Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fungal Genet Biol ; 172: 103885, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38485050

RESUMO

For most Eukaryotic species the requirements of cilia formation dictate the structure of microtubule organizing centers (MTOCs). In this study we find that loss of cilia corresponds to loss of evolutionary stability for fungal MTOCs. We used iterative search algorithms to identify proteins homologous to those found in Saccharomyces cerevisiae, and Schizosaccharomyces pombe MTOCs, and calculated site-specific rates of change for those proteins that were broadly phylogenetically distributed. Our results indicate that both the protein composition of MTOCs as well as the sequence of MTOC proteins are poorly conserved throughout the fungal kingdom. To begin to reconcile this rapid evolutionary change with the rigid structure and essential function of the S. cerevisiae MTOC we further analyzed how structural interfaces among proteins influence the rates of change for specific residues within a protein. We find that a more stable protein may stabilize portions of an interacting partner where the two proteins are in contact. In summary, while the protein composition and sequences of the MTOC may be rapidly changing the proteins within the structure have a stabilizing effect on one another. Further exploration of fungal MTOCs will expand our understanding of how changes in the functional needs of a cell have affected physical structures, proteomes, and protein sequences throughout fungal evolution.


Assuntos
Centro Organizador dos Microtúbulos , Schizosaccharomyces , Centro Organizador dos Microtúbulos/metabolismo , Schizosaccharomyces/genética , Saccharomyces cerevisiae/genética , Evolução Molecular , Filogenia , Microtúbulos/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Proteínas Fúngicas/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
EMBO J ; 43(4): 568-594, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38263333

RESUMO

Comprehensive analysis of cellular dynamics during the process of morphogenesis is fundamental to understanding the principles of animal development. Despite recent advancements in light microscopy, how successive cell shape changes lead to complex three-dimensional tissue morphogenesis is still largely unresolved. Using in vivo live imaging of Drosophila wing development, we have studied unique cellular structures comprising a microtubule-based membrane protrusion network. This network, which we name here the Interplanar Amida Network (IPAN), links the two wing epithelium leaflets. Initially, the IPAN sustains cell-cell contacts between the two layers of the wing epithelium through basal protrusions. Subsequent disassembly of the IPAN involves loss of these contacts, with concomitant degeneration of aligned microtubules. These processes are both autonomously and non-autonomously required for mitosis, leading to coordinated tissue proliferation between two wing epithelia. Our findings further reveal that a microtubule organization switch from non-centrosomal to centrosomal microtubule-organizing centers (MTOCs) at the G2/M transition leads to disassembly of non-centrosomal microtubule-derived IPAN protrusions. These findings exemplify how cell shape change-mediated loss of inter-tissue contacts results in 3D tissue morphogenesis.


Assuntos
Drosophila , Microtúbulos , Animais , Microtúbulos/metabolismo , Epitélio/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Morfogênese
3.
Int J Mol Sci ; 24(16)2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37628962

RESUMO

Diatoms synthesize species-specific exoskeletons inside cells under the control of the cytoskeleton and microtubule center. Previous studies have been conducted with the visualization of the microtubule center; however, its composition has not been studied and reliably established. In the present study, several components of MTOC in diatoms, GCP (gamma complex proteins), Aurora A, and centrins have been identified. Analysis of the predicted amino acid sequences of these proteins revealed structural features typical for diatoms. We analyzed the conserved amino acids and the motives necessary for the functioning of proteins. Phylogenetic analysis of GCP showed that all major groups of diatoms are distributed over phylogenetic trees according to their systematic position. This work is a theoretical study; however, it allows drawing some conclusions about the functioning of the studied components and possible ways to regulate them.


Assuntos
Diatomáceas , Sequência de Aminoácidos , Diatomáceas/genética , Filogenia , Microtúbulos , Citoesqueleto
4.
Plant Cell Physiol ; 64(9): 1106-1117, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37421143

RESUMO

Plant cells lack centrosomes and instead utilize acentrosomal microtubule organizing centers (MTOCs) to rapidly increase the number of microtubules at the onset of spindle assembly. Although several proteins required for MTOC formation have been identified, how the MTOC is positioned at the right place is not known. Here, we show that the inner nuclear membrane protein SUN2 is required for MTOC association with the nuclear envelope (NE) during mitotic prophase in the moss Physcomitrium patens. In actively dividing protonemal cells, microtubules accumulate around the NE during prophase. In particular, regional MTOC is formed at the apical surface of the nucleus. However, microtubule accumulation around the NE was impaired and apical MTOCs were mislocalized in sun2 knockout cells. Upon NE breakdown, the mitotic spindle was assembled with mislocalized MTOCs. However, completion of chromosome alignment in the spindle was delayed; in severe cases, the chromosome was transiently detached from the spindle body. SUN2 tended to localize to the apical surface of the nucleus during prophase in a microtubule-dependent manner. Based on these results, we propose that SUN2 facilitates the attachment of microtubules to chromosomes during spindle assembly by localizing microtubules to the NE. MTOC mispositioning was also observed during the first division of the gametophore tissue. Thus, this study suggests that microtubule-nucleus linking, a well-known function of SUN in animals and yeast, is conserved in plants.


Assuntos
Bryopsida , Membrana Nuclear , Animais , Membrana Nuclear/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Fuso Acromático/metabolismo , Cromossomos , Bryopsida/genética
5.
Methods Mol Biol ; 2557: 543-558, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36512236

RESUMO

Golgi-derived microtubules constitute an asymmetrical microtubule network that drives polarized transport of vesicles to support cell polarization and directional migration. Golgi-based microtubule nucleation requires the γ-tubulin ring complex (γTuRC), the principal microtubule nucleator in animal cells. In this chapter, we present methods for detecting γTuRC components and associated proteins on the Golgi, examining Golgi-based microtubule nucleation, and measuring the microtubule-nucleating activity of isolated γTuRCs. These approaches have been demonstrated to be effective for assessing the microtubule-organizing function of the Golgi complex.


Assuntos
Microtúbulos , Tubulina (Proteína) , Animais , Tubulina (Proteína)/metabolismo , Microtúbulos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Complexo de Golgi/metabolismo , Proteínas Associadas aos Microtúbulos/metabolismo , Centrossomo/metabolismo
6.
Elife ; 112022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35787744

RESUMO

The major microtubule-organizing center (MTOC) in animal cells, the centrosome, comprises a pair of centrioles surrounded by pericentriolar material (PCM), which nucleates and anchors microtubules. Centrosome assembly depends on PCM binding to centrioles, PCM self-association and dynein-mediated PCM transport, but the self-assembly properties of PCM components in interphase cells are poorly understood. Here, we used experiments and modeling to study centriole-independent features of interphase PCM assembly. We showed that when centrioles are lost due to PLK4 depletion or inhibition, dynein-based transport and self-clustering of PCM proteins are sufficient to form a single compact MTOC, which generates a dense radial microtubule array. Interphase self-assembly of PCM components depends on γ-tubulin, pericentrin, CDK5RAP2 and ninein, but not NEDD1, CEP152, or CEP192. Formation of a compact acentriolar MTOC is inhibited by AKAP450-dependent PCM recruitment to the Golgi or by randomly organized CAMSAP2-stabilized microtubules, which keep PCM mobile and prevent its coalescence. Linking of CAMSAP2 to a minus-end-directed motor leads to the formation of an MTOC, but MTOC compaction requires cooperation with pericentrin-containing self-clustering PCM. Our data reveal that interphase PCM contains a set of components that can self-assemble into a compact structure and organize microtubules, but PCM self-organization is sensitive to motor- and microtubule-based rearrangement.


Assuntos
Centríolos , Dineínas , Animais , Centríolos/metabolismo , Centrossomo/metabolismo , Dineínas/metabolismo , Interfase , Microtúbulos/metabolismo
7.
Trends Parasitol ; 38(6): 421-423, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35450787

RESUMO

For 140 years, microscopy has repeatedly revolutionized the study of nucleus biology, but despite this our understanding of the evolutionarily divergent nucleus biology of Plasmodium remains limited. Here, we discuss how microscopy advances have enabled two groundbreaking studies by Simon et al. and Klaus et al. into Plasmodium nucleus biology.


Assuntos
Microscopia , Plasmodium , Biologia , Núcleo Celular
8.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 44(1): 142-148, 2022 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-35300777

RESUMO

Aurora kinase A (AURKA),a family member of aurora kinases,is involved in mitotic entry,maturation and separation of centrosome,assembly and stabilization of bipolar spindle,and condensation and separation of chromosome.Studies have demonstrated that AURKA plays a similar role in meiosis,while the specific mechanism and the similarities and differences in its role between meiosis and mitosis remain unclear.Therefore,we reviewed the studies about the localization and activation of AURKA in oocyte meiosis,and compared the role of AURKA in regulating spindle formation,activating spindle assembly checkpoint,and correcting the kinetochore-microtubule attachment between the meiosis of oocytes and the mitosis of somatic cells.This review will lay a theoretical foundation for revealing the mechanism of AURKA in the regulation of cell division and for the clinical research related to cancer and reproduction.


Assuntos
Aurora Quinase A , Meiose , Aurora Quinase A/genética , Proteínas de Ciclo Celular/genética , Segregação de Cromossomos , Humanos , Oócitos
9.
Cells ; 10(12)2021 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-34943843

RESUMO

Zika virus (ZIKV) became a global health concern in 2016 due to its links to congenital microcephaly and other birth defects. Flaviviruses, including ZIKV, reorganize the endoplasmic reticulum (ER) to form a viroplasm, a compartment where virus particles are assembled. Microtubules (MTs) and microtubule-organizing centers (MTOCs) coordinate structural and trafficking functions in the cell, and MTs also support replication of flaviviruses. Here we investigated the roles of MTs and the cell's MTOCs on ZIKV viroplasm organization and virus production. We show that a toroidal-shaped viroplasm forms upon ZIKV infection, and MTs are organized at the viroplasm core and surrounding the viroplasm. We show that MTs are necessary for viroplasm organization and impact infectious virus production. In addition, the centrosome and the Golgi MTOC are closely associated with the viroplasm, and the centrosome coordinates the organization of the ZIKV viroplasm toroidal structure. Surprisingly, viroplasm formation and virus production are not significantly impaired when infected cells have no centrosomes and impaired Golgi MTOC, and we show that MTs are anchored to the viroplasm surface in these cells. We propose that the viroplasm is a site of MT organization, and the MTs organized at the viroplasm are sufficient for efficient virus production.


Assuntos
Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Compartimentos de Replicação Viral/fisiologia , Infecção por Zika virus/virologia , Linhagem Celular , Centrossomo/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Humanos , Vírion/metabolismo
10.
Microorganisms ; 9(12)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34946106

RESUMO

Microtubule organizing centers (MTOCs) perform critical cellular tasks by nucleating, stabilizing, and anchoring microtubule's minus ends. These capacities impact tremendously a wide array of cellular functions ranging from ascribing cell shape to orchestrating cell division and generating motile structures, among others. The phylum Apicomplexa comprises over 6000 single-celled obligate intracellular parasitic species. Many of the apicomplexan are well known pathogens such as Toxoplasma gondii and the Plasmodium species, causative agents of toxoplasmosis and malaria, respectively. Microtubule organization in these parasites is critical for organizing the cortical cytoskeleton, enabling host cell penetration and the positioning of large organelles, driving cell division and directing the formation of flagella in sexual life stages. Apicomplexans are a prime example of MTOC diversity displaying multiple functional and structural MTOCs combinations within a single species. This diversity can only be fully understood in light of each organism's specific MT nucleation requirements and their evolutionary history. Insight into apicomplexan MTOCs had traditionally been limited to classical ultrastructural work by transmission electron microscopy. However, in the past few years, a large body of molecular insight has emerged. In this work we describe the latest insights into nuclear MTOC biology in two major human and animal disease causing Apicomplexans: Toxoplasma gondii and Plasmodium spp.

11.
Cells ; 10(10)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34685637

RESUMO

The centrosome of Dictyostelium amoebae contains no centrioles and consists of a cylindrical layered core structure surrounded by a corona harboring microtubule-nucleating γ-tubulin complexes. It is the major centrosomal model beyond animals and yeasts. Proteomics, protein interaction studies by BioID and superresolution microscopy methods led to considerable progress in our understanding of the composition, structure and function of this centrosome type. We discuss all currently known components of the Dictyostelium centrosome in comparison to other centrosomes of animals and yeasts.


Assuntos
Centrossomo/metabolismo , Dictyostelium/metabolismo , Núcleo Celular/metabolismo , Centrossomo/ultraestrutura , Fuso Acromático/metabolismo , Fuso Acromático/ultraestrutura
12.
Cell Mol Life Sci ; 78(21-22): 6775-6795, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34476544

RESUMO

The centrosome is a tiny cytoplasmic organelle that organizes and constructs massive molecular machines to coordinate diverse cellular processes. Due to its many roles during both interphase and mitosis, maintaining centrosome homeostasis is essential to normal health and development. Centrosome instability, divergence from normal centrosome number and structure, is a common pathognomonic cellular state tightly associated with cancers and other genetic diseases. As novel connections are investigated linking the centrosome to disease, it is critical to understand the breadth of centrosome functions to inspire discovery. In this review, we provide an introduction to normal centrosome function and highlight recent discoveries that link centrosome instability to specific disease states.


Assuntos
Centrossomo/fisiologia , Instabilidade Cromossômica/genética , Animais , Doenças Genéticas Inatas/genética , Humanos , Interfase/genética , Mitose/genética , Neoplasias/genética , Organelas/genética
13.
J Cardiovasc Dev Dis ; 8(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34436229

RESUMO

Induction of cardiomyocyte proliferation is a promising option to regenerate the heart. Thus, it is important to elucidate mechanisms that contribute to the cell cycle arrest of mammalian cardiomyocytes. Here, we assessed the contribution of the pericentrin (Pcnt) S isoform to cell cycle arrest in postnatal cardiomyocytes. Immunofluorescence staining of Pcnt isoforms combined with SiRNA-mediated depletion indicates that Pcnt S preferentially localizes to the nuclear envelope, while the Pcnt B isoform is enriched at centrosomes. This is further supported by the localization of ectopically expressed FLAG-tagged Pcnt S and Pcnt B in postnatal cardiomyocytes. Analysis of centriole configuration upon Pcnt depletion revealed that Pcnt B but not Pcnt S is required for centriole cohesion. Importantly, ectopic expression of Pcnt S induced centriole splitting in a heterologous system, ARPE-19 cells, and was sufficient to impair DNA synthesis in C2C12 myoblasts. Moreover, Pcnt S depletion enhanced serum-induced cell cycle re-entry in postnatal cardiomyocytes. Analysis of mitosis, binucleation rate, and cell number suggests that Pcnt S depletion enhances serum-induced progression of postnatal cardiomyocytes through the cell cycle resulting in cell division. Collectively, our data indicate that alternative splicing of Pcnt contributes to the establishment of cardiomyocyte cell cycle arrest shortly after birth.

14.
Trends Cell Biol ; 31(11): 924-939, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34284921

RESUMO

Organelles are critical structures in mediating the assembly and activation of inflammasomes in mammalian cells, resulting in inflammation and cell death. Assembly of inflammasomes can occur at the mitochondria, endoplasmic reticulum, nucleus, trans-Golgi network, or pathogen surface, facilitated by the overarching architecture of the cytoskeleton. NLRP3 and Pyrin inflammasome sensors may form smaller speckles and converge on a single larger speck at the microtubule-organizing center (MTOC). This signaling hub activates multiple mammalian inflammatory and apoptotic caspases, cytokine substrates, the pore-forming protein gasdermin D, and the plasma membrane rupture protein ninjurin-1 (NINJ1), allowing pyroptosis, cellular disintegration, and inflammation to ensue. In this review, we highlight the role of mammalian cell types and organellar architectures in executing inflammasome responses.


Assuntos
Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Animais , Caspases/metabolismo , Moléculas de Adesão Celular Neuronais , Humanos , Inflamassomos/metabolismo , Inflamação , Mamíferos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Fatores de Crescimento Neural , Piroptose
15.
Curr Biol ; 31(17): 3768-3783.e3, 2021 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-34270949

RESUMO

Neurons are highly polarized cells with morphologically and functionally distinct dendritic and axonal processes. The molecular mechanisms that establish axon-dendrite polarity in vivo are poorly understood. Here, we describe the initial polarization of posterior deirid (PDE), a ciliated mechanosensory neuron, during development in vivo through 4D live imaging with endogenously tagged proteins. PDE inherits and maintains apicobasal polarity from its epithelial precursor. Its apical domain is directly transformed into the ciliated dendritic tip through apical constriction, which is followed by axonal outgrowth from the opposite basal side of the cell. The apical Par complex and junctional proteins persistently localize at the developing dendritic domain throughout this transition. Consistent with their instructive role in axon-dendrite polarization, conditional depletion of the Par complex and junctional proteins results in robust defects in dendrite and axon formation. During apical constriction, a microtubule-organizing center (MTOC) containing the microtubule nucleator γ-tubulin ring complex (γ-TuRC) forms along the apical junction between PDE and its sister cell in a manner dependent on the Par complex and junctional proteins. This junctional MTOC patterns neuronal microtubule polarity and facilitate the dynein-dependent recruitment of the basal body for ciliogenesis. When non-ciliated neurons are genetically manipulated to obtain ciliated neuronal fate, inherited apicobasal polarity is required for generating ciliated dendritic tips. We propose that inherited apicobasal polarity, together with apical cell-cell interactions drive the morphological and cytoskeletal polarity in early neuronal differentiation.


Assuntos
Axônios , Centro Organizador dos Microtúbulos , Polaridade Celular/fisiologia , Dendritos/metabolismo , Centro Organizador dos Microtúbulos/metabolismo , Microtúbulos/metabolismo , Células Receptoras Sensoriais
16.
Curr Biol ; 31(11): 2410-2417.e6, 2021 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-33798428

RESUMO

During mitosis in animal cells, the centrosome acts as a microtubule organizing center (MTOC) to assemble the mitotic spindle. MTOC function at the centrosome is driven by proteins within the pericentriolar material (PCM), however the molecular complexity of the PCM makes it difficult to differentiate the proteins required for MTOC activity from other centrosomal functions. We used the natural spatial separation of PCM proteins during mitotic exit to identify a minimal module of proteins required for centrosomal MTOC function in C. elegans. Using tissue-specific degradation, we show that SPD-5, the functional homolog of CDK5RAP2, is essential for embryonic mitosis, while SPD-2/CEP192 and PCMD-1, which are essential in the one-cell embryo, are dispensable. Surprisingly, although the centriole is known to be degraded in the ciliated sensory neurons in C. elegans,1-3 we find evidence for "centriole-less PCM" at the base of cilia and use this structure as a minimal testbed to dissect centrosomal MTOC function. Super-resolution imaging revealed that this PCM inserts inside the lumen of the ciliary axoneme and directly nucleates the assembly of dendritic microtubules toward the cell body. Tissue-specific degradation in ciliated sensory neurons revealed a role for SPD-5 and the conserved microtubule nucleator γ-TuRC, but not SPD-2 or PCMD-1, in MTOC function at centriole-less PCM. This MTOC function was in the absence of regulation by mitotic kinases, highlighting the intrinsic ability of these proteins to drive microtubule growth and organization and further supporting a model that SPD-5 is the primary driver of MTOC function at the PCM.


Assuntos
Centríolos , Centro Organizador dos Microtúbulos , Animais , Caenorhabditis elegans/genética , Centrossomo , Cílios , Microtúbulos
17.
Elife ; 102021 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-33491649

RESUMO

TRIM37 is an E3 ubiquitin ligase mutated in Mulibrey nanism, a disease with impaired organ growth and increased tumor formation. TRIM37 depletion from tissue culture cells results in supernumerary foci bearing the centriolar protein Centrin. Here, we characterize these centriolar protein assemblies (Cenpas) to uncover the mechanism of action of TRIM37. We find that an atypical de novo assembly pathway can generate Cenpas that act as microtubule-organizing centers (MTOCs), including in Mulibrey patient cells. Correlative light electron microscopy reveals that Cenpas are centriole-related or electron-dense structures with stripes. TRIM37 regulates the stability and solubility of Centrobin, which accumulates in elongated entities resembling the striped electron dense structures upon TRIM37 depletion. Furthermore, Cenpas formation upon TRIM37 depletion requires PLK4, as well as two parallel pathways relying respectively on Centrobin and PLK1. Overall, our work uncovers how TRIM37 prevents Cenpas formation, which would otherwise threaten genome integrity.


Assuntos
Proteínas de Ciclo Celular/genética , Centro Organizador dos Microtúbulos/metabolismo , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/genética , Proteínas de Ciclo Celular/metabolismo , Linhagem Celular , Centríolos/metabolismo , Células HeLa , Humanos , Nanismo de Mulibrey/genética , Nanismo de Mulibrey/metabolismo , Proteínas com Motivo Tripartido/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
18.
Cytoskeleton (Hoboken) ; 78(10-12): 492-502, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-35666041

RESUMO

Skeletal muscle differentiation occurs as muscle precursor cells (myoblasts) elongate and fuse to form multinucleated syncytial myotubes in which the highly-organized actomyosin sarcomeres of muscle fibers assemble. Although less well characterized, the microtubule cytoskeleton also undergoes dramatic rearrangement during myogenesis. The centrosome-nucleated microtubule array found in myoblasts is lost as the nuclear membrane acquires microtubule nucleating activity and microtubules emerge from multiple sites in the cell, eventually rearranging into a grid-like pattern in myotubes. In order to characterize perinuclear microtubule organization using a biochemically tractable system, we isolated nuclei from mouse C2C12 skeletal muscle cells during the course of differentiation and incubated them in cytoplasmic extracts prepared from eggs of the frog Xenopus laevis. Whereas centrosomes associated with myoblast nuclei gave rise to radial microtubule arrays in extracts, myotube nuclei produced a sun-like pattern with microtubules transiently nucleating from the entire nuclear envelope. Perinuclear microtubule growth was suppressed by inhibition of Aurora A kinase or by degradation of RNA, treatments that also inhibited microtubule growth from sperm centrosomes. Myotube nuclei displayed microtubule motor-based movements leading to their separation, as occurs in myotubes. This in vitro assay therefore recapitulates key features of microtubule organization and nuclear movement observed during muscle cell differentiation.


Assuntos
Microtúbulos , Sêmen , Animais , Núcleo Celular/metabolismo , Centrossomo , Masculino , Camundongos , Microtúbulos/metabolismo , Fibras Musculares Esqueléticas/metabolismo
19.
Virchows Arch ; 478(2): 327-334, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32710188

RESUMO

Urothelial carcinoma (UC) comprises two subtypes, low grade (LG-UC) and high grade (HG-UC), with different pathological and clinical behavior. LG-UC and HG-UC are classified based on cellular and structural atypia of pathological findings. The mechanisms responsible for maintaining structural atypia, such as the disturbance of nuclear polarity, remain unclear. In this study, we studied microtubule-organizing center (MTOC)-mediated nuclear polarity in UC subtypes. We evaluated six cases with normal urothelium (NU), 10 LG-UC cases, and 10 HG-UC cases by double immunofluorescence staining of γ-tubulin as a marker of MTOC and E-cadherin as a marker of each cell border. The number and position of γ-tubulin dots of expression in more than 100 cells per case were assessed using the spatial relationship with the nucleus and surface-basal axis. We found one γ-tubulin dot in most normal and tumor cells, and more than two γ-tubulin dots in 4.6% of NU cells, 6.1% of LG-UC cells, and 9.8% of HG-UC cells. More than three γ-tubulin dots were found only in 1.2% of HG-UC cells. Surface side positioning of γ-tubulin was found in 77.4% of normal urothelial cells, 63.8% of LG-UC cells, and 39.2% of HG-UC cells, whereas aberrant lateral and basal side positioning of γ-tubulin was found in 22.6% of normal urothelial cells, 36.1% of LG-UC cells, and 60.8% of HG-UC cells. We concluded that numerical and positional aberrations of MTOC in UC cases were strongly correlated with both cellular and structural atypia as well as abnormal cell proliferation.


Assuntos
Carcinoma/patologia , Núcleo Celular/patologia , Centro Organizador dos Microtúbulos/patologia , Neoplasias da Bexiga Urinária/patologia , Urotélio/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/análise , Biomarcadores Tumorais/análise , Caderinas/análise , Carcinoma/química , Carcinoma/cirurgia , Núcleo Celular/química , Proliferação de Células , Feminino , Humanos , Masculino , Centro Organizador dos Microtúbulos/química , Pessoa de Meia-Idade , Gradação de Tumores , Tubulina (Proteína)/análise , Neoplasias da Bexiga Urinária/química , Neoplasias da Bexiga Urinária/cirurgia , Urotélio/química , Urotélio/cirurgia
20.
Toxicology ; 439: 152466, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32315717

RESUMO

Glyphosate is the most popular herbicide used in modern agriculture, and its use has been increasing substantially since its introduction. Accordingly, glyphosate exposure from food and water, the environment, and accidental and occupational venues has also increased. Recent studies have demonstrated a relationship between glyphosate exposure and a number of disorders such as cancer, immune and metabolic disorders, endocrine disruption, imbalance of intestinal flora, cardiovascular disease, and infertility; these results have given glyphosate a considerable amount of media and scientific attention. Notably, glyphosate is a powerful metal chelator, which could help explain some of its effects. Recently, our findings on 2,3-dimercapto-1-propanesulfonic acid, another metal chelator, showed deterioration of oocyte quality. Here, to generalize, we investigated the effects of glyphosate (0 - 300 µM) on metaphase II mouse oocyte quality and embryo damage to obtain insight on its mechanisms of cellular action and the tolerance of oocytes and embryos towards this chemical. Our work shows for the first time that glyphosate exposure impairs metaphase II mouse oocyte quality via two mechanisms: 1) disruption of the microtubule organizing center and chromosomes such as anomalous pericentrin formation, spindle fiber destruction and disappearance, and defective chromosomal alignment and 2) substantial depletion of intracellular zinc bioavailability and enhancement of reactive oxygen species accumulation. Similar effects were found in embryos. These results may help clarify the effects of glyphosate exposure on female fertility and provide counseling and preventative steps for excessive glyphosate intake and resulting oxidative stress and reduced zinc bioavailability.


Assuntos
Embrião de Mamíferos/efeitos dos fármacos , Embrião de Mamíferos/metabolismo , Glicina/análogos & derivados , Herbicidas/toxicidade , Metáfase/efeitos dos fármacos , Oócitos/efeitos dos fármacos , Oócitos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Zinco/metabolismo , Animais , Cromossomos/efeitos dos fármacos , Feminino , Glicina/toxicidade , Infertilidade Feminina/induzido quimicamente , Infertilidade Feminina/patologia , Camundongos , Microtúbulos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Gravidez , Fuso Acromático/efeitos dos fármacos , Glifosato
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA