Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
J Biol Chem ; : 107328, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38679332

RESUMO

Management of chronic obesity-associated metabolic disorders is a key challenge for biomedical researchers. During chronic obesity, visceral adipose tissue (VAT) undergoes substantial transformation characterized by a unique lipid-rich hypoxic AT microenvironment (ATenv) which plays a crucial role in VAT dysfunction, leading to insulin resistance (IR) and type 2 diabetes(T2D). Here, we demonstrate that obese ATenv triggers the release of miR-210-3p microRNA-loaded extracellular vesicles (EVs) from adipose tissue macrophages (ATMs), which disseminate miR-210-3p to neighboring adipocytes, skeletal muscle cells, and hepatocytes through paracrine and endocrine actions, thereby influencing insulin sensitivity. Moreover, EVs collected from Dicer-silenced miR-210-3p-overexpressed bone marrow-derived macrophages (BMDMs), induce glucose intolerance and IR in lean mice. Mechanistically, miR-210-3p interacts with the 3'-UTR of GLUT4 mRNA and silences its expression, compromising cellular glucose uptake and insulin sensitivity. Therapeutic inhibition of miR-210-3p in VAT notably rescues high-fat diet (HFD)-fed mice from obesity-induced systemic glucose intolerance. Thus, targeting ATM-specific miR-210-3p during obesity could be a promising strategy for managing IR and T2D.

2.
Arq. bras. oftalmol ; 87(5): e2022, 2024. tab, graf
Artigo em Inglês | LILACS-Express | LILACS | ID: biblio-1527848

RESUMO

ABSTRACT Purpose: The regulatory effect of microRNA on diseases has been confirmed. This study aimed to evaluate the expression of microRNA-210-3p in age-related cataracts and assess the effect of abnormal miR-210-3p expressions on H2O2-induced SAR01/04 cells. Methods: Reverse-transcription quantitative polymerase chain reaction method was performed to assess the levels of miR-210-3p in aqueous humor samples. Receiver operating characteristic analysis was employed to assess the discrimination ability of miR-210-3p between patients with age-related cataracts and healthy people, and Pearson correlation analysis was used to identify the correlation between miR-210-3p and oxidative stress indices such as superoxide dismutase, glutathione peroxidase, malonaldehyde. Cell counting kit-8 assay and Transwell assay were used to estimate the biological function of H2O2-induced age-related cataract cell model. The levels of oxidative stress indices such as superoxide dismutase, glutathione peroxidase, and malonaldehyde were measured to evaluate the degree of oxidative stress damage in the age-related cataract cell model. The relationship between miR-210-3p and its target gene was verified by luciferase reporter gene analysis. Results: The miR-210-3p expression was elevated in the aqueous humor of patients with age-related cataracts. A high miR-210-3p expression showed a high diagnostic value for age-related cataracts and was significantly associated with the level of oxidative stress markers in patients with age-related cataracts. The inhibition of miR-210-3p can reverse oxidative stress stimulation and adverse effects on H2O2-induced cell function. Conclusions: The results suggested that miR-210-3p could promote cell viability, cell migration, and oxidative stress by targeting autophagy-related gene 7 in in vitro age-related cataract cell model.


RESUMO Objetivo: O efeito regulador do microRNA em doenças tem sido confirmado, e este artigo tentou avaliar a expressão do microRNA-210-3p na catarata relacionada à idade e avaliar o efeito da expressão anormal do miR-210-3p em células SAR01/04 induzidas por H2O2. Métodos: O método de transcrição reversa seguida de reação em cadeia da polimerase (RT-PCR) quantitativa foi realizado para avaliar os níveis de miR-210-3p em amostras de humor aquoso. Análise de características operacionais do receptor foi feita para avaliar a capacidade de discriminação do miR-210-3p entre pacientes com catarata relacionada à idade e pessoas saudáveis. A análise de correlação de Pearson identificou a correlação do miR-210-3p e índices de estresse oxidativo, como superóxido dismutase, glutationa peroxidase, malonaldeído. O ensaio de contagem de células kit-8 (cck-8) e o ensaio no sistema Transwell foram utilizados para estimar a função biológica do formato de células de catarata relacionada com a idade induzida por H2O2. Os níveis de índices de estresse oxidativo como superóxido dismutase, glutationa peroxidase e malonaldeído foram detectados para avaliar o grau de dano do estresse oxidativo em formato de células de catarata relacionada à idade. A relação entre miR-210-3p e seu gene alvo foi verificada por análise do gene repórter luciferase. Resultados: A expressão miR-210-3p foi elevada no humor aquoso de pacientes com catarata relacionada à idade. A expressão miR-210-3p altamente expressiva mostrou alto valor diagnóstico para catarata relacionada à idade e foi significativamente associado ao nível de marcadores de estresse oxidativo em pacientes com catarata relacionada à idade. A inibição de miR-210-3p pode reverter a estimulação do estresse oxidativo e os efeitos adversos da função celular induzida por H2O2. Conclusões: Esses dados sugeriram que a expressão miR-210-3p poderia promover a viabilidade celular, migração celular e estresse oxidativo ao direcionar genes ATG 7 relacionados à autofagia em modelo in vitro de células de catarata relacionadas à idade.

3.
Lab Med ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-38048807

RESUMO

BACKGROUND: Increasing mortality and morbidity of coronary artery disease (CAD) highlight the emerging need for novel noninvasive markers such as circulating microRNAs (miRNAs). OBJECTIVE: To evaluate the circulating levels of miR-126-3p, miR-210-3p, let-7g-5p, and miR-326, and their associations with known contributors to CAD, in CAD subgroups. METHODS: We divided the cohort into 4 groups: non-CAD controls (≤30% stenosis; n = 55), and patients with stable angina pectoris (SAP; n = 48), unstable AP (UAP; n = 46), and myocardial infarction (MI; n = 36). The circulating levels of miR-126-3p, miR-210-3p, let-7g-5p, and miR-326 were determined using TaqMan Advanced miRNA Assays in serum specimens. RESULTS: Circulating miR-126-3p levels were lower in the MI and UAP groups, compared with the non-CAD group, whereas miR-210-3p circulating levels were lower in the MI group than others. The levels of circulating let-7g-5p were shown to be useful for distinguishing UAP from MI, and there were substantial differences in circulating let-7g-5p levels between the UAP and MI groups. Moreover, lipid levels and ratios were lower in individuals with high circulating miR-126-3p and miR-210-3p levels. CONCLUSIONS: The study results suggest that circulating miR-126-3p, miR-210-3p, and let-7g-5p are differentiated between different clinical presentations of CAD and associated with lipid levels, which are important risk factors and determinants of CAD.

4.
Mol Cell Biochem ; 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37620743

RESUMO

Transplanted stem cells (˃95%) into ischemic myocardium die because of unfavourable conditions. Moreover, hypoxia role in the cell cycle regulation has been studied in transformed/immortalized cell lines which may have altered cell cycle regulators and/or mutated and, can't be transplanted in patients. We quest to find out the mechanism of cell cycle regulation in mesenchymal stem cells (MSC) to regulate its survival and proliferation in repair processes. Additionally, critically analysed role of hypoxamiR-210-3p, and cell cycle regulators that can regulate cell proliferation under hypoxic conditions. Bone marrow-derived MSC (BM-MSC) isolated from young male Fischer-344 rats by flushing the cavity of femur and propagated in vitro under 1% hypoxia for 72 h showed an increased in cell proliferation ([Formula: see text] 30%, p < 0.05) compared to normoxia. miR-210-3p, role in cell proliferation under hypoxic condition was confirmed by knockdown. Loss of function studies with transfection of anti-mir-210-3p, we observed decrease in proliferation of BM-MSC under hypoxia. Furthermore, BM-MSC proliferation due to miR-210-3p was confirmed using CFSE assay and flow cytometry, in which more cells were observed in S-phase. Mechanistically, western blot analysis showed miR-210-3p inhibition upregulates p53 and p21 expression and subsequent decrease in pAkt under hypoxia. On contrary, CFSE and Western blot under normoxic conditions showed downregulation of p53 and p21 whilst upregulation of pAkt indicated the key role of miR-210-3p in BM-MSC proliferation. Our results demonstrate the role of miR-210-3p in BM-MSC proliferation under both hypoxic and normoxic conditions and illustrate the potential mechanism via the regulation of pAkt, p53 and p21.

5.
Pharmaceutics ; 15(7)2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37514073

RESUMO

Hepatocellular carcinoma (HCC) is a prevalent and high-mortality cancer worldwide, and its complexity necessitates novel strategies for drug selection and design. Current approaches primarily focus on reducing gene expression, while promoting gene overexpression remains a challenge. In this work, we studied the effect of cytoplasmic polyadenylation element binding protein 2 (CPEB2) in HCC by constructing tissue microarrays (TAMs) from 90 HCC cases and corresponding para-cancerous tissues. Our analysis showed that CPEB2 expression was significantly reduced in HCC tissues, and its low expression was associated with a higher recurrence risk and poorer prognosis in patients with head and neck cancer. CPEB2 was found to regulate HCC epithelial-mesenchymal transition (EMT) and metastasis through the HIF-1α/miR-210-3p/CPEB2 feedback circuit. Using the RNA binding protein immunoprecipitation (RIP) assay, we demonstrated that miR-210 directly governs the expression of CPEB2. The inverse relationship between CPEB2 expression and miR-210-3p in HCC tissues suggested that this regulatory mechanism is directly linked to HCC metastasis, EMT, and clinical outcomes. Moreover, utilizing the SM2miR database, we identified drugs that can decrease miR-210-3p expression, consequently increasing CPEB2 expression and providing new insights for drug development. In conclusion, our findings illustrated a novel HIF-1α/miR-210-3p/CPEB2 regulatory signaling pathway in HCC and highlighted the potential of enhancing CPEB2 expression through targeting miR-210-3p as a novel predictive biomarker and therapeutic strategy in HCC, as it is modulated by the HIF-1α/miR-210-3p/CPEB2 feedback circuit.

6.
Ann Med ; 55(2): 2237690, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37480581

RESUMO

Objective: Treatment with c-kit-positive cardiac cells (CPCs) has been shown to improve the prognosis of ischemic heart disease. MicroRNAs (miRNAs) confer protection by enhancing the cardiac repair process, but their specific functional mechanisms remain unclear. This study aimed to screen for differentially expressed miRNAs in CPCs under hypoxia and explore their effects on the function of CPCs.Methods: We harvested CPCs from C57 adult mice and later performed a high-throughput miRNA sequencing for differential expression profiling analysis. Subsequently, we intervened with the differentially expressed gene miR-210-3p in CPCs and detected changes in the secretion of angiogenesis-related factors through a protein-chip analysis. Finally, we applied CPC supernatants of different groups as conditioned medium to treat mouse cardiac microvascular endothelial cells (CMECs) and further investigated the functional effects of miR-210-3p on c-kit+CPCs under ischemia and hypoxia conditions.Results: The miR-210-3p was highly increased in hypoxia-treated CPCs. Protein-chip detection revealed that CPCs expressed cytokines such as FGF basic, angiogenin, and vascular endothelial growth factor (VEGF) and that hypoxia enhanced their release. Silencing miR-210-3p resulted in a reduction in the release of these angiogenesis-related factors. In addition, the conditioned medium of hypoxia-treated CPCs promoted the proliferation, migration, and tube-forming capabilities of CMECs. In contrast, the conditioned media of CPCs with silenced miR-210-3p after hypoxia decreased the proliferation, migration, and tube-forming ability of CMEC.Conclusions: The CPCs exert proangiogenic effects via paracrine pathways mediated by miR-210-3p. Upregulation of miR-210-3p in hypoxia-treated CPCs may enhance their paracrine function by regulating the secretion of angiogenic factors, thereby promoting angiogenesis in ischemic heart disease.


Assuntos
MicroRNAs , Isquemia Miocárdica , Animais , Camundongos , Meios de Cultivo Condicionados/farmacologia , Células Endoteliais , Hipóxia/genética , MicroRNAs/genética , Isquemia Miocárdica/genética , Fator A de Crescimento do Endotélio Vascular/genética
7.
J Biomol Struct Dyn ; 41(21): 12305-12327, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36752331

RESUMO

Human coronaviruses (HCoVs) until the emergence of SARS in 2003 were associated with mild cold and upper respiratory tract infections. The ongoing pandemic caused by SARS-CoV-2 has enhanced the potential for infection and transmission as compared to other known members of this family. MicroRNAs (miRNA) are 21-25 nucleotides long non-coding RNA that bind to 3' UTR of genes and regulate almost every aspect of cellular function. Several human miRNAs have been known to target viral genomes, mostly to downregulate their expression and sometimes to upregulate also. In some cases, host miRNAs could be sequestered by the viral genome to create a condition for favourable virus existence. The ongoing SARS CoV-2 pandemic is unique based on its transmissibility and severity and we hypothesised that there could be a unique mechanism for its pathogenesis. In this study, we exploited in silico approach to identify human respiratory system-specific miRNAs targeting the viral genome of three highly pathogenic HCoVs (SARS-CoV-2 Wuhan strain, SARS-CoV, and MERS-CoV) and three low pathogenic HCoVs (OC43, NL63, and HKU1). We identified ten common microRNAs that target all HCoVs studied here. In addition, we identified unique miRNAs which targeted specifically one particular HCoV. miR-210-3p was the single unique lung-specific miRNA, which was found to target the NSP3, NSP4, and NSP13 genes of SARS-CoV-2. Further miR-210-NSP3, miR-210-NSP4, and miR-210-NSP13 SARS-CoV-2 duplexes were docked with the hAGO2 protein (PDB ID 4F3T) which showed Z-score values of -1.9, -1.7, and -1.6, respectively. The role of miR-210-3p as master hypoxia regulator and inflammation regulation may be important for SARS-CoV-2 pathogenesis. Overall, this analysis advocates that miR-210-3p be investigated experimentally in SARS-CoV-2 infection.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , MicroRNAs , Humanos , SARS-CoV-2/genética , SARS-CoV-2/metabolismo , COVID-19/genética , RNA Viral/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Hipóxia
8.
High Alt Med Biol ; 24(1): 59-67, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36749159

RESUMO

Liu, Fang, Caiyan Hu, Jin Ding, Chengbing Fu, Shuqiong Wang, and Tiantian Li. GATA-1 promotes erythroid differentiation through the upregulation of miR-451a and miR-210-3p expression in CD34+ cells in high-altitude polycythemia. High Alt Med Biol. 24:59-67, 2023. Background: The clinical manifestations of high-altitude polycythemia (HAPC) include excessive accumulation of erythrocytes, and its pathogenesis is not yet clear. Methods: Peripheral blood was collected from 10 HAPC patients (HAPC group) and normal individuals (control group) each. CD34+ cells were sorted using immunomagnetic beads and differentiated into erythroid cells for 7, 11, and 15 days. Changes in GATA-binding protein 1 (GATA-1), miR-451a, and miR-210-3p expression and their possible regulatory relationships were investigated. Results: Under hypoxia, GATA-1 expression on day 15 was about 2.4 times that on day 7 in the control group and about 1.3 times that on day 7 in the HAPC group, which was significantly lower compared with the control group. miR-451a and miR-210-3p expressions in the HAPC group were 2.6 and 1.8 times that in the control group, respectively, and were significantly increased. When GATA-1 was inhibited, miR-451a and miR-210-3p expressions were significantly decreased by 0.43 and 0.39 times, respectively, compared with those in the control group. Conclusions: Hypoxia stimulated the upregulation of GATA-1 level and accelerated the change of expression, which promoted miR-451a and miR-210-3p expressions and shortened the time taken by cells to enter end-stage differentiation, so as to enhance erythroid differentiation, which may be a pathogenetic mechanism underlying HAPC polycytosis.


Assuntos
Doença da Altitude , MicroRNAs , Policitemia , Humanos , Altitude , Diferenciação Celular , Hipóxia , Policitemia/etiologia , Regulação para Cima
9.
J Asthma Allergy ; 16: 107-121, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36714048

RESUMO

Background: Severe bronchial asthma (BA) affects 5-10% of children, which imposes socioeconomic burden. Therefore, it is crucial to identify biomarkers for risk stratification in children with BA. T regulatory cells (Tregs) play a balancing role in allergic response regulation. We aimed to investigate the relationship between Treg, miR-210-3p, and miR-146a-5p in relation to asthma phenotypes in search of novel biomarkers of disease severity. Methods: This study included 50 children with BA classified into Group 1 (n = 25) children with mild to moderate asthma and Group 2 (n = 25) children with severe asthma. In addition to 26 control subjects. Flow cytometry was used to detect Tregs. Plasma miR-210-3p and miR-146a levels were determined using quantitative real-time PCR. Patients' FEV1 (Forced Expiratory Volume in the first second) was measured. Results: miR-210-3p level correlated negatively with Treg frequency (r = -0.828, P < 0.001) and FEV1 (r = -0.621, P < 0.001). The level of miR-146a-5p positively correlated positively with Treg% (r = 0.303, P = 0.032). ROC curve analysis revealed that miR-210-3p was the most sensitive biomarker of severity, with the area under curve (AUC) = 0.923, 96% sensitivity, and 60% specificity. According to multivariate analysis, miR-210-3p is an independent risk factor for BA severity [OR =3.119, P = 0.030], while miR-146a-5p is a protective factor [OR =0.811, P = 0.049]. Conclusion: Treg frequency is linked to FEV1, miR-146a-5p and miR-210-3p in childhood BA. Upregulation of miR-210-3p is a sensitive biomarker and an independent risk factor for BA severity in Egyptian children.

10.
Stem Cell Rev Rep ; 19(4): 1051-1066, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36696015

RESUMO

Mesenchymal stem cell-derived extracellular vesicles (MSCs-EVs) possess cardioprotection in acute myocardial infarction. Nevertheless, the therapeutic intervention potential and the molecular mechanism of EVs from NMN (Nicotinamide mononucleotide) preconditioned hUCMSCs (N-EVs) in acute myocardial infarction remains unknown. In the present study, EVs from hUCMSCs (M-EVs) and N-EVs were identified by electron microscopy, immunoblotting and nanoparticle tracking analysis. Compared with M-EVs, N-EVs significantly increased the proliferation, migration, and angiogenesis of HUVECs. Meanwhile, N-EVs markedly reduced apoptosis and cardiac fibrosis and promoted angiogenesis in the peri-infarct region in the MI rats. A high-throughput miRNA sequencing and qPCR methods analysis revealed that miR-210-3p was abundant in N-EVs and the expression of miR-210-3p was obviously upregulated in HUVECs after N-EVs treated. Overexpression of miR-210-3p in HUVECs significantly enhanced the tube formation, migration and proliferative capacities of HUVECs. However, downregulation of miR-210-3p in HUVECs markedly decreased the tube formation, migration and proliferative capacities of HUVECs. Furthermore, bioinformatics analysis and luciferase assays revealed that EphrinA3 (EFNA3) was a direct target of miR-210-3p. Knockdown of miR-210-3p in N-EVs significantly impaired its ability to protect the heart after myocardial infarction. Altogether, these results indicated that N-EVs promoted the infarct healing through improvement of angiogenesis by miR-210-3p via targeting the EFNA3. Created with Biorender.com.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Infarto do Miocárdio , Animais , Ratos , Infarto do Miocárdio/genética , Infarto do Miocárdio/terapia , Coração , MicroRNAs/genética
11.
Medicina (Kaunas) ; 58(10)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36295655

RESUMO

Background and Objectives: Prediction of response to therapy remains a continuing challenge in treating breast cancer, especially for identifying molecular tissue markers that best characterize resistant tumours. Microribonucleic acids (miRNA), known as master modulators of tumour phenotype, could be helpful candidates for predicting drug resistance. We aimed to assess the association of miR-375-3p, miR-210-3p and let-7e-5p in breast cancer tissues with pathological response to neoadjuvant therapy (NAT) and clinicopathological data. Material and methods: Sixty female patients diagnosed with invasive breast cancer at The Oncology Institute "Ion Chiricuța", Cluj-Napoca, Romania (IOCN) were included in this study. Before patients received any treatment, fresh breast tissue biopsies were collected through core biopsy under echographic guidance and processed for total RNA extraction and miRNA quantification. The Cancer Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA) database was used as an independent external validation cohort. Results: miR-375-3p expression was associated with more differentiated tumours, hormone receptor presence and lymphatic invasion. According to the Miller-Payne system, a higher miR-375-3p expression was calculated for patients that presented with intermediate versus (vs.) no pathological response. Higher miR-210-3p expression was associated with an improved response to NAT in both Miller-Payne and RCB evaluation systems. Several druggable mRNA targets were correlated with miR-375-3p and miR-210-3p expression, with upstream analysis using the IPA knowledge base revealing a list of possible chemical and biological targeting drugs. Regarding let-7e-5p, no significant association was noticed with any of the analysed clinicopathological data. Conclusions: Our results suggest that tumours with higher levels of miR-375-3p are more sensitive to neoadjuvant therapy compared to resistant tumours and that higher miR-210-3p expression in responsive tumours could indicate an excellent pathological response.


Assuntos
MicroRNAs , Neoplasias , Feminino , Animais , Terapia Neoadjuvante , MicroRNAs/genética , RNA Mensageiro , Hormônios
12.
Front Immunol ; 13: 982278, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36263050

RESUMO

Excessive subchondral angiogenesis is a key pathological feature of osteoarthritis (OA), as it alters the balance of subchondral bone remodeling and causes progressive cartilage degradation. We previously found that miR-210-3p correlates negatively with angiogenesis, though the specific mechanism of miR-210-3p-related angiogenesis in subchondral bone during OA progression remains unclear. This study was conducted to identify the miR-210-3p-modulating subchondral angiogenesis mechanism in OA and investigate its therapeutic effect. We found that miR-210-3p expression correlated negatively with subchondral endomucin positive (Emcn+) vasculature in the knee joints of OA mice. miR-210-3p overexpression regulated the angiogenic ability of endothelial cells (ECs) under hypoxic conditions in vitro. Mechanistically, miR-210-3p inhibited ECs angiogenesis by suppressing transforming growth factor beta receptor 1 (TGFBR1) mRNA translation and degrading DNA-binding inhibitor 4 (ID4) mRNA. In addition, TGFBR1 downregulated the expression of ID4. Reduced ID4 levels led to a negative feedback regulation of TGFBR1, enhancing the inhibitory effect of miR-210-3p on angiogenesis. In OA mice, miR-210-3p overexpression in ECs via adeno-associated virus (AAV) alleviated cartilage degradation, suppressed the type 17 immune response and relieved symptoms by attenuating subchondral Emcn+ vasculature and subchondral bone remodeling. In conclusion, we identified a miR-210-3p/TGFBR1/ID4 axis in subchondral ECs that modulates OA progression via subchondral angiogenesis, representing a potential OA therapy target.


Assuntos
Proteínas Inibidoras de Diferenciação , MicroRNAs , Osteoartrite , Receptor do Fator de Crescimento Transformador beta Tipo I , Animais , Camundongos , DNA , Células Endoteliais/metabolismo , MicroRNAs/metabolismo , Osteoartrite/metabolismo , Receptor do Fator de Crescimento Transformador beta Tipo I/metabolismo , RNA Mensageiro/uso terapêutico , Sialomucinas , Proteínas Inibidoras de Diferenciação/metabolismo
13.
Tissue Cell ; 79: 101956, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36272206

RESUMO

OBJECTIVE: Ferroptosis is a novel mode of non-apoptotic cell death induced by build-up of toxic lipid peroxides (lipid-ROS) in an iron dependent manner, which is a key event in ischemia/reperfusion (I/R)-induced cardiomyocytes damages. Studies indicated that ischemic preconditioning with cardiac microvascular endothelial cells (CMECs) protected against I/R-induced cardiomyocytes damages. However, the role of hypoxia-conditioned CMECs-derived Exo (H-exo) in I/R cardiomyocytes damages remains largely unclear. Therefore, the objective of this study was to explore the role and underlying mechanisms of H-exo in hypoxia/reoxygenation(H/R)-induced H9C2 cells damages. METHODS: The rat CMECs were subjected to hypoxia or normoxia culture and Exo was subsequently collected and identified. H-exo or normoxia-conditioned CMECs-derived Exo (N-exo) were administered to H9C2 cells with H/R. To evaluate the therapeutic effect of H-exo and H-exo on H/R-induced H9C2 cells damages, cell proliferation was detected by CCK-8 assay and Edu staining, and ferroptosis process were evaluated by iron ion concentration, lipid reactive oxygen species (ROS) level, malondialdehyde (MDA) level, glutathione peroxidase (GSH-Px) level, and the protein expression of ferroptosis markers. Mechanically, we utilized the RT-qPCR to identify the expression of candidate miR-210-3p in N-exo and H-exo. Bioinformatics combined with dual luciferase reporter assay disclosed the downstream molecular mechanism of miR-210-3p. RESULTS: The results indicated that both H-exo and N-exo significantly facilitated cell proliferation, increased GSH-Px levels and ferroptosis marker (GPX4) protein levels, and reduced iron ion concentration, lipid ROS level, MDA levels and ferroptosis markers (ACSL4 and PTGS2) protein levels in H/R-treated H9C2 cells. More importantly, the therapeutic effect of H-exo was significantly better than that of N-exo. Mechanistically, the results of RT-qPCR revealed significant enrichment of miR-210-3p in H-exo compared with N-exo. The miR-210-3p delivered by H-exo inhibited TFR expression by directly interacting with TFR mRNA, resulting in the promotion of cell proliferation and the attenuation of cell ferroptosis in H/R-treated H9C2 cells. CONCLUSION: All these data demonstrated that H-exo derived miR-210-3p facilitated the proliferation of myocardial cells in H/R-treated H9C2 cells by suppressing TFR-mediated ferroptosis, which provided new methods to treat H/R-induced myocardial injury.


Assuntos
Ferroptose , MicroRNAs , Ratos , Animais , Miócitos Cardíacos/metabolismo , Ferroptose/genética , Células Endoteliais/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Apoptose , MicroRNAs/metabolismo , Hipóxia/metabolismo , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Ferro/metabolismo , Ferro/farmacologia , Lipídeos/farmacologia
14.
J Transl Med ; 20(1): 407, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-36064558

RESUMO

BACKGROUND: Atrial fibrosis plays a critical role in the development of atrial fibrillation (AF). Exosomes are a promising cell-free therapeutic approach for the treatment of AF. The purposes of this study were to explore the mechanisms by which exosomes derived from atrial myocytes regulate atrial remodeling and to determine whether their manipulation facilitates the therapeutic modulation of potential fibrotic abnormalities during AF. METHODS: We isolated exosomes from atrial myocytes and patient serum, and microRNA (miRNA) sequencing was used to analyze exosomal miRNAs in exosomes derived from atrial myocytes and patient serum. mRNA sequencing and bioinformatics analyses corroborated the key genes that were direct targets of miR-210-3p. RESULTS: The miRNA sequencing analysis identified that miR-210-3p expression was significantly increased in exosomes from tachypacing atrial myocytes and serum from patients with AF. In vitro, the miR-210-3p inhibitor reversed tachypacing-induced proliferation and collagen synthesis in atrial fibroblasts. Accordingly, miR-210-3p knock out (KO) reduced the incidence of AF and ameliorated atrial fibrosis induced by Ang II. The mRNA sequencing analysis and dual-luciferase reporter assay showed that glycerol-3-phosphate dehydrogenase 1-like (GPD1L) is a potential target gene of miR-210-3p. The functional analysis suggested that GPD1L regulated atrial fibrosis via the PI3K/AKT signaling pathway. In addition, silencing GPD1L in atrial fibroblasts induced cell proliferation, and these effects were reversed by a PI3K inhibitor (LY294002). CONCLUSIONS: Atrial myocyte-derived exosomal miR-210-3p promoted cell proliferation and collagen synthesis by inhibiting GPD1L in atrial fibroblasts. Preventing pathological crosstalk between atrial myocytes and fibroblasts may be a novel target to ameliorate atrial fibrosis in patients with AF.


Assuntos
Fibrilação Atrial , Exossomos , Glicerolfosfato Desidrogenase , Átrios do Coração , MicroRNAs , Miócitos Cardíacos , Fibrilação Atrial/complicações , Fibrilação Atrial/genética , Fibrilação Atrial/metabolismo , Fibrilação Atrial/patologia , Colágeno/metabolismo , Exossomos/genética , Exossomos/metabolismo , Exossomos/patologia , Fibrose/genética , Fibrose/metabolismo , Fibrose/patologia , Glicerolfosfato Desidrogenase/genética , Glicerolfosfato Desidrogenase/metabolismo , Átrios do Coração/metabolismo , Átrios do Coração/patologia , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Receptor Cross-Talk
15.
J Orthop Surg Res ; 17(1): 418, 2022 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-36104705

RESUMO

BACKGROUND AND OBJECTIVE: As an important mediator of intercellular interaction and formation of extracellular bone matrix, porous scaffolds are widely used for bone regeneration. Accumulating evidences demonstrate that microRNA are involved in the regulation of scaffolds-induced bone regeneration. Recently, we revealed that miR-210-3p was highly expressed during osteogenesis induced by HAG. In present study, we further explored the molecular mechanism underlying the effect of miR-210-3p on osteogenic differentiation. MATERIALS AND METHODS: In this study, miR-210-3p mimics and inhibitors were synthesized and transfected into MC3T3-E1 cells to explore their effects on osteogenic differentiation. The expression of osteogenic marker (Alp and Runx2) were detected by real-time quantitative PCR (qRT-PCR) and western blotting. After osteogenesis induction for 7 days, Alp staining were used to detected osteoblast differentiation of MC3T3-E1 cells. CCK8 and Transwell assays were performed to detected cell proliferation and migration. Then, top ranking list of target genes of miR-210-3p obtained from TargetScan and the expression of BDNF were detected by qRT-PCR and ELISA. The relationship between miR-210-3p and BDNF was verified by luciferase report assay. Furthermore, the effect of BDNF on osteoblast differentiation was verified by transfecting siRNA or adding BDNF to the culture medium. RESULTS: MiR-210-3p mimics markedly suppress osteogenic differentiation, cell migration and cell proliferation of MC3T3-E; nevertheless, silencing of miR-210-3p dramatically enhanced MC3T3-E1 osteogenesis, cell migration and proliferation. Furthermore, luciferase reporter assay verified that brain derived neurotrophic factor (BDNF) is a directly target of miR-210-3p. Moreover, BDNF siRNA significantly decreased the expression levels of ALP and cell migration. The addition of BDNF partially rescued the inhibition of osteogenesis by miR-210-3p. CONCLUSION: miR-210-3p inhibited the osteogenic differentiation via targeting BDNF. Our Results provide a promising target for regulating osteogenic differentiation.


Assuntos
MicroRNAs , Osteogênese , Fator Neurotrófico Derivado do Encéfalo/genética , Diferenciação Celular/genética , MicroRNAs/metabolismo , Osteogênese/genética , RNA Interferente Pequeno
16.
J Obstet Gynaecol Res ; 48(12): 3171-3178, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36173004

RESUMO

AIM: Cervical cancer has attracted increasing attention in recent years, and the incidence has shown a trend of younger age. Therefore, it is an effective method to regulate the progression of cervical cancer through new prognostic biomarkers. The purpose of this study was to evaluate the potential of lncRNA LAMTOR5-AS1 (LAMTOR5-AS1) as a prognostic biomarker and reveal its regulatory role in cervical cancer. METHODS: A total of 120 patients with cervical cancer were selected as research subjects to verify the prognostic effect of LAMTOR5-AS1 in a series of experiments. The expression of LAMTOR5-AS1 in cervical cancer tissues and cells was determined by polymerase chain reaction assay. The proliferation, migration, and invasion ability of cervical cancer cells were evaluated by Cell Counting Kit-8 (CCK-8) and Transwell assay. Luciferase reporter gene detection was used to determine the mechanism of LAMTOR5-AS1 targeting miR-210-3p, and to reflect the prognostic value of LAMTOR5-AS1 according to statistical methods. RESULTS: LAMTOR5-AS1 decreased in cervical cancer tissues, while miR-210-3p expression increased. In the study of cervical cancer cells, it was found that the LAMTOR5-AS1 sponge miR-210-3p was associated with the malignant progression of cervical cancer. Overexpression of LAMTOR5-AS1 could effectively inhibit the development of cervical cancer cells and might be chosen as a prognostic biomarker of cervical cancer. CONCLUSIONS: LAMTOR5-AS1 sponges miR-210-3p and modulates the progression of cervical cancer, which predict the prognosis of cervical cancer patients.


Assuntos
MicroRNAs , RNA Longo não Codificante , Neoplasias do Colo do Útero , Feminino , Humanos , RNA Longo não Codificante/genética , Neoplasias do Colo do Útero/patologia , MicroRNAs/metabolismo , Regulação Neoplásica da Expressão Gênica , Movimento Celular/genética , Proliferação de Células/genética , Linhagem Celular Tumoral , Biomarcadores
17.
Med Oncol ; 39(11): 161, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35972577

RESUMO

This study examined the internal mechanism of miR-210-3p/CELF2 in LUSC. Expression data of mRNAs and miRNAs in LUSC were acquired from TCGA and subjected to differential expression analysis. qRT-PCR was applied to examine miR-210-3p and CELF2 expression. Besides, western blot was utilized to evaluate protein expression of CELF2 and PI3K/AKT pathway-related proteins. Dual-luciferase reporter analysis was conducted to validate targeting relationship between miR-210-3p and CELF2. Additionally, CCK-8, colony formation, transwell and flow cytometry were employed to respectively test proliferation, migration, invasion abilities and cell cycle distribution. Xenograft tumor models were used to evaluate the influence of miR-210-3p and CELF2 on tumor growth. MiR-210-3p was highly expressed, while CELF2 was less expressed in LUSC cells. Besides, miR-210-3p could downregulate CELF2 expression. Cell functional assay verified that miR-210-3p accelerated aggressive behaviors of LUSC cells. Additionally, rescue assay suggested that miR-210-3p downregulated CELF2 level to stimulate LUSC cell phenotypes and cell cycle progression through PI3K/AKT pathway. Moreover, miR-210-3p/CELF2 stimulated the tumor growth in vivo. To sum up, miR-210-3p modulated CELF2 expression, thus affecting cell phenotypes and cell cycle distribution in LUSC through PI3K/AKT pathway.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Carcinoma de Células Escamosas , Neoplasias Pulmonares , MicroRNAs , Proteínas CELF/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma de Células Escamosas/patologia , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Humanos , Pulmão , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Proteínas do Tecido Nervoso/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo
18.
Mutat Res ; 825: 111793, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35963185

RESUMO

BACKGROUND: Biological mechanism of miR-210-3p in endometrial carcinoma (EC) remains unclear. Here, our purpose is to study effects of miR-210-3p on malignant progression of EC. METHODS: Bioinformatics analysis showed miRNA and mRNA are abnormally expressed in EC tissues. Quantitative real-time fluorescence polymerase chain reaction (qRT-PCR) was utilized to compare miR-210-3p mRNA level in EC cells and tissues. qRT-PCR and western blot were used to measure RUNX1T1 and NCAM1 at mRNA and protein levels, and western blot for p-AKT and AKT proteins related to PI3K/AKT signaling pathway. Furthermore, EC cell behaviors were assayed via Cell Counting Kit-8, cell colony formation assay, wound healing, transwell and flow cytometry experiments. Interaction between RUNX1T1 and miR-210-3p was verified through dual-luciferase assay. Immunohistochemistry was used to analyze RUNX1T1 expression in clinical samples RESULTS: MiR-210-3p was considerably upregulated and RUNX1T1 was significantly under-expressed in EC. Overexpression of miR-210-3p stimulated cell proliferation, migration, invasion, and restrained cell apoptosis in EC. Dual-luciferase assay proved that RUNX1T1 was a target gene of miR-210-3p. The level of RUNX1T1 in EC was downregulated after overexpressing miR-210-3p. Rescue assay showed that overexpression of RUNX1T1 had an inhibitory impact on tumor-relevant cell behaviors, whereas overexpression of miR-210-3p rescued such inhibition. Overexpression of RUNX1T1 reduced p-AKT expression, which was restored with concomitantly overexpressed miR-210-3p. CONCLUSION: In general, miR-210-3p behaves as an oncogene in EC by down-regulating the expression of RUNX1T1. This study elucidates a new functional mechanism in EC, and indicates miR-210-3p an underlying target.


Assuntos
Neoplasias do Endométrio , MicroRNAs , Feminino , Humanos , Movimento Celular/genética , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , MicroRNAs/genética , Neoplasias do Endométrio/genética , Neoplasias do Endométrio/patologia , RNA Mensageiro , Regulação Neoplásica da Expressão Gênica , Proteína 1 Parceira de Translocação de RUNX1/genética , Proteína 1 Parceira de Translocação de RUNX1/metabolismo
19.
Front Oncol ; 12: 911613, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35928879

RESUMO

Background: Circulating microRNAs (ct-miRs) are promising cancer biomarkers. This study focuses on platform comparison to assess performance variability, agreement in the assignment of a miR signature classifier (MSC), and concordance for the identification of cancer-associated miRs in plasma samples from non-small cell lung cancer (NSCLC) patients. Methods: A plasma cohort of 10 NSCLC patients and 10 healthy donors matched for clinical features and MSC risk level was profiled for miR expression using two sequencing-based and three quantitative reverse transcription PCR (qPCR)-based platforms. Intra- and inter-platform variations were examined by correlation and concordance analysis. The MSC risk levels were compared with those estimated using a reference method. Differentially expressed ct-miRs were identified among NSCLC patients and donors, and the diagnostic value of those dysregulated in patients was assessed by receiver operating characteristic curve analysis. The downregulation of miR-150-5p was verified by qPCR. The Cancer Genome Atlas (TCGA) lung carcinoma dataset was used for validation at the tissue level. Results: The intra-platform reproducibility was consistent, whereas the highest values of inter-platform correlations were among qPCR-based platforms. MSC classification concordance was >80% for four platforms. The dysregulation and discriminatory power of miR-150-5p and miR-210-3p were documented. Both were significantly dysregulated also on TCGA tissue-originated profiles from lung cell carcinoma in comparison with normal samples. Conclusion: Overall, our studies provide a large performance analysis between five different platforms for miR quantification, indicate the solidity of MSC classifier, and identify two noninvasive biomarkers for NSCLC.

20.
Acta Biomater ; 150: 413-426, 2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35850484

RESUMO

Angiogenesis is closely coupled with osteogenesis and has equal importance. Thus, promoting angiogenesis during the bone repair process is vital for ideal bone regeneration. As important mediators of cell-cell communication and biological homeostasis, mesenchymal stem cell-derived small extracellular vesicles (MSC-sEVs) have been proved to be highly involved in bone and vascular regeneration. Because hypoxia microenvironment promotes the proangiogenic activity of MSCs, in the present study, we investigate the effect and underlying molecular mechanisms of sEVs from hypoxia-preconditioned MSCs (hypo-sEVs) on angiogenesis and develop an effective strategy to promote vascularized bone regeneration. Compared to sEVs from normoxia MSCs (nor-sEVs), hypo-sEVs promoted the proliferation, migration, and angiogenesis of HUVECs and ultimately enhanced bone regeneration and new blood vessel reconstruction in a critical-size calvarial bone defect model. miRNA sequence and the verified results showed that miR-210-3p in hypo-sEVs was increased via HIF-1α under hypoxia. The upregulated miR-210-3p in hypo-sEVs promoted angiogenesis by downregulating EFNA3 expression and enhancing the phosphorylation of the PI3K/AKT pathway. Thus, this study suggests a successful strategy to enhance vascularized bone regeneration by utilizing hypo-sEVs via the miR-210-3p/EFNA3/PI3K/AKT pathway. STATEMENT OF SIGNIFICANCE: Considering the significance of vascularization in ideal bone regeneration, strategies to promote angiogenesis during bone repair are required. Hypoxia microenvironment can promote the proangiogenic potential of mesenchymal stem cells (MSCs). Nonetheless, the therapeutic effect of small extracellular vesicles (sEVs) from hypoxia-preconditioned MSCs on cranio-maxillofacial bone defect remains unknown, and the underlying mechanism is poorly understood. This study shows that hypo-sEVs significantly enhance the proliferation, migration, and angiogenesis of HUVECs as well as promote vascularized bone formation. Moreover, this work indicates that HIF-1α can induce overexpression of miR-210-3p under hypoxia, and miR-210-3p can hinder EFNA3 expression and subsequently activate the PI3K/AKT pathway. The application of hypo-sEVs provides a facile and promising strategy to promote vascularized bone regeneration in a critical-size bone defect model.


Assuntos
Vesículas Extracelulares , Células-Tronco Mesenquimais , MicroRNAs , Humanos , Regeneração Óssea , Efrina-A3 , Vesículas Extracelulares/metabolismo , Hipóxia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA