regulates homocysteine metabolism. However, the molecular mechanisms underlying Bhmt transcription have not yet been elucidated. This study aimed to assess the molecular mechanisms underlying Bhmt transcription and the effect of BHMT deficiency on metabolic functions in the liver mediated by liver receptor homolog-1 (LRH-1). During fasting, both Bhmt and Lrh-1 expression increased in the liver of Lrh-1f/f mice; however, Bhmt expression was decreased in LRH-1 liver specific knockout mice. Promoter activity analysis confirmed that LRH-1 binds to a specific site in the Bhmt promoter region. LRH-1 deficiency was associated with elevated production of reactive oxygen species (ROS), lipid peroxidation, and mitochondrial stress in hepatocytes, contributing to hepatic triglyceride (TG) accumulation. In conclusion, this study suggests that the absence of an LRH-1-mediated decrease in Bhmt expression promotes TG accumulation by increasing ROS levels and inducing mitochondrial stress. Therefore, LRH-1 deficiency not only leads to excess ROS production and mitochondrial stress in hepatocytes, but also disrupts the methionine cycle. Understanding these regulatory pathways may pave the way for novel therapeutic interventions against metabolic disorders associated with hepatic lipid accumulation.


Assuntos
Betaína-Homocisteína S-Metiltransferase , Hepatócitos , Fígado , Metionina , Camundongos Knockout , Espécies Reativas de Oxigênio , Receptores Citoplasmáticos e Nucleares , Triglicerídeos , Animais , Fígado/metabolismo , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Betaína-Homocisteína S-Metiltransferase/metabolismo , Betaína-Homocisteína S-Metiltransferase/genética , Hepatócitos/metabolismo , Metionina/metabolismo , Triglicerídeos/metabolismo , Regiões Promotoras Genéticas/genética , Masculino , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Peroxidação de Lipídeos
5.
Biochem Biophys Res Commun ; 686: 149152, 2023 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-37926042

RESUMO

S-adenosylhomocysteine (SAH) hydrolase is the enzyme responsible for breaking down SAH into adenosine and homocysteine. It has long been believed that a deficiency of this enzyme leads to SAH accumulation, subsequently inhibiting methyltransferases responsible for nucleic acids and proteins, which severely affects cell proliferation. To investigate whether targeting this enzyme could be a viable strategy to combat Trypanosoma brucei, the causative agent of human African trypanosomiasis, we created a null mutant of the SAH hydrolase gene in T. brucei using the Cre/loxP system and conducted a phenotype analysis. Surprisingly, the null mutant, where all five SAH hydrolase gene loci were deleted, exhibited normal proliferation despite the observed SAH accumulation. These findings suggest that inhibiting SAH hydrolase may not be an effective approach to suppressing T. brucei proliferation, making the enzyme a less promising target for antitrypanosome drug development.


Assuntos
Trypanosoma brucei brucei , Humanos , Adenosil-Homocisteinase/genética , Adenosil-Homocisteinase/metabolismo , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , S-Adenosil-Homocisteína/metabolismo , Adenosina/genética , Adenosina/farmacologia
6.
BMC Cancer ; 23(1): 800, 2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37633908

RESUMO

BACKGROUND: Pemetrexed is an efficacious multi-targeted antifolate with acceptable toxicity for non-squamous non-small cell lung cancer (non-Sq NSCLC) and malignant pleural mesothelioma. Vitamin B12 and folic acid as premedication can reduce the frequency of severe toxicities of pemetrexed chemotherapy. However, adverse effects are frequent in clinical settings. In this study, we aimed to identify the clinical factors and single-nucleotide polymorphisms (SNPs) associated with the toxicity and efficacy of pemetrexed chemotherapy. METHODS: This observational study was conducted from October 2012 to December 2019; we evaluated the toxicities and efficacies of pemetrexed chemotherapy using multivariate logistic or Cox regression analysis. In total, 106 patients received pemetrexed chemotherapy. SNPs were analyzed for four patients with malignant pleural mesothelioma and 67 with non-Sq NSCLC. RESULTS: The median progression-free survival (PFS) and overall survival of 63 patients with non-Sq NSCLC, excluding four in the adjuvant setting, were 6.8 and 33.3 months, respectively. Per propensity-score-adjusted multivariate Cox analyses, favorable factors for PFS were folic acid level ≥ 9.3 ng/mL before premedication, platinum combination, bevacizumab combination, vitamin B12 level < 1136 pg/mL before chemotherapy, A/A + A/G of BHMT (742 G > A), and A/A + A/C of DHFR (680 C > A). Favorable prognostic factors included good performance status, low smoking index, body mass index ≥ 20.66 kg/m2, folic acid level ≥ 5.55 ng/mL before premedication, higher retinol-binding protein before chemotherapy, and A/G of MTRR (66 A > G). Among the 71 patients who were analyzed for SNPs, the frequencies of hematologic toxicities and non-hematologic toxicities in Grades 3-4 were 38% and 36.6%, respectively. Per propensity-score-adjusted multivariate logistic analyses, risk factors for Grades 3-4 hematologic toxicities were vitamin B12 level < 486 pg/mL before premedication, leucocyte count < 6120 /µL before chemotherapy, folic acid level < 15.8 ng/mL before chemotherapy, status with a reduced dose of chemotherapy, and C/T + T/T of MTHFR (677 C > T). Risk factors for Grades 2-4 non-hematologic toxicities were homocysteine levels ≥ 11.8 nmol/mL before premedication, transthyretin level < 21.5 mg/dL before chemotherapy, C/C + T/T of MTHFR (677 C > T), and A/A + G/G of SLC19A1 [IVS2 (4935) G > A]. CONCLUSION: The information on metabolites and SNPs of the folate and methionine cycle will help predict the toxicities and efficacies of pemetrexed. TRIAL REGISTRATION: This trial was retrospectively registered with the University hospital Medical Information Network (UMIN000009366) on November 20, 2012.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Mesotelioma Maligno , Humanos , Pemetrexede/efeitos adversos , Polimorfismo de Nucleotídeo Único , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Ácido Fólico
7.
CNS Neurosci Ther ; 29(11): 3212-3227, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37183324

RESUMO

OBJECTIVE: The role of methionine (Met) cycle in the pathogenesis and progression of cardiovascular and cerebrovascular diseases has been established, but its association with moyamoya disease (MMD) has rarely been studied. This study aimed to analyze the levels of Met cycle-related metabolites and constructed a risk model to explore its association with the risk of MMD. METHODS: In this prospective study, a total of 302 adult MMD patients and 88 age-matched healthy individuals were consecutively recruited. The serum levels of Met cycle-related metabolites were quantified by liquid chromatography-mass spectrometry (LC-MS). Participants were randomly divided into training set and testing set at a ratio of 1:1. The training set was used to construct the risk score model by LASSO regression. The association between Met cycle-related risk score and the risk of MMD was analyzed using logistic regression and assessed by ROC curves. The testing set was used for validation. RESULTS: The levels of methionine sulfoxide and homocysteine were significantly increased, while the levels of betaine and choline were significantly decreased in MMD and its subtypes compared to healthy controls (p < 0.05 for all). The training set was used to construct the risk model and the risk score of each participant has been calculated. After adjusting for potential confounders, the risk score was independently associated with the risk of MMD and its subtypes (p < 0.05 for all). We then divided the participants into low-risk and high-risk groups, the high-risk score was significantly associated with the risk of MMD and its subtypes (p < 0.05 for all). The risk scores were further assessed as tertiles, the highest tertile was significantly associated with a higher risk of MMD and its subtypes compared to the lowest (p < 0.05 for all). The results were validated in the testing set. CONCLUSION: This study has constructed and validated a risk model based on Met cycle-related metabolites, which was independently associated with the risk of MMD and its subtypes. The findings provided a new perspective on the risk evaluation and prevention of MMD.


Assuntos
Doença de Moyamoya , Adulto , Humanos , Doença de Moyamoya/epidemiologia , Estudos Prospectivos , Curva ROC , Metionina
8.
Neurobiol Dis ; 181: 106110, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37001614

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with progressive paralysis of limbs and bulb in patients, the cause of which remains unclear. Accumulating studies suggest that motor neuron degeneration is associated with systemic metabolic impairment in ALS. However, the metabolic reprogramming and underlying mechanism in the longitudinal progression of the disease remain poorly understood. In this study, we aimed to investigate the molecular changes at both metabolic and proteomic levels during disease progression to identify the most critical metabolic pathways and underlying mechanisms involved in ALS pathophysiological changes. Utilizing liquid chromatography-mass spectrometry-based metabolomics, we analyzed the metabolites' levels of plasma, lumbar spinal cord, and motor cortex from SOD1G93A mice and wildtype (WT) littermates at different stages. To elucidate the regulatory network underlying metabolic changes, we further analyzed the proteomics profile in the spinal cords of SOD1G93A and WT mice. A group of metabolites implicated in purine metabolism, methionine cycle, and glycolysis were found differentially expressed in ALS mice, and abnormal expressions of enzymes involved in these metabolic pathways were also confirmed. Notably, we first demonstrated that dysregulation of purine metabolism might contribute to the pathogenesis and disease progression of ALS. Furthermore, we discovered that fatty acid metabolism, TCA cycle, arginine and proline metabolism, and folate-mediated one­carbon metabolism were also significantly altered in this disease. The identified differential metabolites and proteins in our study could complement existing data on metabolic reprogramming in ALS, which might provide new insight into the pathological mechanisms and novel therapeutic targets of ALS.


Assuntos
Esclerose Lateral Amiotrófica , Doenças Neurodegenerativas , Animais , Camundongos , Esclerose Lateral Amiotrófica/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Metabolômica , Camundongos Transgênicos , Neurônios Motores/patologia , Doenças Neurodegenerativas/metabolismo , Proteômica , Purinas , Medula Espinal/patologia , Superóxido Dismutase/metabolismo , Superóxido Dismutase-1/genética , Superóxido Dismutase-1/metabolismo
9.
Genes (Basel) ; 14(3)2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36980981

RESUMO

Autism Spectrum Disorder (ASD) has become a major public health concern due to its rapidly rising incidence over the past few years. Disturbances in folate or methionine metabolism have been identified in many individuals with ASD, suggesting that the folate-methionine cycle may play an essential role in the pathogenesis of autism. Thus, changes in metabolite concentrations associated with this cycle could be used as potential biomarkers and therapeutic targets for ASD. The aim of this systematic review is to elucidate the perturbations of this cycle and the possible interventions that may be proposed in this context. Several studies have shown that high levels of homocysteine and low levels of vitamins B12 and folate are associated with ASD. These changes in serum metabolites are influenced by poor diet. In fact, children with ASD tend to eat selectively, which could compromise the quality of their diet and result in nutrient deficiencies. Moreover, these disturbances may also be caused by genetic predispositions such as polymorphisms of the MTHFR gene. Few studies have demonstrated the beneficial effects of the use of nutritional supplements in treating ASD children. Therefore, larger, well-structured studies are recommended to examine the impact of vitamin B12 and folate supplementation on homocysteine levels.


Assuntos
Transtorno do Espectro Autista , Ácido Fólico , Criança , Humanos , Ácido Fólico/uso terapêutico , Metionina , Transtorno do Espectro Autista/tratamento farmacológico , Transtorno do Espectro Autista/genética , Vitamina B 12/uso terapêutico , Suplementos Nutricionais , Racemetionina
10.
Front Oncol ; 12: 1063305, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36531038

RESUMO

Study background objectives: Cancer poses a significant health concern as it is incurable. Every year, research on how to treat and eradicate this chronic condition is done. This systematic review will unmask the recent developments concerning highly active 1C metabolism with regard to cancer diagnosis, treatment, and drug resistance. The significance of this study is rolling out evidence-based evidence on the importance of one-carbon metabolism in cancer diagnosis and treatment. Methods: Eight randomized controlled trials (RCTs) were reviewed from five electronic databases - EMBASE, Scopus Review, Google Scholar, Web of Science, and PubMed. Outcomes from the eight studies were analyzed to paint a picture of the topic in question. While the Preferred Reporting Items for Systematic Reviews and Meta-Analysis' (PRISMA) protocol guided the initial literature search, The Grading of Recommendations Assessment, Development, and Evaluation (GRADE) approach informed quality assessments of the eligible studies. Conclusion: Since its emergence in the 1980s, 1C metabolism has been investigated and broadened to capture essential aspects of cancer treatment, diagnosis, and drug resistance. The review found that metabolites like folic acid could be used to detect different types of cancer. The metabolic pathways could induce tumorigenesis and DNA methylation, hence drug resistance. Systematic review registration: https://inplasy.com/projects/, identifier INPLASY2022110099.

11.
Curr Biol ; 32(23): 5057-5068.e5, 2022 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-36347252

RESUMO

The loss of mitochondria in oxymonad protists has been associated with the redirection of the essential Fe-S cluster assembly to the cytosol. Yet as our knowledge of diverse free-living protists broadens, the list of functions of their mitochondrial-related organelles (MROs) expands. We revealed another such function in the closest oxymonad relative, Paratrimastix pyriformis, after we solved the proteome of its MRO with high accuracy, using localization of organelle proteins by isotope tagging (LOPIT). The newly assigned enzymes connect to the glycine cleavage system (GCS) and produce folate derivatives with one-carbon units and formate. These are likely to be used by the cytosolic methionine cycle involved in S-adenosyl methionine recycling. The data provide consistency with the presence of the GCS in MROs of free-living species and its absence in most endobionts, which typically lose the methionine cycle and, in the case of oxymonads, the mitochondria.


Assuntos
Metionina , Mitocôndrias , Mitocôndrias/metabolismo , Eucariotos/metabolismo
12.
Gene Expr Patterns ; 46: 119282, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36244619

RESUMO

DNA synthesis and methylations are crucial during pre-implantation embryonic development, and are mediated by one-carbon metabolism of folates. Folates, transported into the cells via folate receptors (FOLR1 and FOLR2) and carriers (SLC19A1), are metabolized by various enzymes involved in folate-methionine cycle. However, the variations in temporal expression of folate transporters and folate-methionine cycle enzymes during pre-implantation embryo development is obscure. Thus, the present study aimed to investigate the differential expression of the genes for folate transporters and folate-methionine cycle enzymes. We also examined the expression of folate transport proteins in different pre-implantation development stages. Immature buffalo oocytes were matured in maturation medium followed by in vitro fertilization and culture at standard culture conditions. The temporal pattern of gene expression in buffalo, when compared to previous studies, indicated an inter-specific variation. The transcripts of some enzymes and folate transporters were significantly upregulated after zygotic genome activation. The transcripts as well as proteins for FOLR1, FOLR2 and SLC19A1 were present in oocytes and all the pre-implantation embryo stages. FOLR1 was present in the nuclei of different stages of developing embryos but not in the metaphase (MII) oocytes. As a result, the present study advocates the existence of active folate transport in buffalo oocytes and pre-implantation embryos. The data provided by the analysis of differential gene expression of folate transporters and metabolic enzymes would likely contribute to a better understanding of the role of folates in embryo development as well as advancements in assisted reproductive technologies.


Assuntos
Búfalos , Ácido Fólico , Gravidez , Animais , Feminino , Búfalos/genética , Búfalos/metabolismo , Ácido Fólico/metabolismo , Oócitos/metabolismo , Desenvolvimento Embrionário/genética , Transportadores de Ácido Fólico/metabolismo , Fertilização in vitro , Metionina/metabolismo , Carbono/metabolismo , Expressão Gênica
13.
Front Oncol ; 12: 986045, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36212465

RESUMO

Cisplatin (cis-diamminedichloroplatinum II; CDDP) is a widely used cytostatic agent; however, it tends to promote kidney and liver disease, which are a major signs of drug-induced toxicity. Platinum compounds are often presented as alternative therapeutics and subsequently easily dispersed in the environment as contaminants. Due to the major roles of the liver and kidneys in removing toxic materials from the human body, we performed a comparative study of the amino acid profiles in chicken liver and kidneys before and after the application of CDDP and platinum nanoparticles (PtNPs-10 and PtNPs-40). The treatment of the liver with the selected drugs affected different amino acids; however, Leu and Arg were decreased after all treatments. The treatment of the kidneys with CDDP mostly affected Val; PtNPs-10 decreased Val, Ile and Thr; and PtNPs-40 affected only Pro. In addition, we tested the same drugs on two healthy cell lines, HaCaT and HEK-293, and ultimately explored the amino acid profiles in relation to the tricarboxylic acid cycle (TCA) and methionine cycle, which revealed that in both cell lines, there was a general increase in amino acid concentrations associated with changes in the concentrations of the metabolites of these cycles.

14.
Cell Metab ; 34(9): 1280-1297.e9, 2022 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-36070681

RESUMO

Epstein-Barr virus (EBV) subverts host epigenetic pathways to switch between viral latency programs, colonize the B cell compartment, and reactivate. Within memory B cells, the reservoir for lifelong infection, EBV genomic DNA and histone methylation marks restrict gene expression. But this epigenetic strategy also enables EBV-infected tumors, including Burkitt lymphomas, to evade immune detection. Little is known about host cell metabolic pathways that support EBV epigenome landscapes. We therefore used amino acid restriction, metabolomic, and CRISPR approaches to identify that an abundant methionine supply and interconnecting methionine and folate cycles maintain Burkitt EBV gene silencing. Methionine restriction, or methionine cycle perturbation, hypomethylated EBV genomes and de-repressed latent membrane protein and lytic gene expression. Methionine metabolism also shaped EBV latency gene regulation required for B cell immortalization. Dietary methionine restriction altered murine Burkitt xenograft metabolomes and de-repressed EBV immunogens in vivo. These results highlight epigenetic/immunometabolism crosstalk supporting the EBV B cell life cycle and suggest therapeutic approaches.


Assuntos
Infecções por Vírus Epstein-Barr , Herpesvirus Humano 4 , Animais , Epigênese Genética , Epigenoma , Infecções por Vírus Epstein-Barr/metabolismo , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Humanos , Metionina/metabolismo , Camundongos , Latência Viral/genética
15.
Int J Mol Sci ; 23(16)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36012717

RESUMO

The sesquiterpenoid hormone methyl farnesoate (MF) plays a vital role during crustacean development, which is mainly evidenced by its varied titers during different developmental stages. However, the biosynthesis pathways of MF remain obscure to some extent. In this study, we identified the complete MF biosynthesis and related pathway genes in Scylla paramamosain, including three involved in acetyl-CoA metabolism, eight in the mevalonate pathway, five in the sesquiterpenoids synthesis pathway, and five in the methionine cycle pathway. Bioinformatics, genomic structure, and phylogenetic analysis indicated that the JH biosynthesis genes might have experienced evolution after species differentiation. The mRNA tissue distribution analysis revealed that almost all genes involving in or relating to MF syntheses were highly expressed in the mandibular organ (MO), among which juvenile hormone acid methyltransferase was exclusively expressed in the MO, suggesting that most of these genes might mainly function in MF biosynthesis and that the methionine cycle pathway genes might play a crucial regulatory role during MF synthesis. In addition, the phylogenetic and tissue distribution analysis of the cytochrome P450 CYP15-like gene suggested that the epoxidized JHs might exist in crustaceans, but are mainly synthesized in hepatopancreas rather than the MO. Finally, we also found that betaine-homocysteine S-methyltransferase genes were lost in insects while methionine synthase was probably lost in most insects except Folsomia candida, indicating a regulatory discrepancy in the methionine cycle between crustaceans and insects. This study might increase our understanding of synthetic metabolism tailored for sesquiterpenoid hormones in S. paramamosain and other closely related species.


Assuntos
Braquiúros , Ácidos Graxos Insaturados , Animais , Braquiúros/genética , Braquiúros/metabolismo , Ácidos Graxos Insaturados/biossíntese , Metionina/metabolismo , Filogenia
16.
Front Oncol ; 12: 969563, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36033438

RESUMO

The methionine cycle comprises a series of reactions that catabolizes and regenerates methionine. This process is crucial to many cellular functions, including polyamine synthesis, DNA synthesis, redox balance, and DNA and histone methylation. In response to antigens, T cells activate the methionine cycle to support proliferation and differentiation, indicating the importance of the methionine cycle to T cell immunity. In cancer, T cells serve as important effectors of adaptive immunity by directly killing cancerous cells. However, the tumor microenvironment can induce a state of T cell exhaustion by regulating the methionine metabolism of T cells, posing a barrier to both endogenous T cell responses and T cell immunotherapy. Here we review the role of methionine cycle metabolites in regulating the activation and effector function of T cells and explore the mechanism by which tumor cells exploit the methionine pathway as a means of immune evasion. Finally, we discuss new perspectives on reprogramming the methionine cycle of T cells to enhance anti-tumor immunotherapy.

17.
Stem Cell Res Ther ; 13(1): 292, 2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35841118

RESUMO

BACKGROUND: Improved understanding of the stemness regulation mechanism in intrahepatic cholangiocarcinoma (ICC) could identify targets and guidance for adjuvant transarterial chemoembolization (TACE). METHODS: TCGA database was excavated to identify the ICC stemness-associated genes. The pro-stemness effect of target genes was further analyzed by sphere formation assay, qRT-PCR, western blot, flow cytometric analysis, IHC, CCK8 assay and metabolomic analysis. Based on multivariate analysis, a nomogram for ICC patients with adjuvant TACE was established and our result was further confirmed by a validation cohort. Finally, the effect of dietary methionine intervention on chemotherapy was estimated by in vivo experiment and clinical data. RESULTS: In this study, we identified four ICC stemness-associated genes (SDHAF2, MRPS34, MRPL11, and COX8A) that are significantly upregulated in ICC tissues and negatively associated with clinical outcome. Functional studies indicated that these 4-key-genes are associated with self-renewal ability of ICC and transgenic expression of these 4-key-genes could enhance chemoresistance of cholangiocarcinoma cells. Mechanistically, the 4-key-genes-mediated pro-stemness requires the activation of methionine cycle, and their promotion on ICC stemness characteristic is dependent on MAT2A. Importantly, we established a novel nomogram to evaluate the effectiveness of TACE for ICC patients. Further dietary methionine intervene studies indicated that patients with adjuvant TACE might benefit from dietary methionine restriction if they have a relatively high nomogram score (≥ 135). CONCLUSIONS: Our results show that four ICC stemness-associated genes could serve as novel biomarkers in predicting ICC patient's response to adjuvant TACE and their pro-stemness ability may be attributed to the activation of the methionine cycle.


Assuntos
Neoplasias dos Ductos Biliares , Carcinoma Hepatocelular , Quimioembolização Terapêutica , Colangiocarcinoma , Neoplasias Hepáticas , Neoplasias dos Ductos Biliares/genética , Neoplasias dos Ductos Biliares/metabolismo , Neoplasias dos Ductos Biliares/terapia , Ductos Biliares Intra-Hepáticos/metabolismo , Ductos Biliares Intra-Hepáticos/patologia , Autorrenovação Celular , Quimioembolização Terapêutica/métodos , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Colangiocarcinoma/terapia , Humanos , Neoplasias Hepáticas/patologia , Metionina/genética , Metionina Adenosiltransferase/genética
18.
J Agric Food Chem ; 70(26): 7981-7992, 2022 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-35734958

RESUMO

The liver as the central organ is responsible for lipogenesis, gluconeogenesis and one-carbon metabolism. Methyl donors (e.g., betaine) modulate metabolic homeostasis and gene regulation through one-carbon metabolism. MiR-143 regulates DNA methylation by targeting DNMT3A, thereby suggesting that this miRNA participates in one-carbon metabolic pathways. However, the effect and mechanism that regulate glucose and lipid metabolism via the methyl group metabolism pathway remain elusive. In this study, we found that a betaine supplement and miR-143 KO significantly promoted lipolysis and glucose utilization and repressed lipogenesis and gluconeogenesis through enhancing energy consumption and thermogenesis, repressing GPNMB and targeting MAPK11, respectively. We further explored the relationship between miR-143 and a methyl donor (betaine) and the miR-143-mediated responses to the betaine supplement regulating the mechanism of the glucose and lipid metabolism. The results showed that betaine significantly down-regulated the expression of miR-143 that subsequently increased SAM levels in the liver by targeting MAT1a. In brief, the regulations of glucose and lipid metabolism are related to the miR-143-regulation of one-carbon units, and the relationship between betaine and miR-143 in the methionine cycle is a typical yin-yang type of regulation. Thus, betaine and miR-143 function together as key regulators and biomarkers for preventing and diagnosing metabolic diseases such as fatty liver disease, obesity, and diabetes.


Assuntos
Gluconeogênese , MicroRNAs , Betaína/metabolismo , Betaína/farmacologia , Carbono/metabolismo , Gluconeogênese/genética , Glucose/metabolismo , Metabolismo dos Lipídeos/genética , Lipogênese , Fígado/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo
19.
Antioxidants (Basel) ; 11(5)2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35624761

RESUMO

Drug-induced liver injury (DILI) development is commonly associated with acetaminophen (APAP) overdose, where glutathione scavenging leads to mitochondrial dysfunction and hepatocyte death. DILI is a severe disorder without effective late-stage treatment, since N-acetyl cysteine must be administered 8 h after overdose to be efficient. Ammonia homeostasis is altered during liver diseases and, during DILI, it is accompanied by decreased glycine N-methyltransferase (GNMT) expression and S-adenosylmethionine (AdoMet) levels that suggest a reduced methionine cycle. Anti-miR-873-5p treatment prevents cell death in primary hepatocytes and the appearance of necrotic areas in liver from APAP-administered mice. In our study, we demonstrate a GNMT and methionine cycle activity restoration by the anti-miR-873-5p that reduces mitochondrial dysfunction and oxidative stress. The lack of hyperammoniemia caused by the therapy results in a decreased urea cycle, enhancing the synthesis of polyamines from ornithine and AdoMet and thus impacting the observed recovery of mitochondria and hepatocyte proliferation for regeneration. In summary, anti-miR-873-5p appears to be an effective therapy against APAP-induced liver injury, where the restoration of GNMT and the methionine cycle may prevent mitochondrial dysfunction while activating hepatocyte proliferative response.

20.
Cells ; 11(9)2022 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-35563842

RESUMO

N-Myc downstream regulated gene 3 (NDRG3) is a unique pro-tumorigenic member among NDRG family genes, mediating growth signals. Here, we investigated the pathophysiological roles of NDRG3 in relation to cell metabolism by disrupting its functions in liver. Mice with liver-specific KO of NDRG3 (Ndrg3 LKO) exhibited glycogen storage disease (GSD) phenotypes including excessive hepatic glycogen accumulation, hypoglycemia, elevated liver triglyceride content, and several signs of liver injury. They suffered from impaired hepatic glucose homeostasis, due to the suppression of fasting-associated glycogenolysis and gluconeogenesis. Consistently, the expression of glycogen phosphorylase (PYGL) and glucose-6-phosphate transporter (G6PT) was significantly down-regulated in an Ndrg3 LKO-dependent manner. Transcriptomic and metabolomic analyses revealed that NDRG3 depletion significantly perturbed the methionine cycle, redirecting its flux towards branch pathways to upregulate several metabolites known to have hepatoprotective functions. Mechanistically, Ndrg3 LKO-dependent downregulation of glycine N-methyltransferase in the methionine cycle and the resultant elevation of the S-adenosylmethionine level appears to play a critical role in the restructuring of the methionine metabolism, eventually leading to the manifestation of GSD phenotypes in Ndrg3 LKO mice. Our results indicate that NDRG3 is required for the homeostasis of liver cell metabolism upstream of the glucose-glycogen flux and methionine cycle and suggest therapeutic values for regulating NDRG3 in disorders with malfunctions in these pathways.


Assuntos
Doença de Depósito de Glicogênio , Metionina , Animais , Glucose/metabolismo , Doença de Depósito de Glicogênio/metabolismo , Fígado/metabolismo , Metionina/metabolismo , Camundongos , Camundongos Knockout , Fenótipo , S-Adenosilmetionina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA