RESUMO
Tissue on a chip or organ-on-chip (OOC) is a technology that's dignified to form a transformation in drug discovery through the use of advanced platforms. These are 3D in-vitro cell culture models that mimic micro-environment of human organs or tissues on artificial microstructures built on a portable microfluidic chip without involving sacrificial humans or animals. This review article aims to offer readers a thorough and insightful understanding of technology. It begins with an in-depth understanding of chip design and instrumentation, underlining its pivotal role and the imperative need for its development in the modern scientific landscape. The review article explores into the myriad applications of OOC technology, showcasing its transformative impact on fields such as radiobiology, drug discovery and screening, and its pioneering use in space research. In addition to highlighting these diverse applications, the article provides a critical analysis of the current challenges that OOC technology faces. It examines both the biological and technical limitations that hinder its progress and efficacy and discusses the potential advancements and innovations that could drive the OOC technology forward. Through this comprehensive review, readers will gain a deep appreciation of the significance, capabilities, and evolving landscape of OOC technology.
RESUMO
Microfluidics are crucial for managing small-volume analytical solutions for various applications, such as disease diagnostics, drug efficacy testing, chemical analysis, and water quality monitoring. The precise control of flow control devices can generate diverse flow patterns using pneumatic control with solenoid valves and a microcontroller. This system enables the active modulation of the pneumatic pressure through Arduino programming of the solenoid valves connected to the pressure source. Additionally, the incorporation of solenoid valve sets allows for multichannel control, enabling simultaneous creation and manipulation of various microflows at a low cost. The proposed microfluidic flow controller facilitates accurate flow regulation, especially through periodic flow modulation beneficial for droplet generation and continuous production of microdroplets of different sizes. Overall, we expect the proposed microfluidic flow controller to drive innovative advancements in technology and medicine owing to its engineering precision and versatility.
Assuntos
Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Microfluídica , Desenho de EquipamentoRESUMO
Human norovirus (HuNoV) is recognized as the leading causative agent of foodborne outbreaks of epidemic gastroenteritis. Consequently, there is a high demand for developing point-of-care testing for HuNoV. We developed an origami microfluidic device that facilitates rapid detection of murine norovirus 1 (MNV-1), a surrogate for HuNoV, encompassing the entire process from sample preparation to result visualization. This process includes RNA absorption via a paper strip, RNA amplification using recombinase polymerase amplification (RPA), and a lateral flow assay for signal readout. The on-chip detection of MNV-1 was completed within 35 min, demonstrating 100% specificity to MNV-1 in our settings. The detection limit of this microfluidic device for MNV-1 was 200 PFU/mL, comparable to the in-tube RPA reaction. It also successfully detected MNV-1 in lettuce and raspberries at concentrations of 170 PFU/g and 230 PFU/g, respectively, without requiring extra concentration steps. This device demonstrates high compatibility with isothermal nucleic acid amplification and holds significant potential for detecting foodborne viruses in agri-food products in remote and resource-limited settings. IMPORTANCE: HuNoV belongs to the family of Caliciviridae and is a leading cause of acute gastroenteritis that can be transmitted through contaminated foods. HuNoV causes around one out of five cases of acute gastroenteritis that lead to diarrhea and vomiting, placing a substantial burden on the healthcare system worldwide. HuNoV outbreaks can occur when food is contaminated at the source (e.g., wild mussels exposed to polluted water), on farms (e.g., during crop cultivation, harvesting, or livestock handling), during packaging, or at catered events. The research outcomes of this study expand the approaches of HuNoV testing, adding value to the framework for routine testing of food products. This microfluidic device can facilitate the monitoring of HuNoV outbreaks, reduce the economic loss of the agri-food industry, and enhance food safety.
RESUMO
Safe and healthy food is the fundamental right of every citizen. Problems caused by foodborne pathogens have always raised a threat to food safety and human health. Centers for Disease Control and Prevention (CDC) estimates that around 48 million people are affected by food intoxication, and 3000 people succumb to death. Hence, it is inevitable that an approach that is efficient, reliable, sensitive, and rapid approach that can replace the conventional analytical methods such as microbiological and biochemical methods, high throughput next-generation sequence (NGS), polymerase chain reaction (PCR), and enzyme-linked immunosorbent assay (ELISA), etc. Even though the accuracy of conventional methods is high, it is tedious; increased consumption of reagents/samples, false positives, and complex operations are the drawbacks of these methods. Microfluidic devices have shown remarkable advances in all branches of science. They serve as an alternative to conventional ways to overcome the abovementioned drawbacks. Furthermore, coupling microfluidics can improve the efficiency and accuracy of conventional methods such as surface plasma resonance, loop-mediated isothermal amplification, ELISA, and PCR. This article reviewed the progress of microfluidic devices in the last ten years in detecting foodborne pathogens. Microfluidic technology has opened the research gateway for developing low-cost, on-site, portable, and rapid assay devices. The article includes the application of microfluidic-based devices to identify critical food pathogens and briefly discusses the necessary research in this area.
RESUMO
The brain is an incredibly complex structure that consists of millions of neural networks. In developmental and cellular neuroscience, probing the highly complex dynamics of the brain remains a challenge. Furthermore, deciphering how several cues can influence neuronal growth and its interactions with different brain cell types (such as astrocytes and microglia) is also a formidable task. Traditional in vitro macroscopic cell culture techniques offer simple and straightforward methods. However, they often fall short of providing insights into the complex phenomena of neuronal network formation and the relevant microenvironments. To circumvent the drawbacks of conventional cell culture methods, recent advancements in the development of microfluidic device-based microplatforms have emerged as promising alternatives. Microfluidic devices enable precise spatiotemporal control over compartmentalized cell cultures. This feature facilitates researchers in reconstituting the intricacies of the neuronal cytoarchitecture within a regulated environment. Therefore, in this review, we focus primarily on modeling neuronal development in a microfluidic device and the various strategies that researchers have adopted to mimic neurogenesis on a chip. Additionally, we have presented an overview of the application of brain-on-chip models for the recapitulation of the blood-brain barrier and neurodegenerative diseases, followed by subsequent high-throughput drug screening. These lab-on-a-chip technologies have tremendous potential to mimic the brain on a chip, providing valuable insights into fundamental brain processes. The brain-on-chip models will also serve as innovative platforms for developing novel neurotherapeutics to address several neurological disorders.
RESUMO
CellSearch, the only approved epithelial cell adhesion molecule (EpCAM)dependent capture system approved for clinical use, overlooks circulating tumor cells (CTCs) undergoing epithelialmesenchymal transition (EMTCTCs), which is considered a crucial subtype responsible for metastasis. To address this limitation, a novel polymeric microfluidic device 'CTCchip' designed for the easy introduction of any antibody was developed, enabling EpCAMindependent capture. In this study, antibodies against EpCAM and cell surface vimentin (CSV), identified as cancerspecific EMT markers, were conjugated onto the chip (EpCAMchip and CSVchip, respectively), and the capture efficiency was examined using lung cancer (PC9, H441 and A549) and colon cancer (DLD1) cell lines, classified into three types based on EMT markers: Epithelial (PC9), intermediate (H441 and DLD1) and mesenchymal (A549). PC9, H441 and DLD1 cells were effectively captured using the EpCAMchip (average capture efficiencies: 99.4, 88.8 and 90.8%, respectively) when spiked into blood. However, A549 cells were scarcely captured (13.4%), indicating that EpCAMdependent capture is not suitable for mesenchymaltype cells. The expression of CSV tended to be higher in cells exhibiting mesenchymal properties and A549 cells were effectively captured with the CSVchip (72.4 and 88.4% at concentrations of 10 and 100 µg/ml, respectively) when spiked into PBS. When spiked into blood, the average capture efficiencies were 27.7 and 46.8% at concentrations of 10 and 100 µg/ml, respectively. These results suggest that the CSVchip is useful for detecting mesenchymaltype cells and has potential applications in capturing EMTCTCs.
Assuntos
Molécula de Adesão da Célula Epitelial , Transição Epitelial-Mesenquimal , Dispositivos Lab-On-A-Chip , Neoplasias Pulmonares , Células Neoplásicas Circulantes , Vimentina , Humanos , Células Neoplásicas Circulantes/patologia , Células Neoplásicas Circulantes/metabolismo , Vimentina/metabolismo , Molécula de Adesão da Célula Epitelial/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/sangue , Neoplasias Pulmonares/metabolismo , Linhagem Celular Tumoral , Células A549 , Separação Celular/métodos , Biomarcadores Tumorais/metabolismo , Neoplasias do Colo/patologia , Neoplasias do Colo/metabolismo , Neoplasias do Colo/sangueRESUMO
Introduction: This systematic review and meta-analysis present a comprehensive evaluation of paper-based microfluidic devices, focusing on their applications in immunoassays. These devices are emerging as innovative solutions to democratize access to diagnostic technologies, especially in resource-limited settings. Our review consolidates findings from diverse studies to outline advancements in paper-based microfluidic technology, including design intricacies and operational efficacy. Key advantages such as low cost, portability, and ease of use are highlighted. Materials and Methods: The review categorizes literature based on the design and operational nuances of these diagnostic tools, exploring various methodologies, fabrication techniques, detection methods, and applications, particularly in protein science. The meta-analysis extends to the diverse applications of these technologies, providing a framework for classifying and stratifying their uses in diagnostics. Results and discussion: Notable findings include a critical analysis of performance metrics, such as sensitivity and specificity. The review addresses challenges, including the need for further validation and optimization for broader clinical applications. A critical discussion on the validation processes, including cross-validation and rigorous control testing, is provided to ensure the robustness of microfluidic devices. This study offers novel insights into the computational strategies underpinning these technologies and serves as a comprehensive roadmap for future research, potentially broadening the impact across the protein science universe.
RESUMO
OBJECTIVE: This study aims to tackle the existing challenges associated with the prediction and optimization of pharmaceutical interventions for osteoarthritis (OA). The primary objective is to develop an innovative tool that provides objective and patient-specific information regarding the most affected tissue in OA, articular cartilage. DESIGN: We employed an organ-on-a-chip (OoC) approach to replicate the 3D structure of cartilage in an in vitro setup. The study focused on assessing the individual drug responses of common medications using this innovative platform. Additionally, we conducted a biomarker analysis to gain insights into the variability of drug responses across patients. RESULTS: Our findings reveal that OA articular cartilage demonstrates an individualized response to pharmaceutical interventions. Despite the diverse nature of patient responses, our study indicates that Triamcinolone, a standard-of-care medication, consistently exhibits a robust anti-inflammatory response across patient tests. However, as seen in clinical studies, Triamcinolone was concurrently associated with degeneration. The biomarker analysis further underscores the importance of considering individual drug responses in developing effective treatment plans. CONCLUSION: In conclusion, this study introduces a valuable tool that not only mimics the 3D structure of cartilage but also provides crucial insights into the individualized responses of patients to various OA treatments. The application of an OoC approach may allow for a more accurate assessment of treatment efficacy. This objective biomarker analysis on patient-specific tissue offers clinicians a means to tailor treatment plans, thereby minimizing joint damage and advancing toward a more personalized approach in OA management.
RESUMO
Glioblastoma multiforme (GBM) is the most severe form of brain cancer in adults, characterized by its complex vascular network that contributes to resistance to conventional therapies. Thermal therapies, such as magnetic hyperthermia (MHT), emerge as promising alternatives, using heat to selectively target tumor cells while minimizing damage to healthy tissues. The organ-on-a-chip can replicate this complex vascular network of GBM, allowing for detailed investigations of heat dissipation in MHT, while computational simulations refine treatment parameters. In this in silico study, tumor-on-a-chip models were used to optimize MHT therapy by comparing heat dissipation in normal and abnormal vascular networks, considering geometries, flow rates, and concentrations of magnetic nanoparticles (MNPs). In the high vascular complexity model, the maximum velocity was 19 times lower than in the normal vasculature model and 4 times lower than in the low-complexity tumor model, highlighting the influence of vascular complexity on velocity and temperature distribution. The MHT simulation showed greater heat intensity in the central region, with a flow rate of 1 µL/min and 0.5 mg/mL of MNPs being the best conditions to achieve the therapeutic temperature. The complex vasculature model had the lowest heat dissipation, reaching 44.15 °C, compared to 42.01 °C in the low-complexity model and 37.80 °C in the normal model. These results show that greater vascular complexity improves heat retention, making it essential to consider this heterogeneity to optimize MHT treatment. Therefore, for an efficient MHT process, it is necessary to simulate ideal blood flow and MNP conditions to ensure heat retention at the tumor site, considering its irregular vascularization and heat dissipation for effective destruction.
RESUMO
Activin A, a member of the transforming growth factor ß (TGF-ß) superfamily, is involved in tumorigenesis and tumor progression. However, it remains unclear whether activin A can affect the migration of lung adenocarcinoma (LUAD) cells. In this study, the results of differentially expressed genes (DEGs) identification revealed that lung adenocarcinoma tissues exhibited lower expression of activin ßA mRNA, but higher expression of epidermal growth factor (EGF) and MMP9 mRNA compared to nontumor tissues. Moreover, we found that activin A inhibited human LUAD A549 cell proliferation promoted by EGF. Additionally, EGF induced A549 cell migration in microfluidic device, while activin A attenuated EGF actions. Simultaneously, EGF increased the levels of migration-related proteins, but activin A played the opposite role. Furthermore, the study revealed that EGF upregulated the ratio of p-ERK/ERK in A549 cells, which was weakened by activin A, and A549 cell migration regulated by activin A was not related to calcium signaling. In addition, the inhibitory effect of activin A on EGF-induced A549 cell migration was attenuated by the ERK inhibitor FR180204. These findings demonstrate that activin A effectively hinders the migration of A549 cells induced by EGF through ERK1/2 signaling, suggesting that targeting activin A may hold promise in the treatment of EGF-dependent LUAD growth and metastasis.
Assuntos
Adenocarcinoma de Pulmão , Movimento Celular , Fator de Crescimento Epidérmico , Neoplasias Pulmonares , Humanos , Movimento Celular/efeitos dos fármacos , Fator de Crescimento Epidérmico/farmacologia , Fator de Crescimento Epidérmico/metabolismo , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Adenocarcinoma de Pulmão/patologia , Adenocarcinoma de Pulmão/metabolismo , Adenocarcinoma de Pulmão/genética , Células A549 , Ativinas/metabolismo , Proliferação de Células/efeitos dos fármacos , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Metaloproteinase 9 da Matriz/metabolismo , Metaloproteinase 9 da Matriz/genéticaRESUMO
BACKGROUND: The prognostic value of circulating tumor cells (CTCs) in metastatic breast cancer (MBC) has been extensively studied and verified by the CellSearch® system. Varieties of microfluidic systems have been developed to improve capture efficiency with the lack of standardization and automation. This study systematically verified the positive threshold for prognosis and its guidance value in anti-HER2 therapy based on a novel automated microfluidic system OmiCell®. METHODS: CTCs isolation, enumeration and labeling were performed using the OmiCell® system. CTCs identification and reporting were performed using the DeepSight® scanning system. RESULTS: The capture efficiency and specificity of OmiCell® system was 91.9% and 90%, respectively. Then, 65 MBC patients with known HER2 status of their metastatic tumors were enrolled. In the cohort, we detected ≥ 1 CTCs in 59 patients (90.8%, range: 1-55 CTCs, median = 6), < 8 CTCs in 45 (69.2%) and ≥ 8 CTCs in 20 (30.8%) patients at baseline. The patients with < 8 CTCs had longer PFS than ≥ 8 CTCs (median, 7 vs. 4.4 months, p = 0.028). CTC enumeration was found to be an independent prognostic factor in our cohort. Moreover, we found a weak concordance between tissue HER2 (tHER2) status and the corresponding CTCs (k = 0.16, p = 0.266). The patients with tHER2 positive and cHER2 negative had better PFS compared with patients with both tHER2 and cHER2 positive (median, 8.2 vs. 3.3 months, p = 0.022). CONCLUSIONS: This clinical study shows the prognosis value of a new threshold of CTC number and meanwhile the guidance value of cHER2 status in anti-HER2 therapy.
Assuntos
Neoplasias da Mama , Células Neoplásicas Circulantes , Receptor ErbB-2 , Humanos , Células Neoplásicas Circulantes/metabolismo , Células Neoplásicas Circulantes/patologia , Feminino , Neoplasias da Mama/patologia , Neoplasias da Mama/sangue , Neoplasias da Mama/metabolismo , Neoplasias da Mama/mortalidade , Receptor ErbB-2/metabolismo , Prognóstico , Pessoa de Meia-Idade , Idoso , Adulto , Biomarcadores Tumorais/metabolismo , Metástase Neoplásica , Contagem de Células , Técnicas Analíticas Microfluídicas/instrumentação , Técnicas Analíticas Microfluídicas/métodos , Idoso de 80 Anos ou mais , Microfluídica/métodosRESUMO
Two-layer microfluidic devices with porous membranes have been widely used in bioapplications such as microphysiological systems (MPS). Porous electrodes, instead of membranes, have recently been incorporated into devices for electrochemical cell analysis. Generally, microfluidic channels are prepared using soft lithography and assembled into two-layer microfluidic devices. In addition to soft lithography, three-dimensional (3D) printing has been widely used for the direct fabrication of microfluidic devices because of its high flexibility. However, this technique has not yet been applied to the fabrication of two-layer microfluidic devices with porous electrodes. This paper proposes a novel fabrication process for this type of device. In brief, Pluronic F-127 ink was three-dimensionally printed in the form of sacrificial layers. A porous Au electrode, fabricated by sputtering Au on track-etched polyethylene terephthalate membranes, was placed between the top and bottom sacrificial layers. After covering with polydimethylsiloxane, the sacrificial layers were removed by flushing with a cold solution. To the best of our knowledge, this is the first report on the sacrificial approach-based fabrication of two-layer microfluidic devices with a porous electrode. Furthermore, the device was used for electrochemical assays of serotonin and could successfully measure concentrations up to 5 µM. In the future, this device can be used for MPS applications.
RESUMO
We developed a rat dorsal root ganglion (DRG)-derived sensory nerve organotypic model by culturing DRG explants on an organoid culture device. With this method, a large number of organotypic cultures can be produced simultaneously with high reproducibility simply by seeding DRG explants derived from rat embryos. Unlike previous DRG explant models, this organotypic model consists of a ganglion and an axon bundle with myelinated A fibers, unmyelinated C fibers, and stereo-myelin-forming nodes of Ranvier. The model also exhibits Ca2+ signaling in cell bodies in response to application of chemical stimuli to nerve terminals. Further, axonal transection increases the activating transcription factor 3 mRNA level in ganglia. Axons and myelin are shown to regenerate 14 days following transection. Our sensory organotypic model enables analysis of neuronal excitability in response to pain stimuli and tracking of morphological changes in the axon bundle over weeks.
Assuntos
Axônios , Gânglios Espinais , Sistemas Microfisiológicos , Animais , Ratos , Fator 3 Ativador da Transcrição , Axônios/fisiologia , Axônios/metabolismo , Sinalização do Cálcio , Gânglios Espinais/citologia , Gânglios Espinais/metabolismo , Bainha de Mielina/fisiologia , Bainha de Mielina/metabolismo , Organoides/metabolismo , Nervos Periféricos/metabolismo , Ratos Sprague-Dawley , Células Receptoras Sensoriais/metabolismo , Células Receptoras Sensoriais/fisiologiaRESUMO
Developing countries struggle with water quality management owing to poor infrastructure, limited expertise, and financial constraints. Traditional water testing, relying on periodic site visits and manual sampling, is impractical for continuous wide-area monitoring and fails to detect sudden heavy metal contamination. To address this, plant-inspired robots capable of fully autonomous water quality monitoring are proposed. Constructed from paper, the robot absorbs surrounding water through its roots. This paper robot is controlled by paper-based microfluidic logic that sends absorbed water to petal-shaped actuators only when the water is polluted by heavy metals. This triggers the actuators to swell and bend like a blooming flower, visually signaling contamination to local residents. In tests with copper-contaminated water, the robotic flower's diameter increased from 4.69 cm to 14.89 cm, a more than threefold expansion (217.25 %). This significant blooming movement serves as a highly visible and easily recognizable indicator of water pollution, even for the public. Furthermore, the paper robot can be mass-produced at a low cost (â¼$0.2 per unit) and deployed over large areas. Once installed, the paper robot operates autonomously using surrounding water as a power source, eliminating the need for external electrical infrastructure and expert intervention. Therefore, this autonomous robot offers a new approach to water quality monitoring suitable for resource-limited environments, such as Sub-Saharan Africa.
RESUMO
Although methods for generating human induced pluripotent stem cell (hiPSC)-derived motor nerve organoids are well established, those for sensory nerve organoids are not. Therefore, this study investigated the feasibility of generating sensory nerve organoids composed of hiPSC-derived sensory neurons using a microfluidic approach. Notably, sensory neuronal axons from neurospheres containing 100,000 cells were unidirectionally elongated to form sensory nerve organoids over 6 mm long axon bundles within 14 days using I-shaped microchannels in microfluidic devices composed of polydimethylsiloxane (PDMS) chips and glass substrates. Additionally, the organoids were successfully cultured for more than 60 days by exchanging the culture medium. The percentage of nuclei located in the distal part of the axon bundles (the region 3-6 mm from the entrance of the microchannel) compared to the total number of cells in the neurosphere was 0.005% for live cells and 0.008% for dead cells. Molecular characterization confirmed the presence of the sensory neuron marker ISL LIM homeobox 1 (ISL1) and the capsaicin receptor transient receptor potential vanilloid 1 (TRPV1). Moreover, capsaicin stimulation activated TRPV1 in organoids, as evidenced by significant calcium ion influx. Conclusively, this study demonstrated the feasibility of long-term organoid culture and the potential applications of sensory nerve organoids in bioengineered nociceptive sensors.
RESUMO
Radioimmunoconjugates (RICs) composed of tumor-targeting monoclonal antibodies and radionuclides have been developed for diagnostic and therapeutic application. A new radiolabeling method using microfluidic devices is expected to facilitate simpler and more rapid synthesis of RICs. In the microfluidic method, microfluidic chips can promote the reaction between reactants by mixing them efficiently, and pumping systems enable automated synthesis. In this study, we synthesized RICs by the pre-labeling method, in which the radiometal is coordinated to the chelator and then the radiolabeled chelator is incorporated into the antibodies, using microfluidic devices for the first time. As a result of examining the reaction parameters including the material of mixing units, reaction temperature, and flow rate, RICs with radiochemical purity (RCP) exceeding 90% were obtained. These high-purity RICs were successfully synthesized without any purification simply by pumping three solutions of a chelating agent, radiometal, and antibody into microfluidic devices. Under the same conditions, the RCP of RICs labeled by conventional methods was below 50%. These findings indicate the utility of microfluidic devices for automatic and rapid synthesis of high-quality RICs.
Assuntos
Imunoconjugados , Marcação por Isótopo , Imunoconjugados/química , Técnicas Analíticas Microfluídicas/métodos , Técnicas Analíticas Microfluídicas/instrumentação , Anticorpos Monoclonais/química , Quelantes/química , Dispositivos Lab-On-A-Chip , Automação , Compostos Radiofarmacêuticos/química , Compostos Radiofarmacêuticos/síntese químicaRESUMO
pH-responsive hydrogels have numerous applications in tissue engineering, drug delivery systems, and diagnostics. Gelatin methacryloyl (GelMA) is a biocompatible, semi-synthetic polymer prepared from gelatin. When combined with aqueous solvents, GelMA forms hydrogels that have extensive applications in biomedical engineering. GelMA can be produced with different degrees of methacryloyl substitution; however, the synthesis of this polymer has not been tuned towards producing selectively modified materials for single-component pH-responsive hydrogels. In this work, we have explored two different synthetic routes targeting different gelatin functional groups (amine, hydroxyl, and/or carboxyl) to produce two GelMA analogs: gelatin A methacryloyl glycerylester (polymer A) and gelatin B methacrylamide (polymer B). Polymers A and B were used to fabricate pH-responsive hydrogel microspheres in a flow-focusing microfluidic device. At neutral pH, polymer A and B microspheres displayed an average diameter of ~40 µm. At pH 6, microspheres from polymer A showed a swelling ratio of 159.1 ± 11.5%, while at pH 10, a 288.6 ± 11.6% swelling ratio was recorded for polymer B particles.
RESUMO
In vitro models of kidneys have limited effectiveness owing to the complex structure and functions of the kidney when compared with other organs. Therefore many renal function evaluations are currently being carried out through animal experiments. In contrast, efforts are being made to apply biomimetic systems, such as organ-on-a-chip, which is based on microfluidic device technology, to serve as an in vitro model for the kidney. These systems aimed to recreate a physiological cultivation environment. This review has provided an overview of organ-on-a-chip research focused on glomeruli and tubules as in vitro models for the kidney and discusses future prospects.
RESUMO
We propose a nucleic acids dilution-induced assembly (NADIA) method for the preparation of lipid nanoparticles. In the conventional method, water-soluble polymers such as nucleic acids and proteins are mixed in the aqueous phase. In contrast, the NADIA method, in which self-assembly is triggered upon dilution, requires dispersion in an alcohol phase without precipitation. We then investigated several alcohols and discovered that propylene glycol combined with sodium chloride enabled the dispersion of plasmid DNA and protamine sulfate in the alcohol phase. The streamlined characteristics of the NADIA method enable the preparation of extracellular vesicles-mimicking lipid nanoparticles (ELNPs). Among the mixing methods using a micropipette, a syringe pump, and a microfluidic device, the lattermost was the best for decreasing batch-to-batch differences in size, polydispersity index, and transfection efficiency in HepG2 cells. Although ELNPs possessed negative ζ-potentials and did not have surface antigens, their transfection efficiency was comparable to that of cationic lipoplexes. We observed that lipid raft-mediated endocytosis and macropinocytosis contributed to the transfection of ELNPs. Our strategy may overcome the hurdles linked to supply and quality owing to the low abundance and heterogeneity in cell-based extracellular vesicles production, making it a reliable and scalable method for the pharmaceutical manufacture of such complex formulations.
Assuntos
DNA , Vesículas Extracelulares , Lipídeos , Nanopartículas , Plasmídeos , Transfecção , Humanos , Plasmídeos/genética , Nanopartículas/química , Vesículas Extracelulares/metabolismo , Células Hep G2 , Lipídeos/química , DNA/metabolismo , DNA/química , Transfecção/métodos , Ácidos Nucleicos/metabolismo , Ácidos Nucleicos/química , LipossomosRESUMO
With the rapid development and commercial interest in the organ-on-a-chip (OoC) field, there is a need for materials addressing key experimental demands and enabling both prototyping and large-scale production. Here, we utilized the gas-permeable, thermoplastic material polymethylpentene (PMP). Three methods were tested to prototype transparent PMP films suitable for transmission light microscopy: hot-press molding, extrusion, and polishing of a commercial, hazy extruded film. The transparent films (thickness 20, 125, 133, 356, and 653 µm) were assembled as the cell-adhering layer in sealed culture chamber devices, to assess resulting oxygen concentration after 4 days of A549 cell culture (cancerous lung epithelial cells). Oxygen concentrations stabilized between 15.6% and 11.6%, where the thicker the film, the lower the oxygen concentration. Cell adherence, proliferation, and viability were comparable to glass for all PMP films (coated with poly-L-lysine), and transparency was adequate for transmission light microscopy of adherent cells. Hot-press molding was concluded as the preferred film prototyping method, due to excellent and reproducible film transparency, the possibility to easily vary film thickness, and the equipment being commonly available. The molecular orientation in the PMP films was characterized by IR dichroism. As expected, the extruded films showed clear orientation, but a novel result was that hot-press molding may also induce some orientation. It has been reported that orientation affects the permeability, but with the films in this study, we conclude that the orientation is not a critical factor. With the obtained results, we find it likely that OoC models with relevant in vivo oxygen concentrations may be facilitated by PMP. Combined with established large-scale production methods for thermoplastics, we foresee a useful role for PMP within the OoC field.